use {
    super::ParamAlloc,
    crate::{
        backend::hbvm::{
            reg::{self, Reg},
            HbvmBackend, Nid, Nodes, PLoc, Reloc, TypedReloc,
        },
        lexer::TokenKind,
        nodes::{Kind, ARG_START, MEM, VOID},
        parser, quad_sort,
        ty::{self, Arg, Loc, Module, Offset, Sig, Types},
        utils::{BitSet, EntSlice},
    },
    alloc::{borrow::ToOwned, vec::Vec},
    core::{assert_matches::debug_assert_matches, mem, ops::Range},
    hbbytecode::{self as instrs},
};

impl HbvmBackend {
    pub(super) fn emit_body_code(
        &mut self,
        nodes: &Nodes,
        sig: Sig,
        tys: &Types,
        files: &EntSlice<Module, parser::Ast>,
    ) -> (usize, bool) {
        let tail = FunctionBuilder::build(nodes, tys, &mut self.ralloc, sig);

        let strip_load = |value| match nodes[value].kind {
            Kind::Load { .. } if nodes[value].ty.loc(tys) == Loc::Stack => nodes[value].inputs[1],
            _ => value,
        };

        let mut res = mem::take(&mut self.ralloc);

        let special_reg_count = 13u8;

        Regalloc::run(nodes, tys, &mut res, special_reg_count as _);

        '_open_function: {
            self.emit(instrs::addi64(reg::STACK_PTR, reg::STACK_PTR, 0));
            self.emit(instrs::st(reg::RET_ADDR + tail as u8, reg::STACK_PTR, 0, 0));
        }

        if let Some(PLoc::Ref(..)) = tys.parama(sig.ret).0 {
            res.node_to_reg[MEM as usize] = res.general_bundles.len() as u8 + 1;
            res.general_bundles.push(Bundle::default());
        }

        let reg_offset = if tail { special_reg_count } else { reg::RET_ADDR + 1 };
        let bundle_count = res.general_bundles.len() + (reg_offset as usize);

        res.node_to_reg.iter_mut().filter(|r| **r != 0).for_each(|r| {
            if *r == u8::MAX {
                *r = 0
            } else {
                *r += reg_offset - 1;
                if tail && *r >= reg::RET_ADDR {
                    *r += 1;
                }
            }
        });

        debug_assert!(!res
            .node_to_reg
            .iter()
            .any(|&a| a == reg::RET_ADDR || (reg::RET..reg_offset - 1).contains(&a)));

        let atr = |allc: Nid| {
            let allc = strip_load(allc);
            debug_assert!(
                nodes.is_unlocked(allc),
                "{:?} {}",
                nodes[allc],
                ty::Display::new(tys, files, nodes[allc].ty)
            );
            res.node_to_reg[allc as usize]
        };

        let (retl, mut parama) = tys.parama(sig.ret);
        let mut typs = sig.args.args();
        let mut args = nodes[VOID].outputs[ARG_START..].iter();
        while let Some(aty) = typs.next(tys) {
            let Arg::Value(ty) = aty else { continue };
            let Some(loc) = parama.next(ty, tys) else { continue };
            let &arg = args.next().unwrap();
            let (rg, size) = match loc {
                PLoc::WideReg(rg, size) => (rg, size),
                PLoc::Reg(rg, size) if ty.loc(tys) == Loc::Stack => (rg, size),
                PLoc::Reg(r, ..) | PLoc::Ref(r, ..) => {
                    self.emit_cp(atr(arg), r);
                    continue;
                }
            };
            self.emit(instrs::st(rg, reg::STACK_PTR, self.offsets[arg as usize] as _, size));
            if nodes.is_unlocked(arg) {
                self.emit(instrs::addi64(rg, reg::STACK_PTR, self.offsets[arg as usize] as _));
            }
            self.emit_cp(atr(arg), rg);
        }

        let mut alloc_buf = vec![];
        for (i, block) in res.blocks.iter().enumerate() {
            self.offsets[block.entry as usize] = self.code.len() as _;
            for &nid in &res.instrs[block.range()] {
                if nid == VOID {
                    continue;
                }

                let node = &nodes[nid];
                alloc_buf.clear();

                let assert_alloc_use = |allc: Nid| {
                    debug_assert!(
                        nodes.is_unlocked(allc),
                        "{:?} {}",
                        nodes[allc],
                        ty::Display::new(tys, files, nodes[allc].ty)
                    );
                    #[cfg(debug_assertions)]
                    debug_assert!(
                        res.marked.contains(&(allc, nid))
                            || nid == allc
                            || nodes.is_hard_zero(allc)
                            || allc == MEM
                            || matches!(node.kind, Kind::Loop | Kind::Region),
                        "{nid} {:?}\n{allc} {:?} {}",
                        nodes[nid],
                        nodes[allc],
                        ty::Display::new(tys, files, nodes[allc].ty)
                    );
                };

                let atr = |allc: Nid| {
                    let allc = strip_load(allc);
                    assert_alloc_use(allc);
                    res.node_to_reg[allc as usize]
                };

