holey-bytes/lang/src/son.rs
2024-10-20 18:49:41 +02:00

3371 lines
117 KiB
Rust

use {
crate::{
ctx_map::CtxEntry,
ident::Ident,
instrs,
lexer::{self, TokenKind},
parser::{
self,
idfl::{self},
Expr, ExprRef, FileId, Pos,
},
reg, task,
ty::{self, ArrayLen, Tuple},
vc::{BitSet, Vc},
Comptime, Func, Global, HashMap, Offset, OffsetIter, Reloc, Sig, TypeParser, TypedReloc,
Types,
},
alloc::{string::String, vec::Vec},
core::{
assert_matches::debug_assert_matches,
cell::RefCell,
fmt::{self, Debug, Display, Write},
format_args as fa, mem,
ops::{self},
},
hashbrown::hash_map,
regalloc2::VReg,
};
const VOID: Nid = 0;
const NEVER: Nid = 1;
const ENTRY: Nid = 2;
const MEM: Nid = 3;
type Nid = u16;
type Lookup = crate::ctx_map::CtxMap<Nid>;
trait StoreId: Sized {
fn to_store(self) -> Option<Self>;
}
impl StoreId for Nid {
fn to_store(self) -> Option<Self> {
(self != ENTRY).then_some(self)
}
}
impl crate::ctx_map::CtxEntry for Nid {
type Ctx = [Result<Node, Nid>];
type Key<'a> = (Kind, &'a [Nid], ty::Id);
fn key<'a>(&self, ctx: &'a Self::Ctx) -> Self::Key<'a> {
ctx[*self as usize].as_ref().unwrap().key()
}
}
struct Nodes {
values: Vec<Result<Node, Nid>>,
visited: BitSet,
free: Nid,
lookup: Lookup,
}
impl Default for Nodes {
fn default() -> Self {
Self {
values: Default::default(),
free: Nid::MAX,
lookup: Default::default(),
visited: Default::default(),
}
}
}
impl Nodes {
fn graphviz_low(
&self,
tys: &Types,
files: &[parser::Ast],
out: &mut String,
) -> core::fmt::Result {
use core::fmt::Write;
for (i, node) in self.iter() {
let color = if self.is_cfg(i) { "yellow" } else { "white" };
writeln!(
out,
"node{i}[label=\"{} {}\" color={color}]",
node.kind,
ty::Display::new(tys, files, node.ty)
)?;
for (j, &o) in node.outputs.iter().enumerate() {
let color = if self.is_cfg(i) && self.is_cfg(o) { "red" } else { "lightgray" };
let index = self[o].inputs.iter().position(|&inp| i == inp).unwrap();
let style = if index == 0 && !self.is_cfg(o) { "style=dotted" } else { "" };
writeln!(
out,
"node{o} -> node{i}[color={color} taillabel={index} headlabel={j} {style}]",
)?;
}
}
Ok(())
}
#[allow(dead_code)]
fn graphviz(&self, tys: &Types, files: &[parser::Ast]) {
let out = &mut String::new();
_ = self.graphviz_low(tys, files, out);
log::info!("{out}");
}
fn gcm(&mut self) {
self.visited.clear(self.values.len());
push_up(self);
// TODO: handle infinte loops
self.visited.clear(self.values.len());
push_down(self, VOID);
}
fn remove_low(&mut self, id: Nid) -> Node {
if cfg!(debug_assertions) {
let value = mem::replace(&mut self.values[id as usize], Err(self.free)).unwrap();
self.free = id;
value
} else {
mem::replace(&mut self.values[id as usize], Err(Nid::MAX)).unwrap()
}
}
fn clear(&mut self) {
self.values.clear();
self.lookup.clear();
self.free = Nid::MAX;
}
fn new_node_nop(&mut self, ty: ty::Id, kind: Kind, inps: impl Into<Vc>) -> Nid {
let node =
Node { ralloc_backref: u16::MAX, inputs: inps.into(), kind, ty, ..Default::default() };
let mut lookup_meta = None;
if !node.is_not_gvnd() {
let (raw_entry, hash) = self.lookup.entry(node.key(), &self.values);
let entry = match raw_entry {
hash_map::RawEntryMut::Occupied(o) => return o.get_key_value().0.value,
hash_map::RawEntryMut::Vacant(v) => v,
};
lookup_meta = Some((entry, hash));
}
if self.free == Nid::MAX {
self.free = self.values.len() as _;
self.values.push(Err(Nid::MAX));
}
let free = self.free;
for &d in node.inputs.as_slice() {
debug_assert_ne!(d, free);
self.values[d as usize].as_mut().unwrap_or_else(|_| panic!("{d}")).outputs.push(free);
}
self.free = mem::replace(&mut self.values[free as usize], Ok(node)).unwrap_err();
if let Some((entry, hash)) = lookup_meta {
entry.insert(crate::ctx_map::Key { value: free, hash }, ());
}
free
}
fn remove_node_lookup(&mut self, target: Nid) {
if !self[target].is_not_gvnd() {
self.lookup.remove(&target, &self.values).unwrap();
}
}
fn new_node_low(&mut self, ty: ty::Id, kind: Kind, inps: impl Into<Vc>) -> (Nid, bool) {
let id = self.new_node_nop(ty, kind, inps);
if let Some(opt) = self.peephole(id) {
debug_assert_ne!(opt, id);
self.lock(opt);
self.remove(id);
self.unlock(opt);
(opt, true)
} else {
(id, false)
}
}
fn new_node(&mut self, ty: ty::Id, kind: Kind, inps: impl Into<Vc>) -> Nid {
self.new_node_low(ty, kind, inps).0
}
fn new_node_lit(&mut self, ty: ty::Id, kind: Kind, inps: impl Into<Vc>) -> Value {
Value::new(self.new_node_low(ty, kind, inps).0).ty(ty)
}
fn lock(&mut self, target: Nid) {
self[target].lock_rc += 1;
}
#[track_caller]
fn unlock(&mut self, target: Nid) {
self[target].lock_rc -= 1;
}
fn remove(&mut self, target: Nid) -> bool {
if !self[target].is_dangling() {
return false;
}
for i in 0..self[target].inputs.len() {
let inp = self[target].inputs[i];
let index = self[inp].outputs.iter().position(|&p| p == target).unwrap();
self[inp].outputs.swap_remove(index);
self.remove(inp);
}
self.remove_node_lookup(target);
self.remove_low(target);
true
}
fn peephole(&mut self, target: Nid) -> Option<Nid> {
use {Kind as K, TokenKind as T};
match self[target].kind {
K::BinOp { op } => {
let &[ctrl, mut lhs, mut rhs] = self[target].inputs.as_slice() else {
unreachable!()
};
let ty = self[target].ty;
if let (&K::CInt { value: a }, &K::CInt { value: b }) =
(&self[lhs].kind, &self[rhs].kind)
{
return Some(
self.new_node(ty, K::CInt { value: op.apply_binop(a, b) }, [ctrl]),
);
}
if lhs == rhs {
match op {
T::Sub => return Some(self.new_node(ty, K::CInt { value: 0 }, [ctrl])),
T::Add => {
let rhs = self.new_node_nop(ty, K::CInt { value: 2 }, [ctrl]);
return Some(
self.new_node(ty, K::BinOp { op: T::Mul }, [ctrl, lhs, rhs]),
);
}
_ => {}
}
}
// this is more general the pushing constants to left to help deduplicate expressions more
let mut changed = false;
if op.is_comutative() && self[lhs].key() < self[rhs].key() {
core::mem::swap(&mut lhs, &mut rhs);
changed = true;
}
if let K::CInt { value } = self[lhs].kind
&& op == T::Sub
{
let lhs = self.new_node_nop(ty, K::CInt { value: -value }, [ctrl]);
return Some(self.new_node(ty, K::BinOp { op: T::Add }, [ctrl, rhs, lhs]));
}
if let K::CInt { value } = self[rhs].kind {
match (op, value) {
(T::Add | T::Sub | T::Shl, 0) | (T::Mul | T::Div, 1) => return Some(lhs),
(T::Mul, 0) => return Some(rhs),
_ => {}
}
}
if op.is_comutative() && self[lhs].kind == (K::BinOp { op }) {
