ablescript/ablescript/src/parser.rs

758 lines
25 KiB
Rust

//! AbleScript Parser
//!
//! Type of this parser is recursive descent
use logos::{Lexer, Logos};
use crate::ast::*;
use crate::error::{Error, ErrorKind};
use crate::lexer::Token;
use crate::variables::Value;
/// Parser structure which holds lexer and metadata
///
/// Make one using [`Parser::new`] function
pub struct Parser<'source> {
lexer: Lexer<'source, Token>,
tdark: bool,
}
impl<'source> Parser<'source> {
/// Create a new parser from source code
pub fn new(source: &'source str) -> Self {
Self {
lexer: Token::lexer(source),
tdark: false,
}
}
/// Start parsing tokens
///
/// Loops trough lexer, parses statements, returns AST
pub fn init(&mut self) -> Result<Vec<Stmt>, Error> {
let mut ast = vec![];
while let Some(token) = self.lexer.next() {
match token {
// Ignore comments
Token::Comment => continue,
// T-Dark block (replace `lang` with `script`)
Token::TDark => {
self.tdark = true;
let mut block = self.get_block()?;
ast.append(&mut block.block);
self.tdark = false;
}
token => ast.push(self.parse(token)?),
}
}
Ok(ast)
}
/// Get next item
///
/// If EOF, return Error instead of None
fn checked_next(&mut self) -> Result<Token, Error> {
self.lexer
.next()
.ok_or_else(|| Error::unexpected_eof(self.lexer.span().start))
}
/// Parse a token
///
/// This function will route to corresponding flow functions
/// which may advance the lexer iterator
fn parse(&mut self, token: Token) -> Result<Stmt, Error> {
let start = self.lexer.span().start;
match token {
Token::If => Ok(Stmt::new(self.if_flow()?, start..self.lexer.span().end)),
Token::Functio => Ok(Stmt::new(
self.functio_flow()?,
start..self.lexer.span().end,
)),
Token::Bff => Ok(Stmt::new(self.bff_flow()?, start..self.lexer.span().end)),
Token::Var => Ok(Stmt::new(self.var_flow()?, start..self.lexer.span().end)),
Token::Melo => Ok(Stmt::new(self.melo_flow()?, start..self.lexer.span().end)),
Token::Loop => Ok(Stmt::new(self.loop_flow()?, start..self.lexer.span().end)),
Token::Break => Ok(Stmt::new(
self.semi_terminated(StmtKind::Break)?,
start..self.lexer.span().end,
)),
Token::HopBack => Ok(Stmt::new(
self.semi_terminated(StmtKind::HopBack)?,
start..self.lexer.span().end,
)),
Token::Rlyeh => Ok(Stmt::new(
self.semi_terminated(StmtKind::Rlyeh)?,
start..self.lexer.span().end,
)),
Token::Rickroll => Ok(Stmt::new(
self.semi_terminated(StmtKind::Rickroll)?,
start..self.lexer.span().end,
)),
Token::Identifier(_)
| Token::Char
| Token::String(_)
| Token::Integer(_)
| Token::Abool(_)
| Token::Bool(_)
| Token::LeftBracket
| Token::LeftParen => Ok(Stmt::new(
self.value_flow(token)?,
start..self.lexer.span().end,
)),
t => Err(Error {
kind: ErrorKind::UnexpectedToken(t),
span: start..self.lexer.span().end,
}),
}
}
/// Require statement to be semicolon terminated
///
/// Utility function for short statements
fn semi_terminated(&mut self, stmt_kind: StmtKind) -> Result<StmtKind, Error> {
self.require(Token::Semicolon)?;
Ok(stmt_kind)
}
/// Require next item to be equal with expected one
fn require(&mut self, expected: Token) -> Result<(), Error> {
match self.lexer.next() {
Some(t) if t == expected => Ok(()),
Some(t) => Err(Error::new(ErrorKind::UnexpectedToken(t), self.lexer.span())),
None => Err(Error::unexpected_eof(self.lexer.span().start)),
}
}
/// Get an Identifier
fn get_iden(&mut self) -> Result<Iden, Error> {
match self.checked_next()? {
Token::Identifier(iden) => Ok(Iden {
iden: if self.tdark {
iden.replace("lang", "script")
} else {
iden
},
span: self.lexer.span(),
}),
t => Err(Error::new(ErrorKind::UnexpectedToken(t), self.lexer.span())),
}
}
/// Parse an expression
///
/// AbleScript strongly separates expressions from statements.