                let offset_atr = |pallc: Nid, offsets: &[Offset]| {
                    let allc = strip_load(pallc);
                    if nodes.is_locked(allc) {
                        let (region, offset) = nodes.strip_offset(allc);
                        match nodes[region].kind {
                            Kind::Stck => {
                                return (
                                    reg::STACK_PTR,
                                    offsets[region as usize] as u64 + offset as u64,
                                )
                            }
                            _ => {
                                assert_alloc_use(region);
                                return (res.node_to_reg[region as usize], offset as u64);
                            }
                        }
                    }

                    assert_alloc_use(allc);
                    (res.node_to_reg[allc as usize], 0)
                };

                match node.kind {
                    Kind::Mem => self.emit(instrs::cp(atr(MEM), reg::RET)),
                    Kind::Arg => {}
                    Kind::If => {
                        let &[_, cnd] = node.inputs.as_slice() else { unreachable!() };
                        if let Some((op, swapped)) = nodes.cond_op(cnd) {
                            let &[_, lh, rh] = nodes[cnd].inputs.as_slice() else { unreachable!() };
                            let [lhs, rhs] = [atr(lh), atr(rh)];

                            self.extend(nodes[lh].ty, nodes[lh].ty.extend(), lhs, tys, files);
                            self.extend(nodes[rh].ty, nodes[rh].ty.extend(), rhs, tys, files);

                            let rel = Reloc::new(self.code.len(), 3, 2);
                            self.jump_relocs.push((node.outputs[!swapped as usize], rel));
                            self.emit(op(lhs, rhs, 0));
                        } else {
                            let cd = atr(cnd);
                            debug_assert_eq!(nodes[node.outputs[0]].kind, Kind::Then);
                            self.extend(nodes[cnd].ty, nodes[cnd].ty.extend(), cd, tys, files);
                            let rel = Reloc::new(self.code.len(), 3, 2);
                            self.jump_relocs.push((node.outputs[0], rel));
                            self.emit(instrs::jne(cd, reg::ZERO, 0));
                        }
                    }
                    Kind::Loop | Kind::Region => {
                        let index = node
                            .inputs
                            .iter()
                            .position(|&n| block.entry == nodes.idom_of(n))
                            .unwrap()
                            + 1;

                        let mut moves = vec![];
                        for &out in node.outputs.iter() {
                            if nodes[out].is_data_phi() {
                                let src = nodes[out].inputs[index];
                                if atr(out) != atr(src) {
                                    moves.push([atr(out), atr(src), 0]);
                                }
                            }
                        }

                        // code makes sure all moves are ordered so that register is only moved
                        // into after all its uses
                        //
                        // in case of cycles, swaps are used instead in which case the conflicting
                        // move is removed and remining moves are replaced with swaps

                        const CYCLE_SENTINEL: u8 = u8::MAX;

                        debug_assert_eq!(
                            {
                                let mut dests = moves.iter().map(|&[d, ..]| d).collect::<Vec<_>>();
                                dests.sort_unstable();
                                dests.dedup();
                                dests.len()
                            },
                            moves.len()
                        );
                        let mut graph = [u8::MAX; 256];
                        for &[d, s, _] in moves.iter() {
                            graph[d as usize] = s;
                        }

                        'o: for &mut [d, s, ref mut depth] in moves.iter_mut() {
                            let mut c = s;
                            loop {
                                if c == d {
                                    break;
                                }

                                c = graph[c as usize];
                                *depth += 1;

                                if c == u8::MAX {
                                    continue 'o;
                                }
                            }

                            // cut the cycle
                            graph[c as usize] = u8::MAX;
                            // mark cycyle
                            *depth = CYCLE_SENTINEL;
                        }

                        quad_sort(&mut moves, |a, b| a[2].cmp(&b[2]).reverse());

                        for [mut d, mut s, depth] in moves {
                            if depth == CYCLE_SENTINEL {
                                while graph[s as usize] != u8::MAX {
                                    self.emit(instrs::swa(d, s));
                                    d = s;
                                    mem::swap(&mut graph[s as usize], &mut s);
                                }
                                // trivial cycle denotes this move was already generated in a
                                // cycyle
                                graph[s as usize] = s;
                            } else if graph[s as usize] != s {
                                self.emit(instrs::cp(d, s));
                            }
                        }

