Merge pull request #28 from AlexBethel/bf-functio

This commit is contained in:
Able 2021-06-02 20:02:53 -05:00 committed by GitHub
commit 5d230431e0
3 changed files with 352 additions and 45 deletions

View file

@ -1,5 +1,7 @@
use std::ops::Range; use std::ops::Range;
use crate::brian::InterpretError;
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
pub struct Error { pub struct Error {
pub kind: ErrorKind, pub kind: ErrorKind,
@ -15,4 +17,6 @@ pub enum ErrorKind {
MeloVariable(String), MeloVariable(String),
TypeError(String), TypeError(String),
TopLevelBreak, TopLevelBreak,
ArithmeticError,
BfInterpretError(InterpretError),
} }

View file

@ -8,13 +8,16 @@
#[deny(missing_docs)] #[deny(missing_docs)]
use std::collections::HashMap; use std::collections::HashMap;
use std::convert::TryFrom; use std::{
convert::TryFrom,
io::{stdout, Write},
};
use crate::{ use crate::{
base_55, base_55,
error::{Error, ErrorKind}, error::{Error, ErrorKind},
parser::item::{Expr, Iden, Item, Stmt}, parser::item::{Expr, Iden, Item, Stmt},
variables::{Value, Variable}, variables::{Functio, Value, Variable},
}; };
/// An environment for executing AbleScript code. /// An environment for executing AbleScript code.
@ -110,34 +113,86 @@ impl ExecEnv {
use Expr::*; use Expr::*;
use Value::*; use Value::*;
// NOTE(Alex): This is quite nasty, and should probably be // NOTE(Alex): This block will get a whole lot cleaner once
// re-done using macros or something. // Ondra's parser stuff gets merged (specifically 97fb19e).
// For now, though, we've got a bunch of manually-checked
// unreachable!()s in here which makes me sad...
Ok(match expr { Ok(match expr {
Add { left, right } => { // Binary expressions.
Int(i32::try_from(self.eval_expr(left)?)? + i32::try_from(self.eval_expr(right)?)?) Add { left, right }
} | Subtract { left, right }
Subtract { left, right } => { | Multiply { left, right }
Int(i32::try_from(self.eval_expr(left)?)? - i32::try_from(self.eval_expr(right)?)?) | Divide { left, right }
} | Lt { left, right }
Multiply { left, right } => { | Gt { left, right }
Int(i32::try_from(self.eval_expr(left)?)? * i32::try_from(self.eval_expr(right)?)?) | Eq { left, right }
} | Neq { left, right }
Divide { left, right } => { | And { left, right }
Int(i32::try_from(self.eval_expr(left)?)? / i32::try_from(self.eval_expr(right)?)?) | Or { left, right } => {
} let left = self.eval_expr(left)?;
Lt { left, right } => { let right = self.eval_expr(right)?;
Bool(i32::try_from(self.eval_expr(left)?)? < i32::try_from(self.eval_expr(right)?)?)
} match expr {
Gt { left, right } => { // Arithmetic operators.
Bool(i32::try_from(self.eval_expr(left)?)? > i32::try_from(self.eval_expr(right)?)?) Add { .. }
} | Subtract { .. }
Eq { left, right } => Bool(self.eval_expr(left)? == self.eval_expr(right)?), | Multiply { .. }
Neq { left, right } => Bool(self.eval_expr(left)? != self.eval_expr(right)?), | Divide { .. } => {
And { left, right } => { let left = i32::try_from(left)?;
Bool(bool::from(self.eval_expr(left)?) && bool::from(self.eval_expr(right)?)) let right = i32::try_from(right)?;
}