/// Expressions do not have any side effects and the are
/// only mathematial and logical operations or values.
fn parse_expr(&mut self, token: Token, buf: &mut Option<Expr>) -> Result<Expr, Error> {
let start = match buf {
Some(e) => e.span.start,
None => self.lexer.span().start,
};
match token {
// Values
Token::Identifier(i) => Ok(Expr::new(
ExprKind::Variable(if self.tdark {
i.replace("lang", "script")
} else {
i
}),
start..self.lexer.span().end,
)),
Token::Abool(a) => Ok(Expr::new(
ExprKind::Literal(Value::Abool(a)),
start..self.lexer.span().end,
)),
Token::Bool(b) => Ok(Expr::new(
ExprKind::Literal(Value::Bool(b)),
start..self.lexer.span().end,
)),
Token::Integer(i) => Ok(Expr::new(
ExprKind::Literal(Value::Int(i)),
start..self.lexer.span().end,
)),
Token::String(s) => Ok(Expr::new(
ExprKind::Literal(Value::Str(if self.tdark {
s.replace("lang", "script")
} else {
s
})),
start..self.lexer.span().end,
)),
Token::Nul => Ok(Expr::new(
ExprKind::Literal(Value::Nul),
start..self.lexer.span().end,
)),
Token::LeftBracket => match buf.take() {
Some(buf) => Ok(Expr::new(
ExprKind::Index {
cart: Box::new(buf),
index: Box::new(self.expr_flow(Token::RightBracket)?),
},
start..self.lexer.span().end,
)),
None => Ok(Expr::new(self.cart_flow()?, start..self.lexer.span().end)),
},
// Operations
Token::Plus
| Token::Minus
| Token::Star
| Token::FwdSlash
| Token::EqualEqual
| Token::NotEqual
| Token::LessThan
| Token::GreaterThan
| Token::And
| Token::Or => Ok(Expr::new(
self.binop_flow(
BinOpKind::from_token(token).map_err(|e| Error::new(e, self.lexer.span()))?,
buf,
)?,
start..self.lexer.span().end,
)),
Token::Not => Ok(Expr::new(
{
let next = self.checked_next()?;
ExprKind::Not(Box::new(self.parse_expr(next, buf)?))
},
start..self.lexer.span().end,
)),
Token::LeftParen => self.expr_flow(Token::RightParen),
t => Err(Error::new(ErrorKind::UnexpectedToken(t), self.lexer.span())),
}
}
/// Flow for creating carts
fn cart_flow(&mut self) -> Result<ExprKind, Error> {
let mut cart = vec![];
let mut buf = None;
match self.checked_next()? {
Token::RightBracket => (),
t => {
buf = Some(self.parse_expr(t, &mut buf)?);
'cart: loop {
let value = loop {
match self.checked_next()? {
Token::Arrow => break buf.take(),
t => buf = Some(self.parse_expr(t, &mut buf)?),
}
}
.ok_or_else(|| {
Error::new(ErrorKind::UnexpectedToken(Token::Arrow), self.lexer.span())
})?;
let key = loop {
match self.checked_next()? {
Token::RightBracket => {
cart.push((
value,
buf.take().ok_or_else(|| {
Error::unexpected_eof(self.lexer.span().start)
})?,
));
break 'cart;
}
Token::Comma => break buf.take(),
t => buf = Some(self.parse_expr(t, &mut buf)?),
}
}
.ok_or_else(|| Error::unexpected_eof(self.lexer.span().start))?;
cart.push((value, key));
}
}
}
Ok(ExprKind::Cart(cart))
}
/// Flow for operators
///
/// Generates operation from LHS buffer and next expression as RHS
///
/// This is unaware of precedence, as AbleScript do not have it
fn binop_flow(&mut self, kind: BinOpKind, lhs: &mut Option<Expr>) -> Result<ExprKind, Error> {
Ok(ExprKind::BinOp {
lhs: Box::new(
lhs.take()
.ok_or_else(|| Error::new(ErrorKind::MissingLhs, self.lexer.span()))?,
),
rhs: {
let next = self
.lexer
.next()
.ok_or_else(|| Error::unexpected_eof(self.lexer.span().start))?;
Box::new(self.parse_expr(next, &mut None)?)
