ablescript/ablescript/src/interpret.rs

758 lines
25 KiB
Rust

//! Expression evaluator and statement interpreter.
//!
//! To interpret a piece of AbleScript code, you first need to
//! construct an [ExecEnv], which is responsible for storing the stack
//! of local variable and function definitions accessible from an
//! AbleScript snippet. You can then call [ExecEnv::eval_stmts] to
//! evaluate or execute any number of expressions or statements.
#![deny(missing_docs)]
use crate::{
ast::{Assignable, AssignableKind, Expr, Spanned, Stmt},
consts::ablescript_consts,
error::{Error, ErrorKind},
variables::{Functio, Value, ValueRef, Variable},
};
use rand::random;
use std::{
cmp::Ordering,
collections::{HashMap, VecDeque},
io::{stdin, stdout, Read, Write},
mem::take,
ops::Range,
process::exit,
};
/// An environment for executing AbleScript code.
pub struct ExecEnv {
/// The stack, ordered such that `stack[stack.len() - 1]` is the
/// top-most (newest) stack frame, and `stack[0]` is the
/// bottom-most (oldest) stack frame.
stack: Vec<Scope>,
/// The `read` statement maintains a buffer of up to 7 bits,
/// because input comes from the operating system 8 bits at a time
/// (via stdin) but gets delivered to AbleScript 3 bits at a time
/// (via the `read` statement). We store each of those bits as
/// booleans to facilitate easy manipulation.
read_buf: VecDeque<bool>,
}
/// A set of visible variable and function definitions in a single
/// stack frame.
struct Scope {
/// The mapping from variable names to values.
variables: HashMap<String, Variable>,
}
impl Default for ExecEnv {
fn default() -> Self {
Self {
stack: vec![Default::default()],
read_buf: Default::default(),
}
}
}
impl Default for Scope {
fn default() -> Self {
Self {
variables: ablescript_consts(),
}
}
}
/// The reason a successful series of statements halted.
enum HaltStatus {
/// We ran out of statements to execute.
Finished,
/// An `enough` statement occurred at the given span, and was not
/// caught by a `loop` statement up to this point.
Enough(Range<usize>),
/// A `and again` statement occurred at the given span, and was not
/// caught by a `loop` statement up to this point.
AndAgain(Range<usize>),
}
/// The number of bits the `read` statement reads at once from
/// standard input.
pub const READ_BITS: u8 = 3;
impl ExecEnv {
/// Create a new Scope with no predefined variable definitions or
/// other information.
pub fn new() -> Self {
Self::default()
}
/// Create a new Scope with predefined variables
pub fn new_with_vars<I>(vars: I) -> Self
where
I: IntoIterator<Item = (String, Variable)>,
{
let scope = Scope {
variables: ablescript_consts().into_iter().chain(vars).collect(),
};
Self {
stack: vec![scope],
read_buf: Default::default(),
}
}
/// Execute a set of Statements in the root stack frame. Return an
/// error if one or more of the Stmts failed to evaluate, or if a
/// `enough` or `and again` statement occurred at the top level.
pub fn eval_stmts(&mut self, stmts: &[Spanned<Stmt>]) -> Result<(), Error> {
match self.eval_stmts_hs(stmts, false)? {
HaltStatus::Finished => Ok(()),
HaltStatus::Enough(span) | HaltStatus::AndAgain(span) => Err(Error {
// It's an error to issue a `enough` outside of a
// `loop` statement.
kind: ErrorKind::TopLevelEnough,
span,
}),
}
}
/// The same as `eval_stmts`, but report "enough" and "and again"
/// exit codes as normal conditions in a HaltStatus enum, and
/// create a new stack frame if `stackframe` is true.
