ablescript/src/interpret.rs

491 lines
17 KiB
Rust
Raw Normal View History

//! Expression evaluator and statement interpreter.
//!
//! To interpret a piece of AbleScript code, you first need to
//! construct an [ExecEnv], which is responsible for storing the stack
//! of local variable and function definitions accessible from an
//! AbleScript snippet. You can then call [ExecEnv::eval_items] to
//! evaluate or execute any number of expressions or statements.
#[deny(missing_docs)]
use std::collections::HashMap;
use std::{
convert::TryFrom,
io::{stdout, Write},
};
use crate::{
base_55,
error::{Error, ErrorKind},
parser::item::{Expr, Iden, Item, Stmt},
variables::{Functio, Value, Variable},
};
/// An environment for executing AbleScript code.
pub struct ExecEnv {
/// The stack, ordered such that `stack[stack.len() - 1]` is the
/// top-most (newest) stack frame, and `stack[0]` is the
/// bottom-most (oldest) stack frame.
stack: Vec<Scope>,
}
/// A set of visible variable and function definitions in a single
/// stack frame.
#[derive(Default)]
struct Scope {
/// The mapping from variable names to values.
variables: HashMap<String, Variable>,
// In the future, this will store functio definitions and possibly
// other information.
}
/// The reason a successful series of statements halted.
enum HaltStatus {
/// The last statement in the list evaluated to this value.
Value(Value),
/// A `break` statement occurred and was not caught by a `loop`
/// statement.
Break,
/// A `hopback` statement occurred and was not caught by a `loop`
/// statement.
Hopback,
}
impl ExecEnv {
/// Create a new Scope with no predefined variable definitions or
/// other information.
pub fn new() -> Self {
Self {
stack: Default::default(),
}
}
/// Evaluate a set of Items in their own stack frame. Return the
/// value of the last Item evaluated, or an error if one or more
/// of the Items failed to evaluate or if a `break` or `hopback`
/// statement occurred at the top level.
pub fn eval_items(&mut self, items: &[Item]) -> Result<Value, Error> {
match self.eval_items_hs(items)? {
HaltStatus::Value(v) => Ok(v),
HaltStatus::Break | HaltStatus::Hopback => Err(Error {
// It's an error to issue a `break` outside of a
// `loop` statement.
kind: ErrorKind::TopLevelBreak,
span: 0..0,
}),
}
}
/// The same as `eval_items`, but report "break" and "hopback"
/// exit codes as normal conditions in a HaltStatus enum.
///
/// `interpret`-internal code should typically prefer this
/// function over `eval_items`.
fn eval_items_hs(&mut self, items: &[Item]) -> Result<HaltStatus, Error> {
let init_depth = self.stack.len();
self.stack.push(Default::default());
let mut final_result = Ok(HaltStatus::Value(Value::Nul));
for item in items {
final_result = self.eval_item(item);
if !matches!(final_result, Ok(HaltStatus::Value(_))) {
break;
}
}
self.stack.pop();
// Invariant: stack size must have net 0 change.
debug_assert_eq!(self.stack.len(), init_depth);
final_result
}
/// Evaluate a single Item, returning its value or an error.
fn eval_item(&mut self, item: &Item) -> Result<HaltStatus, Error> {
match item {
Item::Expr(expr) => self.eval_expr(expr).map(|v| HaltStatus::Value(v)),
Item::Stmt(stmt) => self.eval_stmt(stmt),
}
}
/// Evaluate an Expr, returning its value or an error.
fn eval_expr(&self, expr: &Expr) -> Result<Value, Error> {
use Expr::*;
use Value::*;
// NOTE(Alex): This block will get a whole lot cleaner once
// Ondra's parser stuff gets merged (specifically 97fb19e).
// For now, though, we've got a bunch of manually-checked
// unreachable!()s in here which makes me sad...
Ok(match expr {
// Binary expressions.
Add { left, right }
| Subtract { left, right }
| Multiply { left, right }
| Divide { left, right }
| Lt { left, right }
| Gt { left, right }
| Eq { left, right }
| Neq { left, right }
| And { left, right }
| Or { left, right } => {
let left = self.eval_expr(left)?;
let right = self.eval_expr(right)?;
match expr {
// Arithmetic operators.