},
kind,
})
}
/// Parse expressions until terminate token
fn expr_flow(&mut self, terminate: Token) -> Result<Expr, Error> {
let mut buf = None;
Ok(loop {
match self.checked_next()? {
t if t == terminate => {
break buf.take().ok_or_else(|| {
Error::new(ErrorKind::UnexpectedToken(t), self.lexer.span())
})?
}
t => buf = Some(self.parse_expr(t, &mut buf)?),
}
})
}
/// Parse a list of statements between curly braces
fn get_block(&mut self) -> Result<Block, Error> {
self.require(Token::LeftCurly)?;
let mut block = vec![];
loop {
match self.checked_next()? {
Token::RightCurly => break,
t => block.push(self.parse(t)?),
}
}
Ok(Block { block })
}
/// If Statement parser gets any kind of value (Identifier or Literal)
/// It cannot parse it as it do not parse expressions. Instead of it it
/// will parse it to function call or print statement.
fn value_flow(&mut self, init: Token) -> Result<StmtKind, Error> {
let mut buf = Some(self.parse_expr(init, &mut None)?);
let r = loop {
match self.checked_next()? {
// Print to stdout
Token::Print => {
let stmt = StmtKind::Print(buf.take().ok_or_else(|| {
Error::new(ErrorKind::UnexpectedToken(Token::Print), self.lexer.span())
})?);
break self.semi_terminated(stmt)?;
}
// Functio call
Token::LeftParen => {
break self.functio_call_flow(buf.take().ok_or_else(|| {
Error::new(
ErrorKind::UnexpectedToken(Token::LeftParen),
self.lexer.span(),
)
})?)?;
}
// Variable Assignment
Token::Equal => {
if let Some(Expr {
kind: ExprKind::Variable(iden),
span,
}) = buf
{
break StmtKind::Assign {
iden: Iden::new(iden, span),
value: self.expr_flow(Token::Semicolon)?,
};
}
}
// Read input
Token::Read => {
if let Some(Expr {
kind: ExprKind::Variable(iden),
span,
}) = buf
{
break self.semi_terminated(StmtKind::Read(Iden::new(iden, span)))?;
}
}
t => buf = Some(self.parse_expr(t, &mut buf)?),
}
};
Ok(r)
}
/// Parse If flow
///
/// Consists of condition and block, there is no else
fn if_flow(&mut self) -> Result<StmtKind, Error> {
self.require(Token::LeftParen)?;
let cond = self.expr_flow(Token::RightParen)?;
let body = self.get_block()?;
Ok(StmtKind::If { cond, body })
}
/// Parse functio flow
///
/// functio $iden (a, b, c) { ... }
fn functio_flow(&mut self) -> Result<StmtKind, Error> {
let iden = self.get_iden()?;
self.require(Token::LeftParen)?;
let mut params = vec![];
loop {
match self.checked_next()? {
Token::RightParen => break,
Token::Identifier(i) => {
params.push(Iden::new(i, self.lexer.span()));
// Require comma (next) or right paren (end) after identifier
match self.checked_next()? {
Token::Comma => continue,
Token::RightParen => break,
t => {
return Err(Error::new(
ErrorKind::UnexpectedToken(t),
self.lexer.span(),
))
}
}
}
t => return Err(Error::new(ErrorKind::UnexpectedToken(t), self.lexer.span())),
}
}
let body = self.get_block()?;
Ok(StmtKind::Functio { iden, params, body })
}
/// Parse BF function declaration