///
/// `interpret`-internal code should typically prefer this
/// function over `eval_stmts`.
fn eval_stmts_hs(
&mut self,
stmts: &[Spanned<Stmt>],
stackframe: bool,
) -> Result<HaltStatus, Error> {
let init_depth = self.stack.len();
if stackframe {
self.stack.push(Default::default());
}
let mut final_result = Ok(HaltStatus::Finished);
for stmt in stmts {
final_result = self.eval_stmt(stmt);
if !matches!(final_result, Ok(HaltStatus::Finished)) {
break;
}
}
if stackframe {
self.stack.pop();
}
// Invariant: stack size must have net 0 change.
debug_assert_eq!(self.stack.len(), init_depth);
final_result
}
/// Evaluate an Expr, returning its value or an error.
fn eval_expr(&self, expr: &Spanned<Expr>) -> Result<Value, Error> {
use crate::ast::BinOpKind::*;
use crate::ast::Expr::*;
Ok(match &expr.item {
BinOp { lhs, rhs, kind } => {
let lhs = self.eval_expr(lhs)?;
let rhs = self.eval_expr(rhs)?;
match kind {
Add => lhs + rhs,
Subtract => lhs - rhs,
Multiply => lhs * rhs,
Divide => lhs / rhs,
Greater => Value::Abool((lhs > rhs).into()),
Less => Value::Abool((lhs < rhs).into()),
Equal => Value::Abool((lhs == rhs).into()),
NotEqual => Value::Abool((lhs != rhs).into()),
}
}
Aint(expr) => !self.eval_expr(expr)?,
Literal(lit) => lit.clone().into(),
Expr::Cart(members) => Value::Cart(
members
.iter()
.map(|(value, key)| {
self.eval_expr(value).and_then(|value| {
self.eval_expr(key).map(|key| (key, ValueRef::new(value)))
})
})
.collect::<Result<HashMap<_, _>, _>>()?,
),
Index { expr, index } => {
let value = self.eval_expr(expr)?;
let index = self.eval_expr(index)?;
value
.into_cart()
.get(&index)
.map(|x| x.borrow().clone())
.unwrap_or(Value::Nul)
}
Len(expr) => Value::Int(self.eval_expr(expr)?.length()),
Keys(expr) => Value::Cart(
self.eval_expr(expr)?
.into_cart()
.into_keys()
.enumerate()
.map(|(i, k)| (Value::Int(i as isize + 1), ValueRef::new(k)))
.collect(),
),
// TODO: not too happy with constructing an artificial
// Ident here.
Variable(name) => {
self.get_var_value(&Spanned::new(name.to_owned(), expr.span.clone()))?
}
})
}
/// Perform the action indicated by a statement.
fn eval_stmt(&mut self, stmt: &Spanned<Stmt>) -> Result<HaltStatus, Error> {
match &stmt.item {
Stmt::Print { expr, newline } => {
let value = self.eval_expr(expr)?;
if *newline {
println!("{value}");
} else {
print!("{value}");
stdout()
.lock()
.flush()
.map_err(|e| Error::new(e.into(), stmt.span.clone()))?;
}
}
Stmt::Dim { ident, init } => {
let init = match init {
Some(e) => self.eval_expr(e)?,
None => Value::Nul,
};
self.decl_var(&ident.item, init);
}
Stmt::Functio {
ident,
params,
body,
} => {
self.decl_var(
&ident.item,
Value::Functio(Functio::Able {
params: params.iter().map(|ident| ident.item.to_owned()).collect(),
body: body.to_owned(),
}),
);
}
Stmt::BfFunctio {
ident,
tape_len,
code,
} => {
self.decl_var(
&ident.item,
Value::Functio(Functio::Bf {
instructions: code.to_owned(),
tape_len: tape_len
.as_ref()
.map(|tape_len| {
self.eval_expr(tape_len).map(|v| v.into_isize() as usize)
})
.unwrap_or(Ok(crate::brian::DEFAULT_TAPE_SIZE_LIMIT))?,
}),
);
}
Stmt::Unless { cond, body } => {
if !self.eval_expr(cond)?.into_abool().to_bool() {
return self.eval_stmts_hs(body, true);
}
}
Stmt::Call { expr, args } => {
let func = self.eval_expr(expr)?.into_functio();
self.fn_call(func, args, &stmt.span)?;
}
Stmt::Loop { body } => loop {
let res = self.eval_stmts_hs(body, true)?;
match res {
HaltStatus::Finished => (),
HaltStatus::Enough(_) => break,
HaltStatus::AndAgain(_) => continue,
}
},
Stmt::Assign { assignable, value } => {
self.assign(assignable, self.eval_expr(value)?)?;
}
Stmt::Enough => {
return Ok(HaltStatus::Enough(stmt.span.clone()));
}
Stmt::AndAgain => {
return Ok(HaltStatus::AndAgain(stmt.span.clone()));
}
Stmt::Melo(ident) => match self.get_var_mut(ident)? {
var @ Variable::Ref(_) => *var = Variable::Melo,
Variable::Melo => {
for s in &mut self.stack {
if s.variables.remove(&ident.item).is_some() {
break;
}
}
}
},
Stmt::Rlyeh => {
// Maybe print a creepy error message or something
// here at some point. ~~Alex
exit(random());
}
Stmt::Rickroll => {
stdout()
.write_all(include_str!("rickroll").as_bytes())
.expect("Failed to write to stdout");
}
Stmt::Read(assignable) => {
let mut value = 0;
for _ in 0..READ_BITS {
value <<= 1;
value += self
.get_bit()
.map_err(|e| Error::new(e, stmt.span.clone()))?