let &[_, a, b] = self[lhs].inputs.as_slice() else { unreachable!() };
if let K::CInt { value: av } = self[b].kind
&& let K::CInt { value: bv } = self[rhs].kind
{
// (a op #b) op #c => a op (#b op #c)
let new_rhs =
self.new_node_nop(ty, K::CInt { value: op.apply_binop(av, bv) }, [
ctrl,
]);
return Some(self.new_node(ty, K::BinOp { op }, [ctrl, a, new_rhs]));
}
if self.is_const(b) {
// (a op #b) op c => (a op c) op #b
let new_lhs = self.new_node(ty, K::BinOp { op }, [ctrl, a, rhs]);
return Some(self.new_node(ty, K::BinOp { op }, [ctrl, new_lhs, b]));
}
}
if op == T::Add
&& self[lhs].kind == (K::BinOp { op: T::Mul })
&& self[lhs].inputs[1] == rhs
&& let K::CInt { value } = self[self[lhs].inputs[2]].kind
{
// a * #n + a => a * (#n + 1)
let new_rhs = self.new_node_nop(ty, K::CInt { value: value + 1 }, [ctrl]);
return Some(self.new_node(ty, K::BinOp { op: T::Mul }, [ctrl, rhs, new_rhs]));
}
if op == T::Sub && self[lhs].kind == (K::BinOp { op }) {
// (a - b) - c => a - (b + c)
let &[_, a, b] = self[lhs].inputs.as_slice() else { unreachable!() };
let c = rhs;
let new_rhs = self.new_node(ty, K::BinOp { op: T::Add }, [ctrl, b, c]);
return Some(self.new_node(ty, K::BinOp { op }, [ctrl, a, new_rhs]));
}
if changed {
return Some(self.new_node(ty, self[target].kind, [ctrl, lhs, rhs]));
}
}
K::UnOp { op } => {
let &[ctrl, oper] = self[target].inputs.as_slice() else { unreachable!() };
let ty = self[target].ty;
if let K::CInt { value } = self[oper].kind {
return Some(
self.new_node(ty, K::CInt { value: op.apply_unop(value) }, [ctrl]),
);
}
}
K::If => {
let cond = self[target].inputs[1];
if let K::CInt { value } = self[cond].kind {
let ty = if value == 0 {
ty::Id::LEFT_UNREACHABLE
} else {
ty::Id::RIGHT_UNREACHABLE
};
return Some(self.new_node_nop(ty, K::If, [self[target].inputs[0], cond]));
}
}
K::Phi => {
let &[ctrl, lhs, rhs] = self[target].inputs.as_slice() else { unreachable!() };
if lhs == rhs {
return Some(lhs);
}
if self[lhs].kind == Kind::Stre
&& self[rhs].kind == Kind::Stre
&& self[lhs].ty == self[rhs].ty
&& self[lhs].inputs[2] == self[rhs].inputs[2]
&& self[lhs].inputs.get(3) == self[rhs].inputs.get(3)
{
let pick_value = self.new_node(self[lhs].ty, Kind::Phi, [
ctrl,
self[lhs].inputs[1],
self[rhs].inputs[1],
]);
let mut vc = Vc::from([VOID, pick_value, self[lhs].inputs[2]]);
for &rest in &self[lhs].inputs[3..] {
vc.push(rest);
}
for &rest in &self[rhs].inputs[4..] {
vc.push(rest);
}
return Some(self.new_node(self[lhs].ty, Kind::Stre, vc));
}
}
K::Stre => {
if self[target].inputs[2] != VOID
&& self[target].inputs.len() == 4
&& self[self[target].inputs[3]].kind == Kind::Stre
&& self[self[target].inputs[3]].lock_rc == 0
&& self[self[target].inputs[3]].inputs[2] == self[target].inputs[2]
{
return Some(self.modify_input(
self[target].inputs[3],
1,
self[target].inputs[1],
));
}
}
K::Load => {
if self[target].inputs.len() == 3
&& self[self[target].inputs[2]].kind == Kind::Stre
&& self[self[target].inputs[2]].inputs[2] == self[target].inputs[1]
&& self[self[target].inputs[2]].ty == self[target].ty
{
return Some(self[self[target].inputs[2]].inputs[1]);
}
}
_ => {}
}
None
}
fn is_const(&self, id: Nid) -> bool {
matches!(self[id].kind, Kind::CInt { .. })
}
fn replace(&mut self, target: Nid, with: Nid) {
let mut back_press = 0;
for i in 0..self[target].outputs.len() {
let out = self[target].outputs[i - back_press];
let index = self[out].inputs.iter().position(|&p| p == target).unwrap();
self.lock(target);
let prev_len = self[target].outputs.len();
self.modify_input(out, index, with);
back_press += (self[target].outputs.len() != prev_len) as usize;
self.unlock(target);
}
self.remove(target);
}
fn modify_input(&mut self, target: Nid, inp_index: usize, with: Nid) -> Nid {
self.remove_node_lookup(target);
debug_assert_ne!(self[target].inputs[inp_index], with);
let prev = self[target].inputs[inp_index];
self[target].inputs[inp_index] = with;
let (entry, hash) = self.lookup.entry(target.key(&self.values), &self.values);
match entry {
hash_map::RawEntryMut::Occupied(other) => {
let rpl = other.get_key_value().0.value;
self[target].inputs[inp_index] = prev;
self.replace(target, rpl);
rpl
}
hash_map::RawEntryMut::Vacant(slot) => {
slot.insert(crate::ctx_map::Key { value: target, hash }, ());
let index = self[prev].outputs.iter().position(|&o| o == target).unwrap();
self[prev].outputs.swap_remove(index);
self[with].outputs.push(target);
self.remove(prev);
target
}
}
}
#[track_caller]
fn unlock_remove(&mut self, id: Nid) -> bool {
self[id].lock_rc -= 1;
self.remove(id)
}
fn iter(&self) -> impl DoubleEndedIterator<Item = (Nid, &Node)> {
self.values.iter().enumerate().filter_map(|(i, s)| Some((i as _, s.as_ref().ok()?)))
}
#[allow(clippy::format_in_format_args)]
fn basic_blocks_instr(&mut self, out: &mut String, node: Nid) -> core::fmt::Result {
if self[node].kind != Kind::Loop && self[node].kind != Kind::Region {
write!(out, " {node:>2}-c{:>2}: ", self[node].ralloc_backref)?;
}
match self[node].kind {
Kind::Start => unreachable!(),
Kind::End => unreachable!(),
Kind::If => write!(out, " if: "),
Kind::Region | Kind::Loop => writeln!(out, " goto: {node}"),
Kind::Return => write!(out, " ret: "),
Kind::CInt { value } => write!(out, "cint: #{value:<4}"),
Kind::Phi => write!(out, " phi: "),
Kind::Arg => write!(
out,
" arg: {:<5}",
self[VOID].outputs.iter().position(|&n| n == node).unwrap() - 2
),
Kind::BinOp { op } | Kind::UnOp { op } => {
write!(out, "{:>4}: ", op.name())
}
Kind::Call { func } => {
write!(out, "call: {func} {} ", self[node].depth)
}
Kind::Global { global } => write!(out, "glob: {global:<5}"),
Kind::Entry => write!(out, "ctrl: {:<5}", "entry"),
Kind::Then => write!(out, "ctrl: {:<5}", "then"),
Kind::Else => write!(out, "ctrl: {:<5}", "else"),
Kind::Stck => write!(out, "stck: "),
Kind::Load => write!(out, "load: "),
Kind::Stre => write!(out, "stre: "),
Kind::Mem => write!(out, " mem: "),
Kind::Idk => write!(out, " idk: "),
}?;
if self[node].kind != Kind::Loop && self[node].kind != Kind::Region {
writeln!(
out,
" {:<14} {}",
format!("{:?}", self[node].inputs),
format!("{:?}", self[node].outputs)
)?;
}
Ok(())
}
fn basic_blocks_low(&mut self, out: &mut String, mut node: Nid) -> core::fmt::Result {
let iter = |nodes: &Nodes, node| nodes[node].outputs.clone().into_iter().rev();
while self.visited.set(node) {
match self[node].kind {
Kind::Start => {