Or { left, right } => { let res = match expr {
Bool(bool::from(self.eval_expr(left)?) || bool::from(self.eval_expr(right)?)) Add { .. } => left.checked_add(right),
Subtract { .. } => left.checked_sub(right),
Multiply { .. } => left.checked_mul(right),
Divide { .. } => left.checked_div(right),
_ => unreachable!(),
}
.ok_or(Error {
kind: ErrorKind::ArithmeticError,
position: 0..0,
})?;
Int(res)
}
// Numeric comparisons.
Lt { .. } | Gt { .. } => {
let left = i32::try_from(left)?;
let right = i32::try_from(right)?;
let res = match expr {
Lt { .. } => left < right,
Gt { .. } => left > right,
_ => unreachable!(),
};
Bool(res)
}
// General comparisons.
Eq { .. } | Neq { .. } => {
let res = match expr {
Eq { .. } => left == right,
Neq { .. } => left != right,
_ => unreachable!(),
};
Bool(res)
}
// Logical connectives.
And { .. } | Or { .. } => {
let left = bool::from(left);
let right = bool::from(right);
let res = match expr {
And { .. } => left && right,
Or { .. } => left || right,
_ => unreachable!(),
};
Bool(res)
}
// That's all the binary operations.
_ => unreachable!(),
}
} }
Not(expr) => Bool(!bool::from(self.eval_expr(expr)?)), Not(expr) => Bool(!bool::from(self.eval_expr(expr)?)),
Literal(value) => value.clone(), Literal(value) => value.clone(),
@ -157,29 +212,63 @@ impl ExecEnv {
None => Value::Nul, None => Value::Nul,
}; };
// There's always at least one stack frame on the self.decl_var(&iden.0, init);
// stack if we're evaluating something, so we can
// `unwrap` here.
self.stack.iter_mut().last().unwrap().variables.insert(
iden.0.clone(),
Variable {
melo: false,
value: init,
},
);
} }
Stmt::FunctionDeclaration { Stmt::FunctionDeclaration {
iden: _, iden: _,
args: _, args: _,
body: _, body: _,
} => todo!(), } => todo!(),
Stmt::BfFDeclaration { iden: _, body: _ } => todo!(), Stmt::BfFDeclaration { iden, body } => {
self.decl_var(
&iden.0,
Value::Functio(Functio::BfFunctio(body.as_bytes().into())),
);
}
Stmt::If { cond, body } => { Stmt::If { cond, body } => {
if self.eval_expr(cond)?.into() { if self.eval_expr(cond)?.into() {
return self.eval_items_hs(body); return self.eval_items_hs(body);
} }
} }
Stmt::FunctionCall { iden: _, args: _ } => todo!(), Stmt::FunctionCall { iden, args } => {
let func = self.get_var(&iden.0)?;
match func {
Value::Functio(func) => {
match func {
Functio::BfFunctio(body) => {
let mut input: Vec<u8> = vec![];
for arg in args {
self.eval_expr(arg)?.bf_write(&mut input);
}
println!("input = {:?}", input);
let mut output = vec![];
crate::brian::interpret_with_io(&body, &input as &[_], &mut output)
.map_err(|e| Error {
kind: ErrorKind::BfInterpretError(e),
position: 0..0,
})?;
// I guess Brainfuck functions write
// output to stdout? It's not quite
// clear to me what else to do. ~~Alex
stdout()
.write_all(&output)
.expect("Failed to write to stdout");
}
Functio::AbleFunctio(_) => {
todo!()
}
}
}
_ => {
return Err(Error {
kind: ErrorKind::TypeError(iden.0.to_owned()),
position: 0..0,
})
}
}
}
Stmt::Loop { body } => loop { Stmt::Loop { body } => loop {
let res = self.eval_items_hs(body)?; let res = self.eval_items_hs(body)?;