as isize;
}
self.assign(assignable, Value::Int(value))?;
}
}
Ok(HaltStatus::Finished)
}
/// Assign a value to an Assignable.
fn assign(&mut self, dest: &Assignable, value: Value) -> Result<(), Error> {
match dest.kind {
AssignableKind::Variable => {
self.get_var_rc_mut(&dest.ident)?.replace(value);
}
AssignableKind::Index { ref indices } => {
let mut cell = self.get_var_rc_mut(&dest.ident)?.clone();
for index in indices {
let index = self.eval_expr(index)?;
let next_cell = match &mut *cell.borrow_mut() {
Value::Cart(c) => {
// cell is a cart, so we can do simple
// indexing.
if let Some(x) = c.get(&index) {
// cell[index] exists, get a shared
// reference to it.
ValueRef::clone(x)
} else {
// cell[index] does not exist, so we
// insert an empty cart by default
// instead.
let next_cell = ValueRef::new(Value::Cart(Default::default()));
c.insert(index, ValueRef::clone(&next_cell));
next_cell
}
}
x => {
// cell is not a cart; `take` it, convert
// it into a cart, and write the result
// back into it.
let mut cart = take(x).into_cart();
let next_cell = ValueRef::new(Value::Cart(Default::default()));
cart.insert(index, ValueRef::clone(&next_cell));
*x = Value::Cart(cart);
next_cell
}
};
cell = next_cell;
}
cell.replace(value);
}
}
Ok(())
}
/// Call a function with the given arguments (i.e., actual
/// parameters). If the function invocation fails for some reason,
/// report the error at `span`.
fn fn_call(
&mut self,
func: Functio,
args: &[Spanned<Expr>],
span: &Range<usize>,
) -> Result<(), Error> {
// Arguments that are ExprKind::Variable are pass by
// reference; all other expressions are pass by value.
let args = args
.iter()
.map(|arg| {
if let Expr::Variable(name) = &arg.item {
self.get_var_rc_mut(&Spanned::new(name.to_owned(), arg.span.clone()))
.cloned()
} else {
self.eval_expr(arg).map(ValueRef::new)
}
})
.collect::<Result<Vec<_>, Error>>()?;
self.fn_call_with_values(func, &args, span)
}
fn fn_call_with_values(
&mut self,
func: Functio,
args: &[ValueRef],
span: &Range<usize>,
) -> Result<(), Error> {
match func {
Functio::Bf {
instructions,
tape_len,
} => {
let mut input: Vec<u8> = vec![];
for arg in args {
arg.borrow().bf_write(&mut input);
}
let mut output = vec![];
crate::brian::Interpreter::from_ascii_with_tape_limit(
&instructions,
&input as &[_],
tape_len,
)
.interpret_with_output(&mut output)
.map_err(|e| Error {
kind: ErrorKind::Brian(e),
span: span.to_owned(),
})?;
stdout()
.write_all(&output)
.expect("Failed to write to stdout");
}
Functio::Able { params, body } => {
self.stack.push(Default::default());
for (param, arg) in params.iter().zip(args.iter()) {
self.decl_var_shared(param, arg.to_owned());
}
let res = self.eval_stmts_hs(&body, false);
self.stack.pop();
res?;
}
Functio::Builtin(b) => b.call(args).map_err(|e| Error::new(e, span.clone()))?,
Functio::Chain { functios, kind } => {
let (left_functio, right_functio) = *functios;
match kind {
crate::variables::FunctioChainKind::Equal => {
let (l, r) = args.split_at(args.len() / 2);
self.fn_call_with_values(left_functio, l, span)?;