                        if res.backrefs[nid as usize] as usize != i + 1 {
                            let rel = Reloc::new(self.code.len(), 1, 4);
                            self.jump_relocs.push((nid, rel));
                            self.emit(instrs::jmp(0));
                        }
                    }
                    Kind::Return { .. } => {
                        let &[_, ret, ..] = node.inputs.as_slice() else { unreachable!() };
                        match retl {
                            None => {}
                            Some(PLoc::Reg(r, size)) if sig.ret.loc(tys) == Loc::Stack => {
                                let (src, offset) = offset_atr(ret, &self.offsets);
                                self.emit(instrs::ld(r, src, offset, size))
                            }
                            Some(PLoc::WideReg(r, size)) => {
                                let (src, offset) = offset_atr(ret, &self.offsets);
                                self.emit(instrs::ld(r, src, offset, size))
                            }
                            Some(PLoc::Reg(r, _)) => {
                                alloc_buf.push(atr(ret));
                                self.emit(instrs::cp(r, atr(ret)));
                            }
                            Some(PLoc::Ref(_, size)) => {
                                let [src, dst] = [atr(ret), atr(MEM)];
                                if let Ok(size) = u16::try_from(size) {
                                    self.emit(instrs::bmc(src, dst, size));
                                } else {
                                    for _ in 0..size / u16::MAX as u32 {
                                        self.emit(instrs::bmc(src, dst, u16::MAX));
                                        self.emit(instrs::addi64(src, src, u16::MAX as _));
                                        self.emit(instrs::addi64(dst, dst, u16::MAX as _));
                                    }
                                    self.emit(instrs::bmc(src, dst, size as u16));
                                    self.emit(instrs::addi64(src, src, size.wrapping_neg() as _));
                                    self.emit(instrs::addi64(dst, dst, size.wrapping_neg() as _));
                                }
                            }
                        }

                        if i != res.blocks.len() - 1 {
                            let rel = Reloc::new(self.code.len(), 1, 4);
                            self.ret_relocs.push(rel);
                            self.emit(instrs::jmp(0));
                        }
                    }
                    Kind::Die => {
                        self.emit(instrs::un());
                    }
                    Kind::CInt { value: 0 } => self.emit(instrs::cp(atr(nid), reg::ZERO)),
                    Kind::CInt { value } if node.ty == ty::Id::F32 => {
                        self.emit(instrs::li32(
                            atr(nid),
                            (f64::from_bits(value as _) as f32).to_bits(),
                        ));
                    }
                    Kind::CInt { value } => self.emit(match tys.size_of(node.ty) {
                        1 => instrs::li8(atr(nid), value as _),
                        2 => instrs::li16(atr(nid), value as _),
                        4 => instrs::li32(atr(nid), value as _),
                        _ => instrs::li64(atr(nid), value as _),
                    }),
                    Kind::UnOp { op } => {
                        let op = op
                            .unop(
                                node.ty,
                                tys.inner_of(nodes[node.inputs[1]].ty)
                                    .unwrap_or(nodes[node.inputs[1]].ty),
                                tys,
                            )
                            .unwrap_or_else(|| {
                                panic!(
                                    "TODO: unary operator not supported: {op} {} {}",
                                    ty::Display::new(tys, files, node.ty),
                                    ty::Display::new(
                                        tys,
                                        files,
                                        tys.inner_of(nodes[node.inputs[1]].ty)
                                            .unwrap_or(nodes[node.inputs[1]].ty)
                                    )
                                )
                            });
                        self.emit(op(atr(nid), atr(node.inputs[1])));
                    }
                    Kind::BinOp { op } => {
                        let &[.., lhs, rhs] = node.inputs.as_slice() else { unreachable!() };

                        if let Kind::CInt { value } = nodes[rhs].kind
                            && nodes.is_locked(rhs)
                            && let Some(op) = op.imm_binop(node.ty)
                        {
                            self.emit(op(atr(nid), atr(lhs), value as _));
                        } else if node.kind == (Kind::BinOp { op: TokenKind::Add })
                            && node.ty.is_float()
                            && nodes.is_locked(lhs)
                        {
                            let fma = [instrs::fma32, instrs::fma64]
                                [node.ty.simple_size().unwrap().ilog2() as usize - 2];
                            self.emit(fma(
                                atr(nid),
                                atr(nodes[lhs].inputs[1]),
                                atr(nodes[lhs].inputs[2]),
                                atr(rhs),
                            ));
                        } else if let Some(against) = op.cmp_against() {
                            let op_ty = nodes[rhs].ty;
                            let [dst, lhs, rhs] = [atr(nid), atr(lhs), atr(rhs)];
                            if let Some(op) = op.float_cmp(op_ty) {
                                self.emit(op(dst, lhs, rhs));
                            } else if op_ty.is_float()
                                && matches!(op, TokenKind::Le | TokenKind::Ge)
                            {
                                let op = match op {
                                    TokenKind::Le => TokenKind::Gt,
                                    TokenKind::Ge => TokenKind::Lt,
                                    _ => unreachable!(),
                                };
                                let op_fn = op.float_cmp(op_ty).unwrap();
                                self.emit(op_fn(dst, lhs, rhs));
                                self.emit(instrs::not(dst, dst));
                            } else {
                                let op_fn =
                                    if op_ty.is_signed() { instrs::cmps } else { instrs::cmpu };
                                self.emit(op_fn(dst, lhs, rhs));
                                self.emit(instrs::cmpui(dst, dst, against));
                                if matches!(op, TokenKind::Eq | TokenKind::Lt | TokenKind::Gt) {
                                    self.emit(instrs::not(dst, dst));
                                }
                            }
                        } else if let Some(op) = op.binop(node.ty) {
                            let [dst, lhs, rhs] = [atr(nid), atr(lhs), atr(rhs)];
                            self.emit(op(dst, lhs, rhs));
                        } else {
                            todo!("unhandled operator: {op}");
                        }
                    }
                    Kind::Call { args, func, .. } => {
                        let (ret, mut parama) = tys.parama(node.ty);
                        debug_assert!(node.ty != ty::Id::NEVER || ret.is_none());
                        if let Some(PLoc::Ref(r, ..)) = ret {
                            self.emit(instrs::cp(r, atr(*node.inputs.last().unwrap())))
                        }
                        let mut args = args.args();
                        let mut allocs = node.inputs[1..].iter();
                        while let Some(arg) = args.next(tys) {
                            let Arg::Value(ty) = arg else { continue };
                            let Some(loc) = parama.next(ty, tys) else { continue };