writeln!(out, "start: {}", self[node].depth)?;
let mut cfg_index = Nid::MAX;
for o in iter(self, node) {
self.basic_blocks_instr(out, o)?;
if self[o].kind.is_cfg() {
cfg_index = o;
}
}
node = cfg_index;
}
Kind::End => break,
Kind::If => {
self.basic_blocks_low(out, self[node].outputs[0])?;
node = self[node].outputs[1];
}
Kind::Region => {
writeln!(
out,
"region{node}: {} {} {:?}",
self[node].depth, self[node].loop_depth, self[node].inputs
)?;
let mut cfg_index = Nid::MAX;
for o in iter(self, node) {
self.basic_blocks_instr(out, o)?;
if self.is_cfg(o) {
cfg_index = o;
}
}
node = cfg_index;
}
Kind::Loop => {
writeln!(
out,
"loop{node}: {} {} {:?}",
self[node].depth, self[node].loop_depth, self[node].outputs
)?;
let mut cfg_index = Nid::MAX;
for o in iter(self, node) {
self.basic_blocks_instr(out, o)?;
if self.is_cfg(o) {
cfg_index = o;
}
}
node = cfg_index;
}
Kind::Return => {
node = self[node].outputs[0];
}
Kind::Then | Kind::Else | Kind::Entry => {
writeln!(
out,
"b{node}: {} {} {:?}",
self[node].depth, self[node].loop_depth, self[node].outputs
)?;
let mut cfg_index = Nid::MAX;
for o in iter(self, node) {
self.basic_blocks_instr(out, o)?;
if self.is_cfg(o) {
cfg_index = o;
}
}
node = cfg_index;
}
Kind::Call { .. } => {
let mut cfg_index = Nid::MAX;
let mut print_ret = true;
for o in iter(self, node) {
if self[o].inputs[0] == node
&& (self[node].outputs[0] != o || core::mem::take(&mut print_ret))
{
self.basic_blocks_instr(out, o)?;
}
if self.is_cfg(o) {
cfg_index = o;
}
}
node = cfg_index;
}
_ => unreachable!(),
}
}
Ok(())
}
fn basic_blocks(&mut self) {
let mut out = String::new();
self.visited.clear(self.values.len());
self.basic_blocks_low(&mut out, VOID).unwrap();
log::info!("{out}");
}
fn is_cfg(&self, o: Nid) -> bool {
self[o].kind.is_cfg()
}
fn check_final_integrity(&self) {
if !cfg!(debug_assertions) {
return;
}
//let mut failed = false;
for (_, node) in self.iter() {
debug_assert_eq!(node.lock_rc, 0, "{:?}", node.kind);
// if !matches!(node.kind, Kind::Return | Kind::End) && node.outputs.is_empty() {
// log::err!("outputs are empry {i} {:?}", node.kind);
// failed = true;
// }
// let mut allowed_cfgs = 1 + (node.kind == Kind::If) as usize;
// for &o in node.outputs.iter() {
// if self.is_cfg(i) {
// if allowed_cfgs == 0 && self.is_cfg(o) {
// log::err!(
// "multiple cfg outputs detected: {:?} -> {:?}",
// node.kind,
// self[o].kind
// );
// failed = true;
// } else {
// allowed_cfgs += self.is_cfg(o) as usize;
// }
// }
// let other = match &self.values[o as usize] {
// Ok(other) => other,
// Err(_) => {
// log::err!("the edge points to dropped node: {i} {:?} {o}", node.kind,);
// failed = true;
// continue;
// }
// };
// let occurs = self[o].inputs.iter().filter(|&&el| el == i).count();
// let self_occurs = self[i].outputs.iter().filter(|&&el| el == o).count();
// if occurs != self_occurs {
// log::err!(
// "the edge is not bidirectional: {i} {:?} {self_occurs} {o} {:?} {occurs}",
// node.kind,
// other.kind
// );
// failed = true;
// }
// }
}
//if failed {
// panic!()
//}
}
#[expect(dead_code)]
fn climb_expr(&mut self, from: Nid, mut for_each: impl FnMut(Nid, &Node) -> bool) -> bool {
fn climb_impl(
nodes: &mut Nodes,
from: Nid,
for_each: &mut impl FnMut(Nid, &Node) -> bool,
) -> bool {
for i in 0..nodes[from].inputs.len() {
let n = nodes[from].inputs[i];
if n != Nid::MAX
&& nodes.visited.set(n)
&& !nodes.is_cfg(n)
&& (for_each(n, &nodes[n]) || climb_impl(nodes, n, for_each))
{
return true;
}
}
false
}
self.visited.clear(self.values.len());
climb_impl(self, from, &mut for_each)
}
#[expect(dead_code)]
fn late_peephole(&mut self, target: Nid) -> Nid {
if let Some(id) = self.peephole(target) {
self.replace(target, id);
return id;
}
target
}
fn load_loop_var(&mut self, index: usize, value: &mut Nid, loops: &mut [Loop]) {
self.load_loop_value(
&mut |l| {
l.scope
.vars
.get_mut(index)
.map_or((ty::Id::VOID, &mut l.scope.store), |v| (v.ty, &mut v.value))
},
value,
loops,
);
}
fn load_loop_store(&mut self, value: &mut Nid, loops: &mut [Loop]) {
self.load_loop_value(&mut |l| (ty::Id::VOID, &mut l.scope.store), value, loops);
}
fn load_loop_value(
&mut self,
get_lvalue: &mut impl FnMut(&mut Loop) -> (ty::Id, &mut Nid),
value: &mut Nid,
loops: &mut [Loop],
) {
if *value != VOID {
return;
}
let [loob, loops @ ..] = loops else { unreachable!() };
let node = loob.node;
let (ty, lvalue) = get_lvalue(loob);
self.load_loop_value(get_lvalue, lvalue, loops);
if !self[*lvalue].is_lazy_phi() {
self.unlock(*value);
let inps = [node, *lvalue, VOID];
self.unlock(*lvalue);
*lvalue = self.new_node_nop(ty, Kind::Phi, inps);
self[*lvalue].lock_rc += 2;
} else {
self.lock(*lvalue);
self.unlock(*value);
}
*value = *lvalue;
}
fn check_dominance(&mut self, nd: Nid, min: Nid, check_outputs: bool) {
if !cfg!(debug_assertions) {
return;
}
let node = self[nd].clone();
for &i in node.inputs.iter() {
let dom = idom(self, i);
debug_assert!(
self.dominates(dom, min),
"{dom} {min} {node:?} {:?}",
self.basic_blocks()
);
}
if check_outputs {
for &o in node.outputs.iter() {
let dom = use_block(nd, o, self);
debug_assert!(
self.dominates(min, dom),
"{min} {dom} {node:?} {:?}",
self.basic_blocks()
);
}
}
}
fn dominates(&mut self, dominator: Nid, mut dominated: Nid) -> bool {
loop {
if dominator == dominated {
break true;
}
if idepth(self, dominator) > idepth(self, dominated) {
break false;
}
dominated = idom(self, dominated);
}
}
#[expect(dead_code)]
fn iter_mut(&mut self) -> impl Iterator<Item = &mut Node> {
self.values.iter_mut().flat_map(Result::as_mut)
}
fn lock_scope(&mut self, scope: &Scope) {
self.lock(scope.store);
for &load in &scope.loads {
self.lock(load);
}
for var in &scope.vars {
self.lock(var.value);
}
}
fn unlock_remove_scope(&mut self, scope: &Scope) {
self.unlock_remove(scope.store);
for &load in &scope.loads {
self.unlock_remove(load);
}
for var in &scope.vars {
self.unlock_remove(var.value);
}
}
}
impl ops::Index<Nid> for Nodes {
type Output = Node;
fn index(&self, index: Nid) -> &Self::Output {
self.values[index as usize].as_ref().unwrap()
}
}
impl ops::IndexMut<Nid> for Nodes {
fn index_mut(&mut self, index: Nid) -> &mut Self::Output {
self.values[index as usize].as_mut().unwrap()
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, Default)]
#[repr(u8)]
pub enum Kind {
#[default]
Start,
// [ctrl]
Entry,
Mem,
// [terms...]
