ablescript/ablescript/src/interpret.rs

666 lines
22 KiB
Rust

//! Expression evaluator and statement interpreter.
//!
//! To interpret a piece of AbleScript code, you first need to
//! construct an [ExecEnv], which is responsible for storing the stack
//! of local variable and function definitions accessible from an
//! AbleScript snippet. You can then call [ExecEnv::eval_stmts] to
//! evaluate or execute any number of expressions or statements.
#![deny(missing_docs)]
use std::{
cell::RefCell,
collections::{HashMap, VecDeque},
io::{stdin, stdout, Read, Write},
ops::Range,
process::exit,
rc::Rc,
};
use rand::random;
use crate::{
ast::{Expr, ExprKind, Iden, Stmt, StmtKind},
base_55,
consts::{self, ablescript_consts},
error::{Error, ErrorKind},
variables::{Functio, Value, Variable},
};
/// An environment for executing AbleScript code.
pub struct ExecEnv {
/// The stack, ordered such that `stack[stack.len() - 1]` is the
/// top-most (newest) stack frame, and `stack[0]` is the
/// bottom-most (oldest) stack frame.
stack: Vec<Scope>,
/// The `read` statement maintains a buffer of up to 7 bits,
/// because input comes from the operating system 8 bits at a time
/// (via stdin) but gets delivered to AbleScript 3 bits at a time
/// (via the `read` statement). We store each of those bits as
/// booleans to facilitate easy manipulation.
read_buf: VecDeque<bool>,
}
/// A set of visible variable and function definitions in a single
/// stack frame.
struct Scope {
/// The mapping from variable names to values.
variables: HashMap<String, Variable>,
}
impl Default for Scope {
fn default() -> Self {
Self {
variables: ablescript_consts(),
}
}
}
/// The reason a successful series of statements halted.
enum HaltStatus {
/// We ran out of statements to execute.
Finished,
/// A `break` statement occurred at the given span, and was not
/// caught by a `loop` statement up to this point.
Break(Range<usize>),
/// A `hopback` statement occurred at the given span, and was not
/// caught by a `loop` statement up to this point.
Hopback(Range<usize>),
}
/// The number of bits the `read` statement reads at once from
/// standard input.
pub const READ_BITS: u8 = 3;
impl ExecEnv {
/// Create a new Scope with no predefined variable definitions or
/// other information.
pub fn new() -> Self {
Self {
// We always need at least one stackframe.
stack: vec![Default::default()],
read_buf: Default::default(),
}
}
/// Execute a set of Statements in the root stack frame. Return an
/// error if one or more of the Stmts failed to evaluate, or if a
/// `break` or `hopback` statement occurred at the top level.
pub fn eval_stmts(&mut self, stmts: &[Stmt]) -> Result<(), Error> {
match self.eval_stmts_hs(stmts, false)? {
HaltStatus::Finished => Ok(()),
HaltStatus::Break(span) | HaltStatus::Hopback(span) => Err(Error {
// It's an error to issue a `break` outside of a
// `loop` statement.
kind: ErrorKind::TopLevelBreak,
span,
}),
}
}
/// The same as `eval_stmts`, but report "break" and "hopback"
/// exit codes as normal conditions in a HaltStatus enum, and
/// create a new stack frame if `stackframe` is true.
///
/// `interpret`-internal code should typically prefer this
/// function over `eval_stmts`.
fn eval_stmts_hs(&mut self, stmts: &[Stmt], stackframe: bool) -> Result<HaltStatus, Error> {
let init_depth = self.stack.len();
if stackframe {
self.stack.push(Default::default());
}
let mut final_result = Ok(HaltStatus::Finished);
for stmt in stmts {
final_result = self.eval_stmt(stmt);
if !matches!(final_result, Ok(HaltStatus::Finished)) {
break;
}
}
if stackframe {
self.stack.pop();
}
// Invariant: stack size must have net 0 change.
debug_assert_eq!(self.stack.len(), init_depth);
final_result
}
/// Evaluate an Expr, returning its value or an error.
fn eval_expr(&self, expr: &Expr) -> Result<Value, Error> {
use crate::ast::BinOpKind::*;
use crate::ast::ExprKind::*;
use Value::*;
Ok(match &expr.kind {
BinOp { lhs, rhs, kind } => {
let lhs = self.eval_expr(lhs)?;
let rhs = self.eval_expr(rhs)?;
match kind {
// Arithmetic operators.