                            let &arg = allocs.next().unwrap();
                            let (rg, size) = match loc {
                                PLoc::Reg(rg, size) if ty.loc(tys) == Loc::Stack => (rg, size),
                                PLoc::WideReg(rg, size) => (rg, size),
                                PLoc::Ref(r, ..) | PLoc::Reg(r, ..) => {
                                    self.emit(instrs::cp(r, atr(arg)));
                                    continue;
                                }
                            };

                            let (src, off) = offset_atr(arg, &self.offsets);
                            self.emit(instrs::ld(rg, src, off, size));
                        }

                        if func == ty::Func::ECA {
                            self.emit(instrs::eca());
                        } else {
                            self.relocs.push(TypedReloc {
                                target: func.into(),
                                reloc: Reloc::new(self.code.len(), 3, 4),
                            });
                            self.emit(instrs::jal(reg::RET_ADDR, reg::ZERO, 0));
                        }

                        if node.ty.loc(tys) == Loc::Stack
                            && let Some(PLoc::Reg(r, size) | PLoc::WideReg(r, size)) = ret
                        {
                            self.emit(instrs::st(r, atr(*node.inputs.last().unwrap()), 0, size));
                        }

                        //match ret {
                        //    Some(PLoc::WideReg(..)) => {}
                        //    Some(PLoc::Reg(..)) if node.ty.loc(tys) == Loc::Stack => {}
                        //    Some(PLoc::Reg(r, ..)) => self.emit_cp(atr(nid), r),
                        //    None | Some(PLoc::Ref(..)) => {}
                        //}
                    }
                    Kind::RetVal => {
                        self.emit_cp(atr(nid), reg::RET);
                    }
                    Kind::Global { global } => {
                        let reloc = Reloc::new(self.code.len(), 3, 4);
                        self.relocs.push(TypedReloc { target: global.into(), reloc });
                        self.emit(instrs::lra(atr(nid), 0, 0));
                    }
                    Kind::Stck => {
                        let base = reg::STACK_PTR;
                        let offset = self.offsets[nid as usize];
                        self.emit(instrs::addi64(atr(nid), base, offset as _));
                    }
                    Kind::Load => {
                        let (region, offset) = nodes.strip_offset(node.inputs[1]);
                        let size = tys.size_of(node.ty);
                        if node.ty.loc(tys) != Loc::Stack {
                            let (base, offset) = match nodes[region].kind {
                                Kind::Stck => {
                                    (reg::STACK_PTR, self.offsets[region as usize] + offset)
                                }
                                _ => (atr(region), offset),
                            };
                            self.emit(instrs::ld(atr(nid), base, offset as _, size as _));
                        }
                    }
                    Kind::Stre => {
                        debug_assert_ne!(node.inputs[1], VOID);
                        let (region, offset) = nodes.strip_offset(node.inputs[2]);
                        let size = u16::try_from(tys.size_of(node.ty)).expect("TODO");
                        let (base, offset, src) = match nodes[region].kind {
                            Kind::Stck if node.ty.loc(tys) == Loc::Reg => (
                                reg::STACK_PTR,
                                self.offsets[region as usize] + offset,
                                atr(node.inputs[1]),
                            ),
                            _ => (atr(region), offset, atr(node.inputs[1])),
                        };

                        match node.ty.loc(tys) {
                            Loc::Reg => self.emit(instrs::st(src, base, offset as _, size)),
                            Loc::Stack => {
                                debug_assert_eq!(offset, 0);
                                self.emit(instrs::bmc(src, base, size))
                            }
                        }
                    }
                    e @ (Kind::Start
                    | Kind::Assert { .. }
                    | Kind::Entry
                    | Kind::End
                    | Kind::Loops
                    | Kind::Then
                    | Kind::Else
                    | Kind::Phi
                    | Kind::Join) => unreachable!("{e:?}"),
                }
            }
        }

        self.ralloc = res;

        debug_assert!(bundle_count < reg::STACK_PTR as usize, "TODO: spill memory");
        debug_assert_eq!(
            self.ralloc
                .node_to_reg
                .iter()
                .filter(|&&r| r
                    > (bundle_count as u8
                        + (tail && bundle_count > (reg::RET_ADDR) as usize) as u8))
                .copied()
                .collect::<Vec<_>>(),
            vec![],
            "{bundle_count}"
        );