End,
// [ctrl, cond]
If,
Then,
Else,
// [lhs, rhs]
Region,
// [entry, back]
Loop,
// [ctrl, ?value]
Return,
// [ctrl]
CInt {
value: i64,
},
// [ctrl, lhs, rhs]
Phi,
Arg,
// [ctrl, oper]
UnOp {
op: lexer::TokenKind,
},
// [ctrl, lhs, rhs]
BinOp {
op: lexer::TokenKind,
},
// [ctrl]
Global {
global: ty::Global,
},
// [ctrl, ...args]
Call {
func: ty::Func,
},
// [ctrl]
Idk,
// [ctrl]
Stck,
// [ctrl, memory]
Load,
// [ctrl, value, memory]
Stre,
}
impl Kind {
fn is_pinned(&self) -> bool {
self.is_cfg() || matches!(self, Self::Phi | Self::Mem | Self::Arg)
}
fn is_cfg(&self) -> bool {
matches!(
self,
Self::Start
| Self::End
| Self::Return
| Self::Entry
| Self::Then
| Self::Else
| Self::Call { .. }
| Self::If
| Self::Region
| Self::Loop
)
}
fn ends_basic_block(&self) -> bool {
matches!(self, Self::Return | Self::If | Self::End)
}
}
impl fmt::Display for Kind {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
match self {
Kind::CInt { value } => write!(f, "#{value}"),
Kind::Entry => write!(f, "ctrl[entry]"),
Kind::Then => write!(f, "ctrl[then]"),
Kind::Else => write!(f, "ctrl[else]"),
Kind::BinOp { op } => write!(f, "{op}"),
Kind::Call { func, .. } => write!(f, "call {func}"),
slf => write!(f, "{slf:?}"),
}
}
}
#[derive(Debug, Default, Clone)]
//#[repr(align(64))]
pub struct Node {
kind: Kind,
inputs: Vc,
outputs: Vc,
ty: ty::Id,
offset: Offset,
ralloc_backref: RallocBRef,
depth: IDomDepth,
lock_rc: LockRc,
loop_depth: LoopDepth,
}
impl Node {
fn is_dangling(&self) -> bool {
self.outputs.len() + self.lock_rc as usize == 0
}
fn key(&self) -> (Kind, &[Nid], ty::Id) {
(self.kind, &self.inputs, self.ty)
}
fn is_lazy_phi(&self) -> bool {
self.kind == Kind::Phi && self.inputs[2] == 0
}
fn is_not_gvnd(&self) -> bool {
self.is_lazy_phi() || matches!(self.kind, Kind::Arg | Kind::Stck)
}
}
type RallocBRef = u16;
type LoopDepth = u16;
type LockRc = u16;
type IDomDepth = u16;
struct Loop {
node: Nid,
ctrl: [Nid; 2],
ctrl_scope: [Scope; 2],
scope: Scope,
}
#[derive(Clone, Copy)]
struct Variable {
id: Ident,
ty: ty::Id,
ptr: bool,
value: Nid,
}
#[derive(Default, Clone)]
struct Scope {
vars: Vec<Variable>,
loads: Vec<Nid>,
store: Nid,
}
impl Scope {
pub fn iter_elems_mut(&mut self) -> impl Iterator<Item = (ty::Id, &mut Nid)> {
self.vars
.iter_mut()
.map(|v| (v.ty, &mut v.value))
.chain(core::iter::once((ty::Id::VOID, &mut self.store)))
}
}
#[derive(Default)]
struct ItemCtx {
file: FileId,
ret: Option<ty::Id>,
task_base: usize,
nodes: Nodes,
ctrl: Nid,
call_count: u16,
loops: Vec<Loop>,
scope: Scope,
ret_relocs: Vec<Reloc>,
relocs: Vec<TypedReloc>,
jump_relocs: Vec<(Nid, Reloc)>,
code: Vec<u8>,
}
impl ItemCtx {
fn init(&mut self, file: FileId, ret: Option<ty::Id>, task_base: usize) {
debug_assert_eq!(self.loops.len(), 0);
debug_assert_eq!(self.scope.vars.len(), 0);
debug_assert_eq!(self.ret_relocs.len(), 0);
debug_assert_eq!(self.relocs.len(), 0);
debug_assert_eq!(self.jump_relocs.len(), 0);
debug_assert_eq!(self.code.len(), 0);
self.file = file;
self.ret = ret;
self.task_base = task_base;
self.call_count = 0;
self.nodes.clear();
self.scope.vars.clear();
let start = self.nodes.new_node(ty::Id::VOID, Kind::Start, []);
debug_assert_eq!(start, VOID);
let end = self.nodes.new_node(ty::Id::NEVER, Kind::End, []);
debug_assert_eq!(end, NEVER);
self.nodes.lock(end);
self.ctrl = self.nodes.new_node(ty::Id::VOID, Kind::Entry, [VOID]);
debug_assert_eq!(self.ctrl, ENTRY);
let mem = self.nodes.new_node(ty::Id::VOID, Kind::Mem, [VOID]);
debug_assert_eq!(mem, MEM);
self.nodes.lock(mem);
self.nodes.lock(self.ctrl);
self.scope.store = self.ctrl;
}
fn finalize(&mut self) {
self.nodes.unlock(NEVER);
self.nodes.unlock_remove_scope(&core::mem::take(&mut self.scope));
self.nodes.unlock(MEM);
}
fn emit(&mut self, instr: (usize, [u8; instrs::MAX_SIZE])) {
crate::emit(&mut self.code, instr);
}
fn emit_body_code(&mut self, sig: Sig, tys: &Types) -> usize {
let mut nodes = core::mem::take(&mut self.nodes);
nodes.visited.clear(nodes.values.len());
let func = Function::new(&mut nodes, tys, sig);
let mut ralloc = Regalloc::default(); // TODO: reuse
log::info!("{:?}", func);
if self.call_count != 0 {
core::mem::swap(
&mut ralloc.env.preferred_regs_by_class,
&mut ralloc.env.non_preferred_regs_by_class,
);
};
let options = regalloc2::RegallocOptions {
verbose_log: false,
validate_ssa: false,
algorithm: regalloc2::Algorithm::Ion,
};
regalloc2::run_with_ctx(&func, &ralloc.env, &options, &mut ralloc.ctx)
.unwrap_or_else(|err| panic!("{err}"));
if self.call_count != 0 {
core::mem::swap(
&mut ralloc.env.preferred_regs_by_class,
&mut ralloc.env.non_preferred_regs_by_class,
);
};
let mut saved_regs = HashMap::<u8, u8>::default();
let mut atr = |allc: regalloc2::Allocation| {
debug_assert!(allc.is_reg());
let hvenc = regalloc2::PReg::from_index(allc.index()).hw_enc() as u8;
if hvenc <= 12 {
return hvenc;
}
let would_insert = saved_regs.len() as u8 + reg::RET_ADDR + 1;
*saved_regs.entry(hvenc).or_insert(would_insert)
};
for (i, block) in func.blocks.iter().enumerate() {
let blk = regalloc2::Block(i as _);
func.nodes[block.nid].offset = self.code.len() as _;
for instr_or_edit in ralloc.ctx.output.block_insts_and_edits(&func, blk) {
let inst = match instr_or_edit {
regalloc2::InstOrEdit::Inst(inst) => inst,
regalloc2::InstOrEdit::Edit(&regalloc2::Edit::Move { from, to }) => {
self.emit(instrs::cp(atr(to), atr(from)));
continue;
}
};
let nid = func.instrs[inst.index()].nid;
if nid == NEVER {
continue;
};
let allocs = ralloc.ctx.output.inst_allocs(inst);
let node = &func.nodes[nid];
match node.kind {
Kind::If => {
let &[_, cond] = node.inputs.as_slice() else { unreachable!() };
if let Kind::BinOp { op } = func.nodes[cond].kind
&& let Some((op, swapped)) = op.cond_op(node.ty.is_signed())
{
let rel = Reloc::new(self.code.len(), 3, 2);
self.jump_relocs.push((node.outputs[!swapped as usize], rel));
let &[lhs, rhs] = allocs else { unreachable!() };
self.emit(op(atr(lhs), atr(rhs), 0));
} else {
todo!()
}
}
Kind::Loop | Kind::Region => {
if node.ralloc_backref as usize != i + 1 {
let rel = Reloc::new(self.code.len(), 1, 4);
self.jump_relocs.push((nid, rel));
self.emit(instrs::jmp(0));
}
}
Kind::Return => {
match tys.size_of(sig.ret) {
0..=8 => {}
9..=16 => todo!(),
size @ 17.. => {
self.emit(instrs::bmc(atr(allocs[0]), 1, size.try_into().unwrap()));
}
}
if i != func.blocks.len() - 1 {
let rel = Reloc::new(self.code.len(), 1, 4);
self.ret_relocs.push(rel);
self.emit(instrs::jmp(0));
}
}
Kind::CInt { value } => {
self.emit(instrs::li64(atr(allocs[0]), value as _));
}
Kind::UnOp { op } => {
let op = op.unop().expect("TODO: unary operator not supported");
let &[dst, oper] = allocs else { unreachable!() };
self.emit(op(atr(dst), atr(oper)));
}
Kind::BinOp { op } => {