///
/// `bff $iden ([tapelen]) { ... }`
fn bff_flow(&mut self) -> Result<StmtKind, Error> {
let iden = self.get_iden()?;
let tape_len = match self.checked_next()? {
Token::LeftParen => {
let len = Some(self.expr_flow(Token::RightParen)?);
self.require(Token::LeftCurly)?;
len
}
Token::LeftCurly => None,
token => {
return Err(Error::new(
ErrorKind::UnexpectedToken(token),
self.lexer.span(),
))
}
};
let mut code: Vec<u8> = vec![];
loop {
match self.checked_next()? {
Token::Plus
| Token::Minus
| Token::Dot
| Token::Comma
| Token::LeftBracket
| Token::RightBracket
| Token::LessThan
| Token::GreaterThan => code.push(self.lexer.slice().as_bytes()[0]),
Token::RightCurly => break,
_ => (),
}
}
Ok(StmtKind::BfFunctio {
iden,
tape_len,
code,
})
}
/// Parse functio call flow
fn functio_call_flow(&mut self, expr: Expr) -> Result<StmtKind, Error> {
let mut args = vec![];
let mut buf = None;
loop {
match self.checked_next()? {
// End of argument list
Token::RightParen => {
if let Some(expr) = buf.take() {
args.push(expr)
}
break;
}
// Next argument
Token::Comma => match buf.take() {
Some(expr) => args.push(expr),
// Comma alone
None => {
return Err(Error::new(
ErrorKind::UnexpectedToken(Token::Comma),
self.lexer.span(),
))
}
},
t => buf = Some(self.parse_expr(t, &mut buf)?),
}
}
self.require(Token::Semicolon)?;
Ok(StmtKind::Call { expr, args })
}
/// Parse variable declaration
fn var_flow(&mut self) -> Result<StmtKind, Error> {
let iden = self.get_iden()?;
let init = match self.checked_next()? {
Token::Equal => Some(self.expr_flow(Token::Semicolon)?),
Token::Semicolon => None,
t => return Err(Error::new(ErrorKind::UnexpectedToken(t), self.lexer.span())),
};
Ok(StmtKind::Var { iden, init })
}
/// Parse Melo flow
fn melo_flow(&mut self) -> Result<StmtKind, Error> {
let iden = self.get_iden()?;
self.semi_terminated(StmtKind::Melo(iden))
}
/// Parse loop flow
///
/// `loop` is an infinite loop, no condition, only body
fn loop_flow(&mut self) -> Result<StmtKind, Error> {
Ok(StmtKind::Loop {
body: self.get_block()?,
})
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn simple_math() {
let code = r#"1 * (a + 3) / 666 print;"#;
let expected = &[Stmt {
kind: StmtKind::Print(Expr {
kind: ExprKind::BinOp {
lhs: Box::new(Expr {
kind: ExprKind::BinOp {
lhs: Box::new(Expr {
kind: ExprKind::Literal(Value::Int(1)),
span: 0..1,
}),
rhs: Box::new(Expr {
kind: ExprKind::BinOp {
lhs: Box::new(Expr {
kind: ExprKind::Variable("a".to_string()),
span: 5..6,
}),
rhs: Box::new(Expr {
kind: ExprKind::Literal(Value::Int(3)),
span: 9..10,
}),
kind: BinOpKind::Add,
},
span: 5..10,
}),
kind: BinOpKind::Multiply,
},
span: 0..11,
}),
rhs: Box::new(Expr {
kind: ExprKind::Literal(Value::Int(666)),
span: 14..17,
}),
kind: BinOpKind::Divide,
},
span: 0..17,
}),
span: 0..24,
}];
let ast = Parser::new(code).init().unwrap();
assert_eq!(ast, expected);
}
#[test]
fn variable_declaration() {