        (
            if tail {
                bundle_count.saturating_sub(reg::RET_ADDR as _)
            } else {
                self.ralloc.general_bundles.len()
            },
            tail,
        )
    }

    fn emit_cp(&mut self, dst: Reg, src: Reg) {
        if dst != 0 {
            self.emit(instrs::cp(dst, src));
        }
    }
}

struct FunctionBuilder<'a> {
    sig: Sig,
    tail: bool,
    nodes: &'a Nodes,
    tys: &'a Types,
    func: &'a mut Res,
}

impl core::fmt::Debug for FunctionBuilder<'_> {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        for block in &self.func.blocks {
            writeln!(f, "{:?}", self.nodes[block.entry].kind)?;
            for &instr in &self.func.instrs[block.range()] {
                writeln!(f, "{:?}", self.nodes[instr].kind)?;
            }
        }

        Ok(())
    }
}

impl<'a> FunctionBuilder<'a> {
    fn build(nodes: &'a Nodes, tys: &'a Types, func: &'a mut Res, sig: Sig) -> bool {
        func.blocks.clear();
        func.instrs.clear();
        func.backrefs.resize(nodes.len(), u16::MAX);
        func.visited.clear(nodes.len());
        let mut s = Self { tail: true, nodes, tys, sig, func };
        s.emit_node(VOID);
        debug_assert!(s.func.blocks.array_chunks().all(|[a, b]| a.end == b.start));
        log::info!("{s:?}");
        s.tail
    }

    fn add_block(&mut self, entry: Nid) {
        self.func.blocks.push(Block {
            start: self.func.instrs.len() as _,
            end: self.func.instrs.len() as _,
            entry,
        });
        self.func.backrefs[entry as usize] = self.func.blocks.len() as u16 - 1;
    }

    fn close_block(&mut self, exit: Nid) {
        if !matches!(self.nodes[exit].kind, Kind::Loop | Kind::Region) {
            self.add_instr(exit);
        } else {
            self.func.instrs.push(exit);
        }
        let prev = self.func.blocks.last_mut().unwrap();
        prev.end = self.func.instrs.len() as _;
    }

    fn add_instr(&mut self, nid: Nid) {
        debug_assert_ne!(self.nodes[nid].kind, Kind::Loop);
        self.func.backrefs[nid as usize] = self.func.instrs.len() as u16;
        self.func.instrs.push(nid);
    }

    fn emit_node(&mut self, nid: Nid) {
        if matches!(self.nodes[nid].kind, Kind::Region | Kind::Loop) {
            match (self.nodes[nid].kind, self.func.visited.set(nid)) {
                (Kind::Loop, false) | (Kind::Region, true) => {
                    self.close_block(nid);
                    return;
                }
                _ => {}
            }
        } else if !self.func.visited.set(nid) {
            return;
        }

        if self.nodes.is_never_used(nid, self.tys) {
            self.nodes.lock(nid);
            return;
        }

        let node = &self.nodes[nid];
        match node.kind {
            Kind::Start => {
                debug_assert_matches!(self.nodes[node.outputs[0]].kind, Kind::Entry);
                self.add_block(VOID);
                self.emit_node(node.outputs[0])
            }
            Kind::If => {
                let &[_, cnd] = node.inputs.as_slice() else { unreachable!() };
                let &[mut then, mut else_] = node.outputs.as_slice() else { unreachable!() };

                if let Some((_, swapped)) = self.nodes.cond_op(cnd) {
                    if swapped {
                        mem::swap(&mut then, &mut else_);
                    }
                } else {
                    mem::swap(&mut then, &mut else_);
                }

                self.close_block(nid);
                self.emit_node(then);
                self.emit_node(else_);
            }
            Kind::Region | Kind::Loop => {
                self.close_block(nid);
                self.add_block(nid);
                for &o in node.outputs.iter().rev() {
                    self.emit_node(o);
                }
            }
            Kind::Return { .. } | Kind::Die => {
                self.close_block(nid);
                self.emit_node(node.outputs[0]);
            }
            Kind::Entry => {
                let (ret, mut parama) = self.tys.parama(self.sig.ret);

                if let Some(PLoc::Ref(..)) = ret {
                    self.add_instr(MEM);
                }

                let mut typs = self.sig.args.args();
                #[expect(clippy::unnecessary_to_owned)]
                let mut args = self.nodes[VOID].outputs[ARG_START..].to_owned().into_iter();
                while let Some(ty) = typs.next_value(self.tys) {
                    let arg = args.next().unwrap();
                    debug_assert_eq!(self.nodes[arg].kind, Kind::Arg);
                    match parama.next(ty, self.tys) {
                        None => {}
                        Some(_) => self.add_instr(arg),
                    }
                }