let &[.., rhs] = node.inputs.as_slice() else { unreachable!() };
if let Kind::CInt { value } = func.nodes[rhs].kind
&& func.nodes[rhs].lock_rc != 0
&& let Some(op) =
op.imm_binop(node.ty.is_signed(), func.tys.size_of(node.ty))
{
let &[dst, lhs] = allocs else { unreachable!() };
self.emit(op(atr(dst), atr(lhs), value as _));
} else if let Some(op) =
op.binop(node.ty.is_signed(), func.tys.size_of(node.ty))
{
let &[dst, lhs, rhs] = allocs else { unreachable!() };
self.emit(op(atr(dst), atr(lhs), atr(rhs)));
} else if op.cond_op(node.ty.is_signed()).is_some() {
} else {
todo!()
}
}
Kind::Call { func } => {
self.relocs.push(TypedReloc {
target: ty::Kind::Func(func).compress(),
reloc: Reloc::new(self.code.len(), 3, 4),
});
self.emit(instrs::jal(reg::RET_ADDR, reg::ZERO, 0));
}
Kind::Global { global } => {
let reloc = Reloc::new(self.code.len(), 3, 4);
self.relocs.push(TypedReloc {
target: ty::Kind::Global(global).compress(),
reloc,
});
self.emit(instrs::lra(atr(allocs[0]), 0, 0));
}
Kind::Stck => {
let base = reg::STACK_PTR;
let offset = func.nodes[nid].offset;
self.emit(instrs::addi64(atr(allocs[0]), base, offset as _));
}
Kind::Idk => {}
Kind::Load => {
let mut region = node.inputs[1];
let mut offset = 0;
if func.nodes[region].kind == (Kind::BinOp { op: TokenKind::Add })
&& let Kind::CInt { value } =
func.nodes[func.nodes[region].inputs[2]].kind
{
region = func.nodes[region].inputs[1];
offset = value as Offset;
}
let size = tys.size_of(node.ty);
if size <= 8 {
let (base, offset) = match func.nodes[region].kind {
Kind::Stck => (reg::STACK_PTR, func.nodes[region].offset + offset),
_ => (atr(allocs[1]), offset),
};
self.emit(instrs::ld(atr(allocs[0]), base, offset as _, size as _));
}
}
Kind::Stre if node.inputs[2] == VOID => {}
Kind::Stre => {
let mut region = node.inputs[2];
let mut offset = 0;
let size = u16::try_from(tys.size_of(node.ty)).expect("TODO");
if func.nodes[region].kind == (Kind::BinOp { op: TokenKind::Add })
&& let Kind::CInt { value } =
func.nodes[func.nodes[region].inputs[2]].kind
&& size <= 8
{
region = func.nodes[region].inputs[1];
offset = value as Offset;
}
let nd = &func.nodes[region];
let (base, offset, src) = match nd.kind {
Kind::Stck if size <= 8 => {
(reg::STACK_PTR, nd.offset + offset, allocs[0])
}
_ => (atr(allocs[0]), offset, allocs[1]),
};
if size > 8 {
self.emit(instrs::bmc(atr(src), base, size));
} else {
self.emit(instrs::st(atr(src), base, offset as _, size));
}
}
_ => unreachable!(),
}
}
}
self.nodes = nodes;
saved_regs.len()
}
fn emit_body(&mut self, tys: &mut Types, files: &[parser::Ast], sig: Sig) {
self.nodes.graphviz(tys, files);
self.nodes.gcm();
self.nodes.check_final_integrity();
self.nodes.basic_blocks();
self.nodes.graphviz(tys, files);
'_open_function: {
self.emit(instrs::addi64(reg::STACK_PTR, reg::STACK_PTR, 0));
self.emit(instrs::st(reg::RET_ADDR, reg::STACK_PTR, 0, 0));
}
let mut stack_size = 0;
'_compute_stack: {
let mems = core::mem::take(&mut self.nodes[MEM].outputs);
for &stck in mems.iter() {
stack_size += tys.size_of(self.nodes[stck].ty);
self.nodes[stck].offset = stack_size;
}
for &stck in mems.iter() {
self.nodes[stck].offset = stack_size - self.nodes[stck].offset;
}
self.nodes[MEM].outputs = mems;
}
let saved = self.emit_body_code(sig, tys);
if let Some(last_ret) = self.ret_relocs.last()
&& last_ret.offset as usize == self.code.len() - 5
{
self.code.truncate(self.code.len() - 5);
self.ret_relocs.pop();
}
// FIXME: maybe do this incrementally
for (nd, rel) in self.jump_relocs.drain(..) {
let offset = self.nodes[nd].offset;
rel.apply_jump(&mut self.code, offset, 0);
}
let end = self.code.len();
for ret_rel in self.ret_relocs.drain(..) {
ret_rel.apply_jump(&mut self.code, end as _, 0);
}
let mut stripped_prelude_size = 0;
'_close_function: {
let pushed = (saved as i64 + (core::mem::take(&mut self.call_count) != 0) as i64) * 8;
let stack = stack_size as i64;
match (pushed, stack) {
(0, 0) => {
stripped_prelude_size = instrs::addi64(0, 0, 0).0 + instrs::st(0, 0, 0, 0).0;
self.code.drain(0..stripped_prelude_size);
break '_close_function;
}
(0, stack) => {
write_reloc(&mut self.code, 3, -stack, 8);
stripped_prelude_size = instrs::addi64(0, 0, 0).0;
let end = stripped_prelude_size + instrs::st(0, 0, 0, 0).0;
self.code.drain(stripped_prelude_size..end);
self.emit(instrs::addi64(reg::STACK_PTR, reg::STACK_PTR, stack as _));
break '_close_function;
}
_ => {}
}
write_reloc(&mut self.code, 3, -(pushed + stack), 8);
write_reloc(&mut self.code, 3 + 8 + 3, stack, 8);
write_reloc(&mut self.code, 3 + 8 + 3 + 8, pushed, 2);
self.emit(instrs::ld(reg::RET_ADDR, reg::STACK_PTR, stack as _, pushed as _));
self.emit(instrs::addi64(reg::STACK_PTR, reg::STACK_PTR, (pushed + stack) as _));
}
self.relocs.iter_mut().for_each(|r| r.reloc.offset -= stripped_prelude_size as u32);
self.emit(instrs::jala(reg::ZERO, reg::RET_ADDR, 0));
}
}
fn write_reloc(doce: &mut [u8], offset: usize, value: i64, size: u16) {
let value = value.to_ne_bytes();
doce[offset..offset + size as usize].copy_from_slice(&value[..size as usize]);
}
struct FTask {
file: FileId,
id: ty::Func,
}
#[derive(Default, Debug)]
struct Ctx {
ty: Option<ty::Id>,
}
impl Ctx {
pub fn with_ty(self, ty: impl Into<ty::Id>) -> Self {
Self { ty: Some(ty.into()) }
}
}
#[derive(Default)]
struct Pool {
cis: Vec<ItemCtx>,
used_cis: usize,
}
impl Pool {
pub fn push_ci(
&mut self,
file: FileId,
ret: Option<ty::Id>,
task_base: usize,
target: &mut ItemCtx,
) {
if let Some(slot) = self.cis.get_mut(self.used_cis) {
core::mem::swap(slot, target);
} else {
self.cis.push(ItemCtx::default());
core::mem::swap(self.cis.last_mut().unwrap(), target);
}
target.init(file, ret, task_base);
self.used_cis += 1;
}
pub fn pop_ci(&mut self, target: &mut ItemCtx) {
self.used_cis -= 1;
core::mem::swap(&mut self.cis[self.used_cis], target);
}
}
struct Regalloc {
env: regalloc2::MachineEnv,
ctx: regalloc2::Ctx,
}
impl Default for Regalloc {
fn default() -> Self {
Self {
env: regalloc2::MachineEnv {
preferred_regs_by_class: [
(1..13).map(|i| regalloc2::PReg::new(i, regalloc2::RegClass::Int)).collect(),
vec![],
vec![],
],
non_preferred_regs_by_class: [
(13..64).map(|i| regalloc2::PReg::new(i, regalloc2::RegClass::Int)).collect(),
vec![],
vec![],
],
scratch_by_class: Default::default(),
fixed_stack_slots: Default::default(),
},
ctx: Default::default(),
}
}
}
#[derive(Default, Clone, Copy, PartialEq, Eq, Debug)]
struct Value {
ty: ty::Id,
var: bool,
ptr: bool,
id: Nid,
}
impl Value {
const NEVER: Option<Value> =
Some(Self { ty: ty::Id::NEVER, var: false, ptr: false, id: NEVER });
const VOID: Value = Self { ty: ty::Id::VOID, var: false, ptr: false, id: VOID };
pub fn new(id: Nid) -> Self {
Self { id, ..Default::default() }
}
pub fn var(id: usize) -> Self {