self.fn_call_with_values(right_functio, r, span)?;
}
crate::variables::FunctioChainKind::ByArity => {
let (l, r) =
Self::deinterlace(args, (left_functio.arity(), right_functio.arity()));
self.fn_call_with_values(left_functio, &l, span)?;
self.fn_call_with_values(right_functio, &r, span)?;
}
};
}
Functio::Eval(code) => self.eval_stmts(&crate::parser::parse(&code)?)?,
}
Ok(())
}
fn deinterlace(args: &[ValueRef], arities: (usize, usize)) -> (Vec<ValueRef>, Vec<ValueRef>) {
let n_alternations = usize::min(arities.0, arities.1);
let (extra_l, extra_r) = match Ord::cmp(&arities.0, &arities.1) {
Ordering::Less => (0, arities.1 - arities.0),
Ordering::Equal => (0, 0),
Ordering::Greater => (arities.0 - arities.1, 0),
};
(
args.chunks(2)
.take(n_alternations)
.map(|chunk| ValueRef::clone(&chunk[0]))
.chain(
args[2 * n_alternations..]
.iter()
.map(ValueRef::clone)
.take(extra_l),
)
.collect(),
args.chunks(2)
.take(n_alternations)
.map(|chunk| ValueRef::clone(&chunk[1]))
.chain(
args[2 * n_alternations..]
.iter()
.map(ValueRef::clone)
.take(extra_r),
)
.collect(),
)
}
/// Get a single bit from the bit buffer, or refill it from
/// standard input if it is empty.
fn get_bit(&mut self) -> Result<bool, ErrorKind> {
const BITS_PER_BYTE: u8 = 8;
if self.read_buf.is_empty() {
let mut data = [0];
stdin().read_exact(&mut data)?;
for n in (0..BITS_PER_BYTE).rev() {
self.read_buf.push_back(((data[0] >> n) & 1) != 0);
}
}
Ok(self
.read_buf
.pop_front()
.expect("We just pushed to the buffer if it was empty"))
}
/// Get the value of a variable. Throw an error if the variable is
/// inaccessible or banned.
fn get_var_value(&self, name: &Spanned<String>) -> Result<Value, Error> {
// Search for the name in the stack from top to bottom.
match self
.stack
.iter()
.rev()
.find_map(|scope| scope.variables.get(&name.item))
{
Some(Variable::Ref(r)) => Ok(r.borrow().clone()),
Some(Variable::Melo) => Err(Error {
kind: ErrorKind::MeloVariable(name.item.to_owned()),
span: name.span.clone(),
}),
None => Ok(Value::Undefined),
}
}
/// Get a mutable reference to a variable.
fn get_var_mut(&mut self, name: &Spanned<String>) -> Result<&mut Variable, Error> {
// This function has a lot of duplicated code with `get_var`,
// which I feel like is a bad sign...
match self
.stack
.iter_mut()
.rev()
.find_map(|scope| scope.variables.get_mut(&name.item))
{
Some(var) => Ok(var),
None => Err(Error {
kind: ErrorKind::UnknownVariable(name.item.to_owned()),
span: name.span.clone(),
}),
}
}
/// Get an reference to an Rc'd pointer to the value of a variable. Throw an error
/// if the variable is inaccessible or banned.
fn get_var_rc_mut(&mut self, name: &Spanned<String>) -> Result<&mut ValueRef, Error> {
match self.get_var_mut(name)? {
Variable::Ref(r) => Ok(r),
Variable::Melo => Err(Error {
kind: ErrorKind::MeloVariable(name.item.to_owned()),
span: name.span.clone(),
}),
}
}
/// Declare a new variable, with the given initial value.
fn decl_var(&mut self, name: &str, value: Value) {
self.decl_var_shared(name, ValueRef::new(value));
}
/// Declare a new variable, with the given shared initial value.