Add | Subtract | Multiply | Divide => {
let lhs = lhs.to_i32();
let rhs = rhs.to_i32();
let res = match kind {
Add => lhs.checked_add(rhs),
Subtract => lhs.checked_sub(rhs),
Multiply => lhs.checked_mul(rhs),
Divide => lhs.checked_div(rhs),
_ => unreachable!(),
}
.unwrap_or(consts::ANSWER);
Int(res)
}
// Numeric comparisons.
Less | Greater => {
let lhs = lhs.to_i32();
let rhs = rhs.to_i32();
let res = match kind {
Less => lhs < rhs,
Greater => lhs > rhs,
_ => unreachable!(),
};
Bool(res)
}
// General comparisons.
Equal | NotEqual => {
let res = match kind {
Equal => lhs == rhs,
NotEqual => lhs != rhs,
_ => unreachable!(),
};
Bool(res)
}
// Logical connectives.
And | Or => {
let lhs = lhs.to_bool();
let rhs = rhs.to_bool();
let res = match kind {
And => lhs && rhs,
Or => lhs || rhs,
_ => unreachable!(),
};
Bool(res)
}
}
}
Not(expr) => Bool(!self.eval_expr(expr)?.to_bool()),
Literal(value) => value.clone(),
ExprKind::Cart(members) => Value::Cart(
members
.iter()
.map(|(value, key)| {
self.eval_expr(value).and_then(|value| {
self.eval_expr(key)
.map(|key| (key, Rc::new(RefCell::new(value))))
})
})
.collect::<Result<HashMap<_, _>, _>>()?,
),
Index { cart, index } => {
let cart = self.eval_expr(cart)?;
let index = self.eval_expr(index)?;
// TODO: this probably shouldn't be cloned
cart.index(&index).borrow().clone()
}
// TODO: not too happy with constructing an artificial
// Iden here.
Variable(name) => self.get_var(&Iden {
iden: name.to_owned(),
span: expr.span.clone(),
})?,
})
}
/// Perform the action indicated by a statement.
fn eval_stmt(&mut self, stmt: &Stmt) -> Result<HaltStatus, Error> {
match &stmt.kind {
StmtKind::Print(expr) => {
println!("{}", self.eval_expr(expr)?);
}
StmtKind::Var { iden, init } => {
let init = match init {
Some(e) => self.eval_expr(e)?,
None => Value::Nul,
};
self.decl_var(&iden.iden, init);
}
StmtKind::Functio { iden, params, body } => {
self.decl_var(
&iden.iden,
Value::Functio(Functio::AbleFunctio {
params: params.iter().map(|iden| iden.iden.to_string()).collect(),
body: body.block.to_owned(),
}),
);
}
StmtKind::BfFunctio {
iden,
tape_len,
code,
} => {
self.decl_var(
&iden.iden,
Value::Functio(Functio::BfFunctio {
instructions: code.to_owned(),
tape_len: tape_len
.as_ref()
.map(|tape_len| self.eval_expr(tape_len).map(|v| v.to_i32() as usize))
.unwrap_or(Ok(crate::brian::DEFAULT_TAPE_SIZE_LIMIT))?,
}),
);
}
StmtKind::If { cond, body } => {
if self.eval_expr(cond)?.to_bool() {
return self.eval_stmts_hs(&body.block, true);
}
}
StmtKind::Call { expr, args } => {
let func = self.eval_expr(expr)?;
if let Value::Functio(func) = func {
self.fn_call(func, args, &stmt.span)?;
} else {
// Fail silently for now.
}
}
StmtKind::Loop { body } => loop {
let res = self.eval_stmts_hs(&body.block, true)?;
match res {
HaltStatus::Finished => {}
HaltStatus::Break(_) => break,
HaltStatus::Hopback(_) => continue,
}
},
StmtKind::Assign { iden, value } => {
let value = self.eval_expr(value)?;
self.get_var_mut(iden)?.value.replace(value);
}
StmtKind::Break => {
return Ok(HaltStatus::Break(stmt.span.clone()));
}
StmtKind::HopBack => {
return Ok(HaltStatus::Hopback(stmt.span.clone()));
}
StmtKind::Melo(iden) => {
self.get_var_mut(iden)?.melo = true;
}
StmtKind::Rlyeh => {
// Maybe print a creepy error message or something
// here at some point. ~~Alex
exit(random());
}
StmtKind::Rickroll => {
stdout()
.write_all(include_str!("rickroll").as_bytes())
.expect("Failed to write to stdout");
}
StmtKind::Read(iden) => {
let mut value = 0;
for _ in 0..READ_BITS {
value <<= 1;
value += self.get_bit()? as i32;
}
self.get_var_mut(iden)?.value.replace(Value::Int(value));
}
}
Ok(HaltStatus::Finished)
}
/// Call a function with the given arguments (i.e., actual
/// parameters). If the function invocation fails for some reason,
/// report the error at `span`.