Self { id: u16::MAX - (id as Nid), var: true, ..Default::default() }
}
pub fn ptr(id: Nid) -> Self {
Self { id, ptr: true, ..Default::default() }
}
#[inline(always)]
pub fn ty(self, ty: impl Into<ty::Id>) -> Self {
Self { ty: ty.into(), ..self }
}
}
#[derive(Default)]
pub struct Codegen<'a> {
pub files: &'a [parser::Ast],
tasks: Vec<Option<FTask>>,
tys: Types,
ci: ItemCtx,
pool: Pool,
#[expect(dead_code)]
ralloc: Regalloc,
ct: Comptime,
errors: RefCell<String>,
}
impl TypeParser for Codegen<'_> {
fn tys(&mut self) -> &mut Types {
&mut self.tys
}
#[expect(unused)]
fn eval_const(&mut self, file: FileId, expr: &Expr, ty: ty::Id) -> u64 {
todo!()
}
#[expect(unused)]
fn infer_type(&mut self, expr: &Expr) -> ty::Id {
todo!()
}
fn on_reuse(&mut self, existing: ty::Id) {
if let ty::Kind::Func(id) = existing.expand()
&& let func = &mut self.tys.ins.funcs[id as usize]
&& let Err(idx) = task::unpack(func.offset)
&& idx < self.tasks.len()
{
func.offset = task::id(self.tasks.len());
let task = self.tasks[idx].take();
self.tasks.push(task);
}
}
fn eval_global(&mut self, file: FileId, name: Ident, expr: &Expr) -> ty::Id {
let gid = self.tys.ins.globals.len() as ty::Global;
self.tys.ins.globals.push(Global { file, name, ..Default::default() });
let ty = ty::Kind::Global(gid);
self.pool.push_ci(file, None, self.tasks.len(), &mut self.ci);
let ret = Expr::Return { pos: expr.pos(), val: Some(expr) };
self.expr(&ret);
self.ci.finalize();
let ret = self.ci.ret.expect("for return type to be infered");
if self.errors.borrow().is_empty() {
self.ci.emit_body(&mut self.tys, self.files, Sig { args: Tuple::empty(), ret });
self.ci.code.truncate(self.ci.code.len() - instrs::jala(0, 0, 0).0);
self.ci.emit(instrs::tx());
let func = Func {
file,
name,
expr: ExprRef::new(expr),
relocs: core::mem::take(&mut self.ci.relocs),
code: core::mem::take(&mut self.ci.code),
..Default::default()
};
self.pool.pop_ci(&mut self.ci);
self.complete_call_graph();
let mut mem = vec![0u8; self.tys.size_of(ret) as usize];
// TODO: return them back
let fuc = self.tys.ins.funcs.len() as ty::Func;
self.tys.ins.funcs.push(func);
self.tys.dump_reachable(fuc, &mut self.ct.code);
#[cfg(debug_assertions)]
{
let mut vc = String::new();
if let Err(e) = self.tys.disasm(&self.ct.code, self.files, &mut vc, |_| {}) {
panic!("{e} {}", vc);
} else {
log::trace!("{}", vc);
}
}
self.ct.vm.write_reg(reg::RET, mem.as_mut_ptr() as u64);
let prev_pc = self.ct.push_pc(self.tys.ins.funcs[fuc as usize].offset);
loop {
match self.ct.vm.run().expect("TODO") {
hbvm::VmRunOk::End => break,
hbvm::VmRunOk::Timer => todo!(),
hbvm::VmRunOk::Ecall => todo!(),
hbvm::VmRunOk::Breakpoint => todo!(),
}
}
self.ct.pop_pc(prev_pc);
match mem.len() {
0 => unreachable!(),
len @ 1..=8 => {
mem.copy_from_slice(&self.ct.vm.read_reg(reg::RET).0.to_ne_bytes()[..len])
}
9..=16 => todo!(),
_ => {}
}
self.tys.ins.globals[gid as usize].data = mem;
} else {
self.pool.pop_ci(&mut self.ci);
}
self.tys.ins.globals[gid as usize].ty = ret;
ty.compress()
}
fn report(&self, pos: Pos, msg: impl Display) -> ty::Id {
self.report(pos, msg);
ty::Id::NEVER
}
fn find_local_ty(&mut self, _: Ident) -> Option<ty::Id> {
None
}
}
impl<'a> Codegen<'a> {
fn store_mem(&mut self, region: Nid, value: Nid) -> Nid {
if value == NEVER {
return NEVER;
}
let mut vc = Vc::from([VOID, value, region]);
self.ci.nodes.load_loop_store(&mut self.ci.scope.store, &mut self.ci.loops);
self.ci.nodes.unlock(self.ci.scope.store);
if let Some(str) = self.ci.scope.store.to_store() {
vc.push(str);
}
for load in self.ci.scope.loads.drain(..) {
if load == value {
self.ci.nodes.unlock(load);
continue;
}
if !self.ci.nodes.unlock_remove(load) {
vc.push(load);
}
}
let store = self.ci.nodes.new_node(self.tof(value), Kind::Stre, vc);
self.ci.nodes.lock(store);
self.ci.scope.store = store;
store
}
fn load_mem(&mut self, region: Nid, ty: ty::Id) -> Nid {
debug_assert_ne!(region, VOID);
let mut vc = Vc::from([VOID, region]);
self.ci.nodes.load_loop_store(&mut self.ci.scope.store, &mut self.ci.loops);
if let Some(str) = self.ci.scope.store.to_store() {
vc.push(str);
}
let load = self.ci.nodes.new_node(ty, Kind::Load, vc);
self.ci.nodes.lock(load);
self.ci.scope.loads.push(load);
load
}
pub fn generate(&mut self) {
self.find_type(0, 0, Err("main"), self.files);
self.make_func_reachable(0);
self.complete_call_graph();
}
fn make_func_reachable(&mut self, func: ty::Func) {
let fuc = &mut self.tys.ins.funcs[func as usize];
if fuc.offset == u32::MAX {
fuc.offset = task::id(self.tasks.len() as _);
self.tasks.push(Some(FTask { file: fuc.file, id: func }));
}
}
fn raw_expr(&mut self, expr: &Expr) -> Option<Value> {
self.raw_expr_ctx(expr, Ctx::default())
}
fn raw_expr_ctx(&mut self, expr: &Expr, ctx: Ctx) -> Option<Value> {
// ordered by complexity of the expression
match *expr {
Expr::Idk { pos } => {
let Some(ty) = ctx.ty else {
self.report(
pos,
"resulting value cannot be inferred from context, \
consider using `@as(<ty>, idk)` to hint the type",
);
return Value::NEVER;
};
if matches!(ty.expand(), ty::Kind::Struct(_) | ty::Kind::Slice(_)) {
let stck = self.ci.nodes.new_node(ty, Kind::Stck, [VOID, MEM]);
Some(Value::ptr(stck).ty(ty))
} else {
Some(self.ci.nodes.new_node_lit(ty, Kind::Idk, [VOID]))
}
}
Expr::Number { value, .. } => Some(self.ci.nodes.new_node_lit(
ctx.ty.filter(|ty| ty.is_integer() || ty.is_pointer()).unwrap_or(ty::Id::INT),
Kind::CInt { value },
[VOID],
)),
Expr::Ident { id, .. }
if let Some(index) = self.ci.scope.vars.iter().rposition(|v| v.id == id) =>
{
let var = &mut self.ci.scope.vars[index];
self.ci.nodes.load_loop_var(index, &mut var.value, &mut self.ci.loops);
Some(Value::var(index).ty(var.ty))
}
Expr::Ident { id, pos, .. } => {
let decl = self.find_type(pos, self.ci.file, Ok(id), self.files);
match decl.expand() {
ty::Kind::Global(global) => {
let gl = &self.tys.ins.globals[global as usize];
let value = self.ci.nodes.new_node(gl.ty, Kind::Global { global }, [VOID]);
Some(Value::ptr(value).ty(gl.ty))
}
_ => todo!("{decl:?}"),
}
}
Expr::Comment { .. } => Some(Value::VOID),
Expr::String { pos, literal } => {
let literal = &literal[1..literal.len() - 1];
let report = |bytes: &core::str::Bytes, message: &str| {
self.report(pos + (literal.len() - bytes.len()) as u32 - 1, message)
};
let mut data = Vec::<u8>::with_capacity(literal.len());
crate::endoce_string(literal, &mut data, report).unwrap();
let global = self.tys.ins.globals.len() as ty::Global;
let ty = self.tys.make_ptr(ty::Id::U8);
self.tys.ins.globals.push(Global { data, ty, ..Default::default() });
let global = self.ci.nodes.new_node(ty, Kind::Global { global }, [VOID]);
Some(Value::new(global).ty(ty))
}
Expr::Return { pos, val } => {
let value = if let Some(val) = val {
self.expr_ctx(val, Ctx { ty: self.ci.ret })?