match res { match res {
@ -268,4 +357,134 @@ impl ExecEnv {
}), }),
} }
} }
/// Declares a new variable, with the given initial value.
fn decl_var(&mut self, name: &str, value: Value) {
self.stack
.iter_mut()
.last()
.expect("Declaring variable on empty stack")
.variables
.insert(name.to_owned(), Variable { melo: false, value });
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn basic_expression_test() {
// Check that 2 + 2 = 4.
let mut env = ExecEnv::new();
assert_eq!(
env.eval_items(&[Item::Expr(Expr::Add {
left: Box::new(Expr::Literal(Value::Int(2))),
right: Box::new(Expr::Literal(Value::Int(2))),
})])
.unwrap(),
Value::Int(4)
)
}
#[test]
fn type_errors() {
// The sum of an integer and a boolean results in a type
// error.
let mut env = ExecEnv::new();
assert!(matches!(
env.eval_items(&[Item::Expr(Expr::Add {
left: Box::new(Expr::Literal(Value::Int(i32::MAX))),
right: Box::new(Expr::Literal(Value::Bool(false))),
})]),
Err(Error {
kind: ErrorKind::TypeError(_),
position: _,
})
));
}
#[test]
fn overflow_should_not_panic() {
// Integer overflow should throw a recoverable error instead
// of panicking.
let mut env = ExecEnv::new();
assert!(matches!(
env.eval_items(&[Item::Expr(Expr::Add {
left: Box::new(Expr::Literal(Value::Int(i32::MAX))),
right: Box::new(Expr::Literal(Value::Int(1))),
})]),
Err(Error {
kind: ErrorKind::ArithmeticError,
position: _,
})
));
// And the same for divide by zero.
assert!(matches!(
env.eval_items(&[Item::Expr(Expr::Divide {
left: Box::new(Expr::Literal(Value::Int(1))),
right: Box::new(Expr::Literal(Value::Int(0))),
})]),
Err(Error {
kind: ErrorKind::ArithmeticError,
position: _,
})
));
}
// From here on out, I'll use this function to parse and run
// expressions, because writing out abstract syntax trees by hand
// takes forever and is error-prone.
fn eval(env: &mut ExecEnv, src: &str) -> Result<Value, Error> {
let mut parser = crate::parser::Parser::new(src);
// We can assume there won't be any syntax errors in the
// interpreter tests.
let ast = parser.init().unwrap();
env.eval_items(&ast)
}
#[test]
fn variable_decl_and_assignment() {
// Declaring and reading from a variable.
assert_eq!(
eval(&mut ExecEnv::new(), "var foo = 32; foo + 1").unwrap(),
Value::Int(33)
);
// It should be possible to overwrite variables as well.
assert_eq!(
eval(&mut ExecEnv::new(), "var bar = 10; bar = 20; bar").unwrap(),
Value::Int(20)
);
// But variable assignment should be illegal when the variable
// hasn't been declared in advance.
eval(&mut ExecEnv::new(), "baz = 10;").unwrap_err();
}
#[test]
fn variable_persistence() {
// Global variables should persist between invocations of
// ExecEnv::eval_items().
let mut env = ExecEnv::new();
eval(&mut env, "var foo = 32;").unwrap();
assert_eq!(eval(&mut env, "foo").unwrap(), Value::Int(32));
}
#[test]
fn scope_visibility_rules() {
// Declaration and assignment of variables declared in an `if`
// statement should have no effect on those declared outside
// of it.
assert_eq!(
eval(
&mut ExecEnv::new(),
"var foo = 1; if (true) { var foo = 2; foo = 3; } foo"
)
.unwrap(),
Value::Int(1)
);
}
} }