Add { .. }
| Subtract { .. }
| Multiply { .. }
| Divide { .. } => {
let left = i32::try_from(left)?;
let right = i32::try_from(right)?;
let res = match expr {
Add { .. } => left.checked_add(right),
Subtract { .. } => left.checked_sub(right),
Multiply { .. } => left.checked_mul(right),
Divide { .. } => left.checked_div(right),
_ => unreachable!(),
}
.ok_or(Error {
kind: ErrorKind::ArithmeticError,
span: 0..0,
})?;
Int(res)
}
// Numeric comparisons.
Lt { .. } | Gt { .. } => {
let left = i32::try_from(left)?;
let right = i32::try_from(right)?;
let res = match expr {
Lt { .. } => left < right,
Gt { .. } => left > right,
_ => unreachable!(),
};
Bool(res)
}
// General comparisons.
Eq { .. } | Neq { .. } => {
let res = match expr {
Eq { .. } => left == right,
Neq { .. } => left != right,
_ => unreachable!(),
};
Bool(res)
}
// Logical connectives.
And { .. } | Or { .. } => {
let left = bool::from(left);
let right = bool::from(right);
let res = match expr {
And { .. } => left && right,
Or { .. } => left || right,
_ => unreachable!(),
};
Bool(res)
}
// That's all the binary operations.
_ => unreachable!(),
}
}
Not(expr) => Bool(!bool::from(self.eval_expr(expr)?)),
Literal(value) => value.clone(),
Identifier(Iden(name)) => self.get_var(name)?,
})
}
/// Perform the action indicated by a statement.
fn eval_stmt(&mut self, stmt: &Stmt) -> Result<HaltStatus, Error> {
match stmt {
Stmt::Print(expr) => {
println!("{}", self.eval_expr(expr)?);
}
Stmt::VariableDeclaration { iden, init } => {
let init = match init {
Some(e) => self.eval_expr(e)?,
None => Value::Nul,
};
self.decl_var(&iden.0, init);
}
Stmt::FunctionDeclaration {
iden: _,
args: _,
body: _,
} => todo!(),
Stmt::BfFDeclaration { iden, body } => {
self.decl_var(
&iden.0,
Value::Functio(Functio::BfFunctio(body.as_bytes().into())),
);
}
Stmt::If { cond, body } => {
if self.eval_expr(cond)?.into() {
return self.eval_items_hs(body);
}
}
Stmt::FunctionCall { iden, args } => {
let func = self.get_var(&iden.0)?;
match func {
Value::Functio(func) => {
match func {
Functio::BfFunctio(body) => {
let mut input: Vec<u8> = vec![];
for arg in args {
self.eval_expr(arg)?.bf_write(&mut input);
}
println!("input = {:?}", input);
let mut output = vec![];
crate::brian::interpret_with_io(&body, &input as &[_], &mut output)
.map_err(|e| Error {
kind: ErrorKind::BfInterpretError(e),
span: 0..0,
})?;
// I guess Brainfuck functions write
// output to stdout? It's not quite
// clear to me what else to do. ~~Alex
stdout()
.write_all(&output)
.expect("Failed to write to stdout");
}
Functio::AbleFunctio(_) => {
todo!()
}
}
}
_ => {
return Err(Error {
kind: ErrorKind::TypeError(iden.0.to_owned()),
span: 0..0,
})
}
}
}
Stmt::Loop { body } => loop {
let res = self.eval_items_hs(body)?;
match res {
HaltStatus::Value(_) => {}
HaltStatus::Break => break,
HaltStatus::Hopback => continue,
}
},
Stmt::VarAssignment { iden, value } => {
self.get_var_mut(&iden.0)?.value = self.eval_expr(value)?;
}
Stmt::Break => {
return Ok(HaltStatus::Break);
}
Stmt::HopBack => {
return Ok(HaltStatus::Hopback);
}
Stmt::Melo(iden) => {
self.get_var_mut(&iden.0)?.melo = true;
}
}
Ok(HaltStatus::Value(Value::Nul))
}
/// Get the value of a variable. Throw an error if the variable is
/// inaccessible or banned.
fn get_var(&self, name: &str) -> Result<Value, Error> {
// One-letter names are reserved as base55 numbers.
let mut chars = name.chars();
if let (Some(first), None) = (chars.next(), chars.next()) {
return Ok(Value::Int(base_55::char2num(first)));
}
// Otherwise, search for the name in the stack from top to
// bottom.
match self
.stack
.iter()
.rev()
.find_map(|scope| scope.variables.get(name))
{
Some(var) => {
if !var.melo {
Ok(var.value.clone())
} else {
Err(Error {
kind: ErrorKind::MeloVariable(name.to_owned()),
// TODO: figure out some way to avoid this
// 0..0 dumbness
span: 0..0,
})
}
}
None => Err(Error {
kind: ErrorKind::UnknownVariable(name.to_owned()),
span: 0..0,
}),
}
}
/// Get a mutable reference to a variable. Throw an error if the
/// variable is inaccessible or banned.