fn decl_var_shared(&mut self, name: &str, value: ValueRef) {
self.stack
.iter_mut()
.last()
.expect("Declaring variable on empty stack")
.variables
.insert(name.to_owned(), Variable::Ref(value));
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::ast::{Expr, Literal};
#[test]
fn basic_expression_test() {
// Check that 2 + 2 = 4.
let env = ExecEnv::new();
assert_eq!(
env.eval_expr(&Spanned {
item: Expr::BinOp {
lhs: Box::new(Spanned {
item: Expr::Literal(Literal::Int(2)),
span: 1..1,
}),
rhs: Box::new(Spanned {
item: Expr::Literal(Literal::Int(2)),
span: 1..1,
}),
kind: crate::ast::BinOpKind::Add,
},
span: 1..1
})
.unwrap(),
Value::Int(4)
)
}
#[test]
fn type_coercions() {
// The sum of an integer and an aboolean causes an aboolean
// coercion.
let env = ExecEnv::new();
assert_eq!(
env.eval_expr(&Spanned {
item: Expr::BinOp {
lhs: Box::new(Spanned {
item: Expr::Literal(Literal::Int(2)),
span: 1..1,
}),
rhs: Box::new(Spanned {
item: Expr::Variable("always".to_owned()),
span: 1..1,
}),
kind: crate::ast::BinOpKind::Add,
},
span: 1..1
})
.unwrap(),
Value::Int(3)
);
}
#[test]
fn overflow_should_not_panic() {
// Integer overflow should throw a recoverable error instead
// of panicking.
let env = ExecEnv::new();
assert_eq!(
env.eval_expr(&Spanned {
item: Expr::BinOp {
lhs: Box::new(Spanned {
item: Expr::Literal(Literal::Int(isize::MAX)),
span: 1..1,
}),
rhs: Box::new(Spanned {
item: Expr::Literal(Literal::Int(1)),
span: 1..1,
}),
kind: crate::ast::BinOpKind::Add,
},
span: 1..1
})
.unwrap(),
Value::Int(-9223372036854775808)
);
// And the same for divide by zero.
assert_eq!(
env.eval_expr(&Spanned {
item: Expr::BinOp {
lhs: Box::new(Spanned {
item: Expr::Literal(Literal::Int(84)),
span: 1..1,
}),
rhs: Box::new(Spanned {
item: Expr::Literal(Literal::Int(0)),
span: 1..1,
}),
kind: crate::ast::BinOpKind::Divide,
},
span: 1..1
})
.unwrap(),
Value::Int(2)
);
}
// From here on out, I'll use this function to parse and run
// expressions, because writing out abstract syntax trees by hand
// takes forever and is error-prone.
fn eval(env: &mut ExecEnv, src: &str) -> Result<Value, Error> {
// We can assume there won't be any syntax errors in the
// interpreter tests.
let ast = crate::parser::parse(src).unwrap();
env.eval_stmts(&ast).map(|()| Value::Nul)
}
#[test]
fn variable_decl_and_assignment() {
// Functions have no return values, so use some
// pass-by-reference hacks to detect the correct
// functionality.
let mut env = ExecEnv::new();
// Declaring and reading from a variable.
eval(&mut env, "foo dim 32; bar dim foo + 1;").unwrap();
assert_eq!(
env.get_var_value(&Spanned {
item: "bar".to_owned(),
span: 1..1,
})
.unwrap(),
Value::Int(33)
);
// Assigning an existing variable.
eval(&mut env, "/*hi*/ =: foo;").unwrap();
assert_eq!(
env.get_var_value(&Spanned {
item: "foo".to_owned(),
span: 1..1,
})
.unwrap(),
Value::Str("hi".to_owned())
);
// But variable assignment should be illegal when the variable
// hasn't been declared in advance.
eval(&mut env, "bar + 1 =: invalid;").unwrap_err();
}
#[test]
fn scope_visibility_rules() {
// Declaration and assignment of variables declared in an `if`
// statement should have no effect on those declared outside
// of it.
let mut env = ExecEnv::new();
eval(
&mut env,
"foo dim 1; 2 =: foo; unless (never) { foo dim 3; 4 =: foo; }",
)
.unwrap();
assert_eq!(
env.get_var_value(&Spanned {
item: "foo".to_owned(),
span: 1..1,
})
.unwrap(),
Value::Int(2)
);
}
}