View file

@ -1,8 +1,11 @@
use std::{convert::TryFrom, fmt::Display}; use std::{convert::TryFrom, fmt::Display, io::Write};
use rand::Rng; use rand::Rng;
use crate::error::{Error, ErrorKind}; use crate::{
error::{Error, ErrorKind},
parser::item::Item,
};
#[derive(Debug, Clone, PartialEq)] #[derive(Debug, Clone, PartialEq)]
pub enum Abool { pub enum Abool {
@ -31,23 +34,102 @@ impl From<Abool> for bool {
} }
} }
#[derive(Debug, Clone, PartialEq)]
pub enum Functio {
BfFunctio(Vec<u8>),
AbleFunctio(Vec<Item>),
}
#[derive(Debug, Clone, PartialEq)] #[derive(Debug, Clone, PartialEq)]
pub enum Value { pub enum Value {
Nul,
Str(String), Str(String),
Int(i32), Int(i32),
Bool(bool), Bool(bool),
Abool(Abool), Abool(Abool),
Nul, Functio(Functio),
}
impl Value {
/// Writes an AbleScript value to a Brainfuck input stream. This
/// should generally only be called on `Write`rs that cannot fail,
/// e.g., `Vec<u8>`, because any IO errors will cause a panic.
///
/// The mapping from values to encodings is as follows, where all
/// multi-byte integers are little-endian:
///
/// | AbleScript representation | Brainfuck representation |
/// |---------------------------|-------------------------------------------------------------|
/// | Nul | `00` |
/// | Str | `01` [length, 4 bytes] [string, \[LENGTH\] bytes, as UTF-8] |
/// | Int | `02` [value, 4 bytes] |
/// | Bool | `03` `00` false, `03` `01` true. |
/// | Abool | `04` `00` never, `04` `01` always, `04` `02` sometimes. |
/// | Brainfuck Functio | `05` `00` [length, 4 bytes] [source code, \[LENGTH\] bytes] |
/// | AbleScript Functio | `05` `01` (todo, not yet finalized or implemented) |
///
/// The existing mappings should never change, as they are
/// directly visible from Brainfuck code and modifying them would
/// break a significant amount of AbleScript code. If more types
/// are added in the future, they should be assigned the remaining
/// discriminant bytes from 06..FF.
pub fn bf_write(&mut self, stream: &mut impl Write) {
match self {
Value::Nul => stream.write_all(&[0]),
Value::Str(s) => stream
.write_all(&[1])
.and_then(|_| stream.write_all(&(s.len() as u32).to_le_bytes()))
.and_then(|_| stream.write_all(&s.as_bytes())),
Value::Int(v) => stream
.write_all(&[2])
.and_then(|_| stream.write_all(&v.to_le_bytes())),
Value::Bool(b) => stream
.write_all(&[3])
.and_then(|_| stream.write_all(&[*b as _])),
Value::Abool(a) => stream.write_all(&[4]).and_then(|_| {
stream.write_all(&[match *a {
Abool::Never => 0,
Abool::Sometimes => 2,
Abool::Always => 1,
}])
}),
Value::Functio(f) => stream.write_all(&[5]).and_then(|_| match f {
Functio::BfFunctio(f) => stream
.write_all(&[0])
.and_then(|_| stream.write_all(&(f.len() as u32).to_le_bytes()))
.and_then(|_| stream.write_all(&f)),
Functio::AbleFunctio(_) => {
todo!()
}
}),
}
.expect("Failed to write to Brainfuck input");
}
} }
impl Display for Value { impl Display for Value {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self { match self {
Value::Nul => write!(f, "nul"),
Value::Str(v) => write!(f, "{}", v), Value::Str(v) => write!(f, "{}", v),
Value::Int(v) => write!(f, "{}", v), Value::Int(v) => write!(f, "{}", v),
Value::Bool(v) => write!(f, "{}", v), Value::Bool(v) => write!(f, "{}", v),
Value::Abool(v) => write!(f, "{}", v), Value::Abool(v) => write!(f, "{}", v),
Value::Nul => write!(f, "nul"), Value::Functio(v) => match v {
Functio::BfFunctio(source) => {
write!(
f,
"{}",
String::from_utf8(source.to_owned())
.expect("Brainfuck functio source should be UTF-8")
)
}
Functio::AbleFunctio(source) => {
// TODO: what's the proper way to display an
// AbleScript functio?
write!(f, "{:?}", source)
}
},
} }
} }
} }
@ -84,6 +166,8 @@ impl From<Value> for bool {
Value::Str(s) => s.len() != 0, Value::Str(s) => s.len() != 0,
// 0 is falsey, nonzero is truthy. // 0 is falsey, nonzero is truthy.
Value::Int(x) => x != 0, Value::Int(x) => x != 0,
// Functios are always truthy.
Value::Functio(_) => true,
// And nul is truthy as a symbol of the fact that the // And nul is truthy as a symbol of the fact that the
// deep, fundamental truth of this world is nothing but // deep, fundamental truth of this world is nothing but
// the eternal void. // the eternal void.