fn get_var_mut(&mut self, name: &str) -> Result<&mut Variable, Error> {
// This function has a lot of duplicated code with `get_var`,
// which I feel like is a bad sign...
match self
.stack
.iter_mut()
.rev()
.find_map(|scope| scope.variables.get_mut(name))
{
Some(var) => {
if !var.melo {
Ok(var)
} else {
Err(Error {
kind: ErrorKind::MeloVariable(name.to_owned()),
span: 0..0,
})
}
}
None => Err(Error {
kind: ErrorKind::UnknownVariable(name.to_owned()),
span: 0..0,
}),
}
}
/// Declares a new variable, with the given initial value.
fn decl_var(&mut self, name: &str, value: Value) {
self.stack
.iter_mut()
.last()
.expect("Declaring variable on empty stack")
.variables
.insert(name.to_owned(), Variable { melo: false, value });
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn basic_expression_test() {
// Check that 2 + 2 = 4.
let mut env = ExecEnv::new();
assert_eq!(
env.eval_items(&[Item::Expr(Expr::Add {
left: Box::new(Expr::Literal(Value::Int(2))),
right: Box::new(Expr::Literal(Value::Int(2))),
})])
.unwrap(),
Value::Int(4)
)
}
#[test]
fn type_errors() {
// The sum of an integer and a boolean results in a type
// error.
let mut env = ExecEnv::new();
assert!(matches!(
env.eval_items(&[Item::Expr(Expr::Add {
left: Box::new(Expr::Literal(Value::Int(i32::MAX))),
right: Box::new(Expr::Literal(Value::Bool(false))),
})]),
Err(Error {
kind: ErrorKind::TypeError(_),
span: _,
})
));
}
#[test]
fn overflow_should_not_panic() {
// Integer overflow should throw a recoverable error instead
// of panicking.
let mut env = ExecEnv::new();
assert!(matches!(
env.eval_items(&[Item::Expr(Expr::Add {
left: Box::new(Expr::Literal(Value::Int(i32::MAX))),
right: Box::new(Expr::Literal(Value::Int(1))),
})]),
Err(Error {
kind: ErrorKind::ArithmeticError,
span: _,
})
));
2021-05-30 13:24:16 -05:00
// And the same for divide by zero.
assert!(matches!(
env.eval_items(&[Item::Expr(Expr::Divide {
left: Box::new(Expr::Literal(Value::Int(1))),
right: Box::new(Expr::Literal(Value::Int(0))),
})]),
Err(Error {
kind: ErrorKind::ArithmeticError,
span: _,
2021-05-30 13:24:16 -05:00
})
));
}
// From here on out, I'll use this function to parse and run
// expressions, because writing out abstract syntax trees by hand
// takes forever and is error-prone.
fn eval(env: &mut ExecEnv, src: &str) -> Result<Value, Error> {
let mut parser = crate::parser::Parser::new(src);
// We can assume there won't be any syntax errors in the
// interpreter tests.
let ast = parser.init().unwrap();
env.eval_items(&ast)
}
#[test]
fn variable_decl_and_assignment() {
// Declaring and reading from a variable.
assert_eq!(
eval(&mut ExecEnv::new(), "var foo = 32; foo + 1").unwrap(),
Value::Int(33)
);
// It should be possible to overwrite variables as well.
assert_eq!(
eval(&mut ExecEnv::new(), "var bar = 10; bar = 20; bar").unwrap(),
Value::Int(20)
);
2021-05-30 13:24:16 -05:00
// But variable assignment should be illegal when the variable
// hasn't been declared in advance.
eval(&mut ExecEnv::new(), "baz = 10;").unwrap_err();
}
#[test]
fn variable_persistence() {
// Global variables should persist between invocations of
// ExecEnv::eval_items().
let mut env = ExecEnv::new();
eval(&mut env, "var foo = 32;").unwrap();
assert_eq!(eval(&mut env, "foo").unwrap(), Value::Int(32));
}
#[test]
fn scope_visibility_rules() {
// Declaration and assignment of variables declared in an `if`
// statement should have no effect on those declared outside
// of it.
assert_eq!(
eval(
&mut ExecEnv::new(),
"var foo = 1; if (true) { var foo = 2; foo = 3; } foo"
)
.unwrap(),
Value::Int(1)
);
}
}