let code = r#"var a = 42;"#;
let expected = &[Stmt {
kind: StmtKind::Var {
iden: Iden {
iden: "a".to_string(),
span: 4..5,
},
init: Some(Expr {
kind: ExprKind::Literal(Value::Int(42)),
span: 8..10,
}),
},
span: 0..11,
}];
let ast = Parser::new(code).init().unwrap();
assert_eq!(ast, expected);
}
#[test]
fn if_flow() {
let code = r#"if (a == always) { "Buy Able products!" print; }"#;
let expected = &[Stmt {
kind: StmtKind::If {
cond: Expr {
kind: ExprKind::BinOp {
lhs: Box::new(Expr {
kind: ExprKind::Variable("a".to_owned()),
span: 4..5,
}),
rhs: Box::new(Expr {
kind: ExprKind::Literal(Value::Abool(crate::variables::Abool::Always)),
span: 9..15,
}),
kind: BinOpKind::Equal,
},
span: 4..15,
},
body: Block {
block: vec![Stmt {
kind: StmtKind::Print(Expr {
kind: ExprKind::Literal(Value::Str("Buy Able products!".to_string())),
span: 19..39,
}),
span: 19..46,
}],
},
},
span: 0..48,
}];
let ast = Parser::new(code).init().unwrap();
assert_eq!(ast, expected);
}
#[test]
fn tdark() {
let code = r#"T-Dark { var lang = "lang" + lang; }"#;
let expected = &[Stmt {
kind: StmtKind::Var {
iden: Iden {
iden: "script".to_string(),
span: 13..17,
},
init: Some(Expr {
kind: ExprKind::BinOp {
lhs: Box::new(Expr {
kind: ExprKind::Literal(Value::Str("script".to_string())),
span: 20..26,
}),
rhs: Box::new(Expr {
kind: ExprKind::Variable("script".to_string()),
span: 29..33,
}),
kind: BinOpKind::Add,
},
span: 20..33,
}),
},
span: 9..34,
}];
let ast = Parser::new(code).init().unwrap();
assert_eq!(ast, expected);
}
#[test]
fn cart_construction() {
let code = r#"["able" <= 1, "script" <= 3 - 1] print;"#;
let expected = &[Stmt {
kind: StmtKind::Print(Expr {
kind: ExprKind::Cart(vec![
(
Expr {
kind: ExprKind::Literal(Value::Str("able".to_string())),
span: 1..7,
},
Expr {
kind: ExprKind::Literal(Value::Int(1)),
span: 11..12,
},
),
(
Expr {
kind: ExprKind::Literal(Value::Str("script".to_string())),
span: 14..22,
},
Expr {
kind: ExprKind::BinOp {
kind: BinOpKind::Subtract,
lhs: Box::new(Expr {
kind: ExprKind::Literal(Value::Int(3)),
span: 26..27,
}),
rhs: Box::new(Expr {
kind: ExprKind::Literal(Value::Int(1)),
span: 30..31,
}),
},
span: 26..31,
},
),
]),
span: 0..32,
}),
span: 0..39,
}];
let ast = Parser::new(code).init().unwrap();
assert_eq!(ast, expected);
}
#[test]
fn cart_index() {
let code = r#"["able" <= "ablecorp"]["ablecorp"] print;"#;
let expected = &[Stmt {
kind: StmtKind::Print(Expr {
kind: ExprKind::Index {
cart: Box::new(Expr {
kind: ExprKind::Cart(vec![(
Expr {
kind: ExprKind::Literal(Value::Str("able".to_string())),
span: 1..7,
},
Expr {
kind: ExprKind::Literal(Value::Str("ablecorp".to_string())),
span: 11..21,
},
)]),
span: 0..22,
}),
index: Box::new(Expr {
kind: ExprKind::Literal(Value::Str("ablecorp".to_owned())),
span: 23..33,
}),
},
span: 0..34,
}),
span: 0..41,
}];
let ast = Parser::new(code).init().unwrap();
assert_eq!(ast, expected);
}
}