                for &o in node.outputs.iter().rev() {
                    self.emit_node(o);
                }
            }
            Kind::Then | Kind::Else => {
                self.add_block(nid);
                for &o in node.outputs.iter().rev() {
                    self.emit_node(o);
                }
            }
            Kind::Call { func, unreachable, .. } => {
                self.tail &= func == ty::Func::ECA;

                if unreachable {
                    self.close_block(nid);
                    self.emit_node(node.outputs[0]);
                } else {
                    self.add_instr(nid);
                    for &o in node.outputs.iter().rev() {
                        if self.nodes[o].inputs[0] == nid
                            || (matches!(self.nodes[o].kind, Kind::Loop | Kind::Region)
                                && self.nodes[o].inputs[1] == nid)
                        {
                            self.emit_node(o);
                        }
                    }
                }
            }
            Kind::CInt { value: 0 } if self.nodes.is_hard_zero(nid) => {}
            Kind::CInt { .. }
            | Kind::BinOp { .. }
            | Kind::UnOp { .. }
            | Kind::Global { .. }
            | Kind::Load { .. }
            | Kind::Stre
            | Kind::RetVal
            | Kind::Stck => self.add_instr(nid),
            Kind::End | Kind::Phi | Kind::Arg | Kind::Mem | Kind::Loops | Kind::Join => {}
            Kind::Assert { .. } => unreachable!(),
        }
    }
}

impl Nodes {
    fn vreg_count(&self) -> usize {
        self.len()
    }

    pub fn is_data_dep(&self, val: Nid, user: Nid, #[expect(unused)] types: &Types) -> bool {
        match self[user].kind {
            Kind::Return { .. } => self[user].inputs[1] == val,
            _ if self.is_cfg(user) && !matches!(self[user].kind, Kind::Call { .. } | Kind::If) => {
                false
            }
            Kind::Join => false,
            Kind::Stre => {
                debug_assert_eq!(
                    self[user].inputs[4..]
                        .iter()
                        .filter(|&&v| self[v].kind != Kind::Load)
                        .copied()
                        .collect::<Vec<_>>(),
                    vec![]
                );
                debug_assert_matches!(
                    self[self[user].inputs[3]].kind,
                    Kind::Stre | Kind::Mem | Kind::Phi | Kind::Join
                );
                self[user].inputs.iter().position(|&v| v == val).is_some_and(|v| v < 3)
            }
            Kind::Load => self[user].inputs[2] != val,
            _ => self[user].inputs[0] != val || self[user].inputs[1..].contains(&val),
        }
    }

    fn use_block_of(&self, inst: Nid, uinst: Nid) -> Nid {
        let mut block = self.use_block(inst, uinst, None);
        while !self[block].kind.starts_basic_block() {
            block = self.idom(block, None);
        }
        block
    }

    fn phi_inputs_of(&self, nid: Nid) -> impl Iterator<Item = [Nid; 3]> + use<'_> {
        match self[nid].kind {
            Kind::Region | Kind::Loop => Some({
                self[nid]
                    .outputs
                    .as_slice()
                    .iter()
                    .filter(|&&n| self[n].is_data_phi())
                    .map(|&n| [n, self[n].inputs[1], self[n].inputs[2]])
            })
            .into_iter()
            .flatten(),
            _ => None.into_iter().flatten(),
        }
    }

    fn idom_of(&self, mut nid: Nid) -> Nid {
        while !self[nid].kind.starts_basic_block() {
            nid = self.idom(nid, None);
        }
        nid
    }

    fn uses_of(
        &self,
        nid: Nid,
        types: &Types,
        stack: &mut Vec<Nid>,
        buf: &mut Vec<(Nid, Nid, Reg)>,
    ) {
        debug_assert!(stack.is_empty());
        debug_assert!(buf.is_empty());

        if self[nid].kind.is_cfg() && !matches!(self[nid].kind, Kind::Call { .. }) {
            return;
        }

        stack.push(nid);

        while let Some(exp) = stack.pop() {
            for &o in self[exp].outputs.iter() {
                if !self.is_data_dep(exp, o, types) {
                    continue;
                }
                if self.is_unlocked(o) {
                    buf.push((self.use_block_of(exp, o), o, self.use_reg_of(exp, o)));
                } else {
                    stack.push(o);
                }
            }
        }
    }

    #[expect(unused)]
    fn init_loc_of(&self, def: Nid, types: &Types) -> Reg {
        if self[def].kind == Kind::Arg {
            let mut parama = ParamAlloc(0..11);
            let (_, ploc) = self[VOID]
                .outputs
                .iter()
                .skip(ARG_START)
                .map(|&n| (n, parama.next(self[n].ty, types)))
                .find(|&(n, _)| n == def)
                .unwrap();

            return ploc.unwrap().reg();
        }

        255
    }

    #[expect(unused)]
    fn use_reg_of(&self, def: Nid, usage: Nid) -> Reg {
        //if matches!(self[usage].kind, Kind::Return { .. }) {}