} else {
Value { ty: ty::Id::VOID, ..Default::default() }
};
let mut inps = Vc::from([self.ci.ctrl, value.id]);
self.ci.nodes.load_loop_store(&mut self.ci.scope.store, &mut self.ci.loops);
if let Some(str) = self.ci.scope.store.to_store() {
inps.push(str);
}
self.ci.ctrl = self.ci.nodes.new_node(ty::Id::VOID, Kind::Return, inps);
self.ci.nodes[NEVER].inputs.push(self.ci.ctrl);
self.ci.nodes[self.ci.ctrl].outputs.push(NEVER);
let expected = *self.ci.ret.get_or_insert(value.ty);
self.assert_ty(pos, value.ty, expected, "return value");
None
}
Expr::Field { target, name, pos } => {
let mut vtarget = self.raw_expr(target)?;
self.strip_var(&mut vtarget);
let tty = vtarget.ty;
let ty::Kind::Struct(s) = self.tys.base_of(tty).unwrap_or(tty).expand() else {
self.report(
pos,
fa!(
"the '{}' is not a struct, or pointer to one, \
but accessing fields is only possible on structs",
self.ty_display(tty)
),
);
return Value::NEVER;
};
let Some((offset, ty)) = OffsetIter::offset_of(&self.tys, s, name) else {
let field_list = self
.tys
.struct_fields(s)
.iter()
.map(|f| self.tys.names.ident_str(f.name))
.intersperse("', '")
.collect::<String>();
self.report(
pos,
fa!(
"the '{}' does not have this field, \
but it does have '{field_list}'",
self.ty_display(tty)
),
);
return Value::NEVER;
};
Some(Value::ptr(self.offset(vtarget.id, offset)).ty(ty))
}
Expr::UnOp { op: TokenKind::Band, val, .. } => {
let ctx = Ctx { ty: ctx.ty.and_then(|ty| self.tys.base_of(ty)) };
let mut val = self.raw_expr_ctx(val, ctx)?;
self.strip_var(&mut val);
if val.ptr {
val.ptr = false;
val.ty = self.tys.make_ptr(val.ty);
return Some(val);
}
let stack = self.ci.nodes.new_node_nop(val.ty, Kind::Stck, [VOID, MEM]);
self.store_mem(stack, val.id);
Some(Value::new(stack).ty(self.tys.make_ptr(val.ty)))
}
Expr::UnOp { op: TokenKind::Mul, val, pos } => {
let ctx = Ctx { ty: ctx.ty.map(|ty| self.tys.make_ptr(ty)) };
let mut val = self.expr_ctx(val, ctx)?;
let Some(base) = self.tys.base_of(val.ty) else {
self.report(
pos,
fa!("the '{}' can not be dereferneced", self.ty_display(val.ty)),
);
return Value::NEVER;
};
val.ptr = true;
val.ty = base;
Some(val)
}
Expr::UnOp { pos, op: op @ TokenKind::Sub, val } => {
let val = self.expr_ctx(val, ctx)?;
if !val.ty.is_integer() {
self.report(pos, fa!("cant negate '{}'", self.ty_display(val.ty)));
}
Some(self.ci.nodes.new_node_lit(val.ty, Kind::UnOp { op }, [VOID, val.id]))
}
Expr::BinOp { left: &Expr::Ident { id, .. }, op: TokenKind::Decl, right } => {
let mut value = self.raw_expr(right)?;
self.strip_var(&mut value);
self.ci.nodes.lock(value.id);
self.ci.scope.vars.push(Variable {
id,
value: value.id,
ptr: value.ptr,
ty: value.ty,
});
Some(Value::VOID)
}
Expr::BinOp { left, op: TokenKind::Assign, right } => {
let dest = self.raw_expr(left)?;
let value = self.expr_ctx(right, Ctx::default().with_ty(dest.ty))?;
self.assert_ty(left.pos(), value.ty, dest.ty, "assignment source");
if dest.var {
self.ci.nodes.lock(value.id);
let var = &mut self.ci.scope.vars[(u16::MAX - dest.id) as usize];
let prev = core::mem::replace(&mut var.value, value.id);
self.ci.nodes.unlock_remove(prev);
} else if dest.ptr {
self.store_mem(dest.id, value.id);
} else {
self.report(left.pos(), "cannot assign to this expression");
}
Some(Value::VOID)
}
Expr::BinOp { left, op, right } if op != TokenKind::Assign => {
let lhs = self.expr_ctx(left, ctx)?;
self.ci.nodes.lock(lhs.id);
let rhs = self.expr_ctx(right, Ctx::default().with_ty(lhs.ty));
self.ci.nodes.unlock(lhs.id);
let ty = self.binop_ty(left.pos(), rhs?.ty, lhs.ty, op);
let inps = [VOID, lhs.id, rhs?.id];
Some(self.ci.nodes.new_node_lit(ty::bin_ret(ty, op), Kind::BinOp { op }, inps))
}
Expr::Index { base, index } => {
let mut bs = self.raw_expr(base)?;
self.strip_var(&mut bs);
if let Some(base) = self.tys.base_of(bs.ty) {
bs.ptr = true;
bs.ty = base;
}
let ty::Kind::Slice(s) = bs.ty.expand() else {
self.report(
base.pos(),
fa!(
"cant index into '{}' which is not array nor slice",
self.ty_display(bs.ty)
),
);
return Value::NEVER;
};
let elem = self.tys.ins.slices[s as usize].elem;
let idx = self.expr_ctx(index, Ctx::default().with_ty(ty::Id::INT))?;
let value = self.tys.size_of(elem) as i64;
let size = self.ci.nodes.new_node_nop(ty::Id::INT, Kind::CInt { value }, [VOID]);
let inps = [VOID, idx.id, size];
let offset =
self.ci.nodes.new_node(ty::Id::INT, Kind::BinOp { op: TokenKind::Mul }, inps);
let inps = [VOID, bs.id, offset];
let ptr =
self.ci.nodes.new_node(ty::Id::INT, Kind::BinOp { op: TokenKind::Add }, inps);
Some(Value::ptr(ptr).ty(elem))
}
Expr::Directive { name: "sizeof", args: [ty], .. } => {
let ty = self.ty(ty);
Some(self.ci.nodes.new_node_lit(
ty::Id::INT,
Kind::CInt { value: self.tys.size_of(ty) as _ },
[VOID],
))
}
Expr::Directive { name: "trunc", args: [expr], pos } => {
let val = self.expr(expr)?;
if !val.ty.is_integer() {
self.report(
expr.pos(),
fa!(
"only integers can be truncated ('{}' is not an integer)",
self.ty_display(val.ty)
),
);
return Value::NEVER;
}
let Some(ty) = ctx.ty else {
self.report(
pos,
"resulting integer cannot be inferred from context, \
consider using `@as(<int_ty>, @trunc(<expr>))` to hint the type",
);
return Value::NEVER;
};
if self.tys.size_of(val.ty) <= self.tys.size_of(ty) {
self.report(
pos,
fa!(
"truncating '{}' into '{}' has no effect",
self.ty_display(val.ty),
self.ty_display(ty)
),
);
}
let value = (1i64 << self.tys.size_of(val.ty)) - 1;
let mask = self.ci.nodes.new_node_nop(val.ty, Kind::CInt { value }, [VOID]);
let inps = [VOID, val.id, mask];
Some(self.ci.nodes.new_node_lit(ty, Kind::BinOp { op: TokenKind::Band }, inps))
}
Expr::Directive { name: "as", args: [ty, expr], .. } => {
let ctx = Ctx::default().with_ty(self.ty(ty));
self.raw_expr_ctx(expr, ctx)
}
Expr::Call { func, args, .. } => {
self.ci.call_count += 1;
let ty = self.ty(func);
let ty::Kind::Func(fnc) = ty.expand() else {
self.report(
func.pos(),
fa!("compiler cant (yet) call '{}'", self.ty_display(ty)),
);
return Value::NEVER;
};
self.make_func_reachable(fnc);
let fuc = &self.tys.ins.funcs[fnc as usize];
let sig = fuc.sig.expect("TODO: generic functions");
let ast = &self.files[fuc.file as usize];
let &Expr::Closure { args: cargs, .. } = fuc.expr.get(ast).unwrap() else {
unreachable!()