fn fn_call(&mut self, func: Functio, args: &[Expr], span: &Range<usize>) -> Result<(), Error> {
// Arguments that are ExprKind::Variable are pass by
// reference; all other expressions are pass by value.
let args = args
.iter()
.map(|arg| {
if let ExprKind::Variable(name) = &arg.kind {
self.get_var_rc(&Iden {
iden: name.to_owned(),
span: arg.span.clone(),
})
} else {
self.eval_expr(arg).map(|v| Rc::new(RefCell::new(v)))
}
})
.collect::<Result<Vec<_>, Error>>()?;
match func {
Functio::BfFunctio {
instructions,
tape_len,
} => {
let mut input: Vec<u8> = vec![];
for arg in args {
arg.borrow().bf_write(&mut input);
}
let mut output = vec![];
crate::brian::Interpreter::from_ascii_with_tape_limit(
&instructions,
&input as &[_],
tape_len,
)
.interpret_with_output(&mut output)
.map_err(|e| Error {
kind: ErrorKind::BfInterpretError(e),
span: span.to_owned(),
})?;
stdout()
.write_all(&output)
.expect("Failed to write to stdout");
}
Functio::AbleFunctio { params, body } => {
if params.len() != args.len() {
return Err(Error {
kind: ErrorKind::MismatchedArgumentError,
span: span.to_owned(),
});
}
self.stack.push(Default::default());
for (param, arg) in params.iter().zip(args.iter()) {
self.decl_var_shared(param, arg.to_owned());
}
let res = self.eval_stmts_hs(&body, false);
self.stack.pop();
res?;
}
}
Ok(())
}
/// Get a single bit from the bit buffer, or refill it from
/// standard input if it is empty.
fn get_bit(&mut self) -> Result<bool, Error> {
const BITS_PER_BYTE: u8 = 8;
if self.read_buf.is_empty() {
let mut data = [0];
stdin().read_exact(&mut data)?;
for n in (0..BITS_PER_BYTE).rev() {
self.read_buf.push_back(((data[0] >> n) & 1) != 0);
}
}
Ok(self
.read_buf
.pop_front()
.expect("We just pushed to the buffer if it was empty"))
}
/// Get the value of a variable. Throw an error if the variable is
/// inaccessible or banned.
fn get_var(&self, name: &Iden) -> Result<Value, Error> {
// One-letter names are reserved as base55 numbers.
let mut chars = name.iden.chars();
if let (Some(first), None) = (chars.next(), chars.next()) {
return Ok(Value::Int(base_55::char2num(first)));
}
// Otherwise, search for the name in the stack from top to
// bottom.
match self
.stack
.iter()
.rev()
.find_map(|scope| scope.variables.get(&name.iden))
{
Some(var) => {
if !var.melo {
Ok(var.value.borrow().clone())
} else {
Err(Error {
kind: ErrorKind::MeloVariable(name.iden.to_owned()),
span: name.span.clone(),
})
}
}
None => Err(Error {
kind: ErrorKind::UnknownVariable(name.iden.to_owned()),
span: name.span.clone(),
}),
}
}
/// Get a mutable reference to a variable. Throw an error if the
/// variable is inaccessible or banned.
fn get_var_mut(&mut self, name: &Iden) -> Result<&mut Variable, Error> {
// This function has a lot of duplicated code with `get_var`,
// which I feel like is a bad sign...
match self
.stack
.iter_mut()
.rev()
.find_map(|scope| scope.variables.get_mut(&name.iden))
{
Some(var) => {
if !var.melo {
Ok(var)
} else {
Err(Error {
kind: ErrorKind::MeloVariable(name.iden.to_owned()),
span: name.span.clone(),
})
}
}
None => Err(Error {
kind: ErrorKind::UnknownVariable(name.iden.to_owned()),
span: name.span.clone(),
}),
}
}
/// Get an Rc'd pointer to the value of a variable. Throw an error
/// if the variable is inaccessible or banned.
fn get_var_rc(&mut self, name: &Iden) -> Result<Rc<RefCell<Value>>, Error> {
Ok(self.get_var_mut(name)?.value.clone())
}
/// Declare a new variable, with the given initial value.
fn decl_var(&mut self, name: &str, value: Value) {
self.decl_var_shared(name, Rc::new(RefCell::new(value)));
}
/// Declare a new variable, with the given shared initial value.