        255
    }
}

struct Regalloc<'a> {
    nodes: &'a Nodes,
    tys: &'a Types,
    res: &'a mut Res,
}

impl<'a> Regalloc<'a> {
    fn instr_of(&self, nid: Nid) -> Option<Nid> {
        if self.nodes[nid].kind == Kind::Phi || self.nodes.is_locked(nid) {
            return None;
        }
        debug_assert_ne!(self.res.backrefs[nid as usize], Nid::MAX, "{:?}", self.nodes[nid]);
        Some(self.res.backrefs[nid as usize])
    }

    fn block_of(&self, nid: Nid) -> Nid {
        debug_assert!(self.nodes[nid].kind.starts_basic_block());
        self.res.backrefs[nid as usize]
    }

    fn run(ctx: &'a Nodes, tys: &'a Types, res: &'a mut Res, special_count: usize) {
        Self { nodes: ctx, tys, res }.run_low(special_count);
    }

    fn run_low(&mut self, #[expect(unused)] special_count: usize) {
        self.res.general_bundles.clear();
        self.res.node_to_reg.clear();
        #[cfg(debug_assertions)]
        self.res.marked.clear();
        self.res.node_to_reg.resize(self.nodes.vreg_count(), 0);
        self.res.call_set.clear();

        for (i, &instr) in self.res.instrs.iter().enumerate() {
            if self.nodes[instr].kind.is_call() {
                self.res.call_set.add_one(i);
            }
        }

        debug_assert!(self.res.dfs_buf.is_empty());

        let mut uses_buf = Vec::new();
        let mut range_buf = Vec::new();
        let mut bundle = Bundle::default();
        self.res.visited.clear(self.nodes.len());

        for i in (0..self.res.blocks.len()).rev() {
            for [a, rest @ ..] in self.nodes.phi_inputs_of(self.res.blocks[i].entry) {
                if self.res.visited.set(a) {
                    self.append_bundle(a, &mut bundle, None, &mut uses_buf, &mut range_buf);
                }

                for r in rest {
                    if !self.res.visited.set(r) {
                        continue;
                    }

                    self.append_bundle(
                        r,
                        &mut bundle,
                        Some(self.res.node_to_reg[a as usize] as usize - 1),
                        &mut uses_buf,
                        &mut range_buf,
                    );
                }
            }
        }

        let instrs = mem::take(&mut self.res.instrs);
        for &inst in &instrs {
            if self.nodes[inst].has_no_value() || self.res.visited.get(inst) || inst == 0 {
                continue;
            }
            self.append_bundle(inst, &mut bundle, None, &mut uses_buf, &mut range_buf);
        }
        self.res.instrs = instrs;
    }

    fn append_bundle(
        &mut self,
        inst: Nid,
        tmp: &mut Bundle,
        prefered: Option<usize>,
        uses_buf: &mut Vec<(Nid, Nid, Reg)>,
        range_buf: &mut Vec<Range<usize>>,
    ) {
        let dom = self.nodes.idom_of(inst);
        self.res.dfs_seem.clear(self.nodes.len());
        self.nodes.uses_of(inst, self.tys, &mut self.res.dfs_buf, uses_buf);
        let mut prefered_reg = reg::ZERO;
        for (cursor, uinst, reg) in uses_buf.drain(..) {
            prefered_reg = prefered_reg.min(reg);

            if !self.res.dfs_seem.set(uinst) {
                continue;
            }
            #[cfg(debug_assertions)]
            debug_assert!(self.res.marked.insert((inst, uinst)));

            self.reverse_cfg_dfs(cursor, dom, |s, n, b| {
                let mut range = b.range();
                debug_assert!(range.start < range.end);
                range.start = range.start.max(s.instr_of(inst).map_or(0, |n| n + 1) as usize);
                debug_assert!(
                    range.start < range.end,
                    "{:?} {:?} {n} {inst}",
                    range,
                    self.nodes[inst]
                );
                let new = range.end.min(
                    s.instr_of(uinst)
                        .filter(|_| {
                            n == cursor
                                && self.nodes.loop_depth(dom, None)
                                    == self.nodes.loop_depth(cursor, None)
                        })
                        .map_or(Nid::MAX, |n| n + 1) as usize,
                );

                range.end = new;
                debug_assert!(range.start < range.end, "{:?} {inst} {uinst}", range);

                range_buf.push(range)
            });

            range_buf.sort_unstable_by_key(|r| r.start);
            range_buf.dedup_by(|a, b| {
                if b.end == a.start {
                    b.end = a.end;
                    true
                } else {
                    false
                }
            });

            for range in range_buf.drain(..) {
                tmp.add(range);
            }
        }

        if tmp.is_empty() {
            self.res.node_to_reg[inst as usize] = u8::MAX;
            return;
        }

        if let Some(prefered) = prefered
            && !self.res.general_bundles[prefered].overlaps(tmp)
        {
            self.res.general_bundles[prefered].merge(tmp);
            tmp.clear();
            self.res.node_to_reg[inst as usize] = prefered as Reg + 1;
            return;
        }

        match self.res.general_bundles.iter_mut().enumerate().find(|(_, b)| !b.overlaps(tmp)) {
            Some((i, other)) => {
                other.merge(tmp);
                tmp.clear();
                self.res.node_to_reg[inst as usize] = i as Reg + 1;
            }
            None => {
                self.res.general_bundles.push(tmp.take());
                self.res.node_to_reg[inst as usize] = self.res.general_bundles.len() as Reg;
            }
        }
    }

    fn reverse_cfg_dfs(
        &mut self,
        from: Nid,
        until: Nid,
        mut each: impl FnMut(&mut Self, Nid, Block),
    ) {
        debug_assert!(self.res.dfs_buf.is_empty());
        self.res.dfs_buf.push(from);

        debug_assert!(self.nodes.dominates(until, from, None));

        while let Some(nid) = self.res.dfs_buf.pop() {
            debug_assert!(
                self.nodes.dominates(until, nid, None),
                "{until} {:?}",
                self.nodes[until]
            );
            each(self, nid, self.res.blocks[self.block_of(nid) as usize]);
            if nid == until {
                continue;
            }
            match self.nodes[nid].kind {
                Kind::Then | Kind::Else | Kind::Region | Kind::Loop => {
                    for &n in self.nodes[nid].inputs.iter() {
                        if self.nodes[n].kind == Kind::Loops {
                            continue;
                        }
                        let d = self.nodes.idom_of(n);
                        if self.res.dfs_seem.set(d) {
                            self.res.dfs_buf.push(d);
                        }
                    }
                }
                Kind::Start => {}
                _ => unreachable!(),
            }
        }
    }
}

#[derive(Default)]
pub(super) struct Res {
    blocks: Vec<Block>,
    instrs: Vec<Nid>,
    backrefs: Vec<u16>,

    general_bundles: Vec<Bundle>,
    call_set: Bundle,
    node_to_reg: Vec<Reg>,

    visited: BitSet,
    dfs_buf: Vec<Nid>,
    dfs_seem: BitSet,
    #[cfg(debug_assertions)]
    marked: hashbrown::HashSet<(Nid, Nid), crate::FnvBuildHasher>,
}

struct Bundle {
    start: usize,
    end: usize,
    usage: BitSet,
}

impl Default for Bundle {
    fn default() -> Self {
        Self { start: usize::MAX, end: 0, usage: Default::default() }
    }
}

impl Bundle {
    fn add(&mut self, range: Range<usize>) {
        debug_assert!(!range.is_empty());
        debug_assert!(range.start / BitSet::UNIT >= self.start || self.start == usize::MAX);
        self.start = self.start.min(range.start / BitSet::UNIT);
        self.end = self.end.max(range.end.div_ceil(BitSet::UNIT));
        let proj_range =
            range.start - self.start * BitSet::UNIT..range.end - self.start * BitSet::UNIT;
        self.usage.set_range(proj_range)
    }

    fn overlaps(&self, othr: &Self) -> bool {
        let overlap = self.start.max(othr.start)..self.end.min(othr.end);

        if overlap.start >= overlap.end {
            return false;
        }

        let [mut sslot, mut oslot] = [0, 0];
        let sunits =
            &self.usage.units(&mut sslot)[overlap.start - self.start..overlap.end - self.start];
        let ounits =
            &othr.usage.units(&mut oslot)[overlap.start - othr.start..overlap.end - othr.start];

        debug_assert_eq!(sunits.len(), ounits.len());

        let res = sunits.iter().zip(ounits).any(|(a, b)| (a & b) != 0);
        res
    }

    fn merge(&mut self, othr: &Self) {
        debug_assert!(!self.overlaps(othr));
        debug_assert!(self.start <= othr.start || self.start == usize::MAX);

        self.usage.reserve((othr.end - self.start) * BitSet::UNIT);
        self.start = self.start.min(othr.start);
        self.end = self.end.max(othr.end);

        let sunits =
            &mut self.usage.units_mut().unwrap()[othr.start - self.start..othr.end - self.start];
        let mut oslot = 0;
        let ounits = othr.usage.units(&mut oslot);
        sunits.iter_mut().zip(ounits).for_each(|(a, b)| *a |= *b);
    }

    fn clear(&mut self) {
        self.start = usize::MAX;
        self.end = 0;
        self.usage.clear_as_is();
    }

    fn is_empty(&self) -> bool {
        self.end == 0
    }

    fn take(&mut self) -> Self {
        let mut new = Self { start: 0, ..Self::default() };
        new.merge(self);
        self.clear();
        new
    }

    fn add_one(&mut self, i: usize) {
        self.start = self.start.min(i / BitSet::UNIT);
        self.end = self.end.max(i.div_ceil(BitSet::UNIT));
        self.usage.set(i as _);
    }
}

#[derive(Clone, Copy)]
struct Block {
    start: u16,
    end: u16,
    entry: Nid,
}

impl Block {
    pub fn range(&self) -> Range<usize> {
        self.start as usize..self.end as usize
    }
}