fn decl_var_shared(&mut self, name: &str, value: Rc<RefCell<Value>>) {
self.stack
.iter_mut()
.last()
.expect("Declaring variable on empty stack")
.variables
.insert(name.to_owned(), Variable { melo: false, value });
}
}
#[cfg(test)]
mod tests {
use crate::ast::ExprKind;
use super::*;
#[test]
fn basic_expression_test() {
// Check that 2 + 2 = 4.
let env = ExecEnv::new();
assert_eq!(
env.eval_expr(&Expr {
kind: ExprKind::BinOp {
lhs: Box::new(Expr {
kind: ExprKind::Literal(Value::Int(2)),
span: 1..1,
}),
rhs: Box::new(Expr {
kind: ExprKind::Literal(Value::Int(2)),
span: 1..1,
}),
kind: crate::ast::BinOpKind::Add,
},
span: 1..1
})
.unwrap(),
Value::Int(4)
)
}
#[test]
fn type_coercions() {
// The sum of an integer and a boolean causes a boolean
// coercion.
let env = ExecEnv::new();
assert_eq!(
env.eval_expr(&Expr {
kind: ExprKind::BinOp {
lhs: Box::new(Expr {
kind: ExprKind::Literal(Value::Int(2)),
span: 1..1,
}),
rhs: Box::new(Expr {
kind: ExprKind::Literal(Value::Bool(true)),
span: 1..1,
}),
kind: crate::ast::BinOpKind::Add,
},
span: 1..1
})
.unwrap(),
Value::Int(3)
);
}
#[test]
fn overflow_should_not_panic() {
// Integer overflow should throw a recoverable error instead
// of panicking.
let env = ExecEnv::new();
assert_eq!(
env.eval_expr(&Expr {
kind: ExprKind::BinOp {
lhs: Box::new(Expr {
kind: ExprKind::Literal(Value::Int(i32::MAX)),
span: 1..1,
}),
rhs: Box::new(Expr {
kind: ExprKind::Literal(Value::Int(1)),
span: 1..1,
}),
kind: crate::ast::BinOpKind::Add,
},
span: 1..1
})
.unwrap(),
Value::Int(42)
);
// And the same for divide by zero.
assert_eq!(
env.eval_expr(&Expr {
kind: ExprKind::BinOp {
lhs: Box::new(Expr {
kind: ExprKind::Literal(Value::Int(1)),
span: 1..1,
}),
rhs: Box::new(Expr {
kind: ExprKind::Literal(Value::Int(0)),
span: 1..1,
}),
kind: crate::ast::BinOpKind::Divide,
},
span: 1..1
})
.unwrap(),
Value::Int(42)
);
}
// From here on out, I'll use this function to parse and run
// expressions, because writing out abstract syntax trees by hand
// takes forever and is error-prone.
fn eval(env: &mut ExecEnv, src: &str) -> Result<Value, Error> {
let mut parser = crate::parser::Parser::new(src);
// We can assume there won't be any syntax errors in the
// interpreter tests.
let ast = parser.init().unwrap();
env.eval_stmts(&ast).map(|()| Value::Nul)
}
#[test]
fn variable_decl_and_assignment() {
// Functions have no return values, so use some
// pass-by-reference hacks to detect the correct
// functionality.
let mut env = ExecEnv::new();
// Declaring and reading from a variable.
eval(&mut env, "var foo = 32; var bar = foo + 1;").unwrap();
assert_eq!(
env.get_var(&Iden {
iden: "bar".to_owned(),
span: 1..1,
})
.unwrap(),
Value::Int(33)
);
// Assigning an existing variable.
eval(&mut env, "foo = \"hi\";").unwrap();
assert_eq!(
env.get_var(&Iden {
iden: "foo".to_owned(),
span: 1..1,
})
.unwrap(),
Value::Str("hi".to_owned())
);
// But variable assignment should be illegal when the variable
// hasn't been declared in advance.
eval(&mut env, "invalid = bar + 1;").unwrap_err();
}
#[test]
fn scope_visibility_rules() {
// Declaration and assignment of variables declared in an `if`
// statement should have no effect on those declared outside
// of it.
let mut env = ExecEnv::new();
eval(
&mut env,
"var foo = 1; foo = 2; if (true) { var foo = 3; foo = 4; }",
)
.unwrap();
assert_eq!(
env.get_var(&Iden {
iden: "foo".to_owned(),
span: 1..1,
})
.unwrap(),
Value::Int(2)
);
}
}