};
self.assert_report(
args.len() == cargs.len(),
func.pos(),
fa!(
"expected {} function argumenr{}, got {}",
cargs.len(),
if cargs.len() == 1 { "" } else { "s" },
args.len()
),
);
let mut inps = Vc::from([self.ci.ctrl]);
for ((arg, carg), tyx) in args.iter().zip(cargs).zip(sig.args.range()) {
let ty = self.tys.ins.args[tyx];
if self.tys.size_of(ty) == 0 {
continue;
}
let value = self.expr_ctx(arg, Ctx::default().with_ty(ty))?;
debug_assert_ne!(self.ci.nodes[value.id].kind, Kind::Stre);
debug_assert_ne!(value.id, 0);
self.assert_ty(arg.pos(), value.ty, ty, fa!("argument {}", carg.name));
inps.push(value.id);
}
if let Some(str) = self.ci.scope.store.to_store() {
inps.push(str);
}
self.ci.scope.loads.retain(|&load| {
if inps.contains(&load) {
return true;
}
if !self.ci.nodes.unlock_remove(load) {
inps.push(load);
}
false
});
let alt_value = match self.tys.size_of(sig.ret) {
0..=8 => None,
9..=16 => todo!(),
17.. => {
let stck = self.ci.nodes.new_node_nop(sig.ret, Kind::Stck, [VOID, MEM]);
inps.push(stck);
Some(Value::ptr(stck).ty(sig.ret))
}
};
self.ci.ctrl = self.ci.nodes.new_node(sig.ret, Kind::Call { func: fnc }, inps);
self.store_mem(VOID, VOID);
alt_value.or(Some(Value::new(self.ci.ctrl).ty(sig.ret)))
}
Expr::Tupl { pos, ty, fields, .. } => {
let Some(sty) = ty.map(|ty| self.ty(ty)).or(ctx.ty) else {
self.report(
pos,
"the type of struct cannot be inferred from context, \
use an explicit type instead: <type>.{ ... }",
);
return Value::NEVER;
};
match sty.expand() {
ty::Kind::Struct(s) => {
let mem = self.ci.nodes.new_node(sty, Kind::Stck, [VOID, MEM]);
let mut offs = OffsetIter::new(s, &self.tys);
for field in fields {
let Some((ty, offset)) = offs.next_ty(&self.tys) else {
self.report(
field.pos(),
"this init argumen overflows the field count",
);
break;
};
let value = self.expr_ctx(field, Ctx::default().with_ty(ty))?;
let mem = self.offset(mem, offset);
self.store_mem(mem, value.id);
}
let field_list = offs
.into_iter(&self.tys)
.map(|(f, ..)| self.tys.names.ident_str(f.name))
.intersperse(", ")
.collect::<String>();
if !field_list.is_empty() {
self.report(
pos,
fa!("the struct initializer is missing {field_list} \
(append them to the end of the constructor)"),
);
}
Some(Value::ptr(mem).ty(sty))
}
ty::Kind::Slice(s) => {
let slice = &self.tys.ins.slices[s as usize];
let len = slice.len().unwrap_or(fields.len());
let elem = slice.elem;
let elem_size = self.tys.size_of(elem);
let aty = slice
.len()
.map_or_else(|| self.tys.make_array(elem, len as ArrayLen), |_| sty);
if len != fields.len() {
self.report(
pos,
fa!(
"expected '{}' but constructor has {} elements",
self.ty_display(aty),
fields.len()
),
);
return Value::NEVER;
}
let mem = self.ci.nodes.new_node(aty, Kind::Stck, [VOID, MEM]);
for (field, offset) in
fields.iter().zip((0u32..).step_by(elem_size as usize))
{
let value = self.expr_ctx(field, Ctx::default().with_ty(elem))?;
_ = self.assert_ty(field.pos(), value.ty, elem, "array value");
let mem = self.offset(mem, offset);
self.store_mem(mem, value.id);
}
Some(Value::ptr(mem).ty(aty))
}
_ => {
let inferred = if ty.is_some() { "" } else { "inferred " };
self.report(
pos,
fa!(
"the {inferred}type of the constructor is `{}`, \
but thats not a struct nor slice or array",
self.ty_display(sty)
),
);
Value::NEVER
}
}
}
Expr::Ctor { pos, ty, fields, .. } => {
let Some(sty) = ty.map(|ty| self.ty(ty)).or(ctx.ty) else {
self.report(
pos,
"the type of struct cannot be inferred from context, \
use an explicit type instead: <type>.{ ... }",
);
return Value::NEVER;
};
let ty::Kind::Struct(s) = sty.expand() else {
let inferred = if ty.is_some() { "" } else { "inferred " };
self.report(
pos,
fa!(
"the {inferred}type of the constructor is `{}`, \
but thats not a struct",
self.ty_display(sty)
),
);
return Value::NEVER;
};
// TODO: dont allocate
let mut offs = OffsetIter::new(s, &self.tys)
.into_iter(&self.tys)
.map(|(f, o)| (f.ty, o))
.collect::<Vec<_>>();
let mem = self.ci.nodes.new_node(sty, Kind::Stck, [VOID, MEM]);
for field in fields {
let Some(index) = self.tys.find_struct_field(s, field.name) else {
self.report(
field.pos,
fa!("struct '{}' does not have this field", self.ty_display(sty)),
);
continue;
};
let (ty, offset) =
core::mem::replace(&mut offs[index], (ty::Id::UNDECLARED, field.pos));
if ty == ty::Id::UNDECLARED {
self.report(field.pos, "the struct field is already initialized");
self.report(offset, "previous initialization is here");
continue;
}
let value = self.expr_ctx(&field.value, Ctx::default().with_ty(ty))?;
let mem = self.offset(mem, offset);
self.store_mem(mem, value.id);
}
let field_list = self
.tys
.struct_fields(s)
.iter()
.zip(offs)
.filter(|&(_, (ty, _))| ty != ty::Id::UNDECLARED)
.map(|(f, _)| self.tys.names.ident_str(f.name))
.intersperse(", ")
.collect::<String>();
if !field_list.is_empty() {
self.report(pos, fa!("the struct initializer is missing {field_list}"));
}
Some(Value::ptr(mem).ty(sty))
}
Expr::Block { stmts, .. } => {
let base = self.ci.scope.vars.len();
let mut ret = Some(Value::VOID);
for stmt in stmts {
ret = ret.and(self.expr(stmt));
if let Some(id) = ret {
self.assert_ty(stmt.pos(), id.ty, ty::Id::VOID, "statement");
} else {
break;
}
}
self.ci.nodes.lock(self.ci.ctrl);
for var in self.ci.scope.vars.drain(base..) {
self.ci.nodes.unlock_remove(var.value);
}
self.ci.nodes.unlock(self.ci.ctrl);
ret
}
Expr::Loop { body, .. } => {
self.ci.ctrl = self.ci.nodes.new_node(ty::Id::VOID, Kind::Loop, [self.ci.ctrl; 2]);
self.ci.loops.push(Loop {
node: self.ci.ctrl,
ctrl: [Nid::MAX; 2],
ctrl_scope: core::array::from_fn(|_| Default::default()),
scope: self.ci.scope.clone(),
});
for (_, var) in &mut self.ci.scope.iter_elems_mut() {
*var = VOID;
}
self.ci.nodes.lock_scope(&self.ci.scope);
self.expr(body);
let Loop {
node,
ctrl: [mut con, bre],
ctrl_scope: [mut cons, mut bres],
mut scope,
} = self.ci.loops.pop().unwrap();
if con != Nid::MAX {
con = self.ci.nodes.new_node(ty::Id::VOID, Kind::Region, [con, self.ci.ctrl]);
Self::merge_scopes(
&mut self.ci.nodes,
&mut self.ci.loops,
con,
&mut self.ci.scope,
&mut cons,
true,
);
self.ci.ctrl = con;
}
self.ci.nodes.modify_input(node, 1, self.ci.ctrl);
let idx = self.ci.nodes[node]
.outputs
.iter()
.position(|&n| self.ci.nodes.is_cfg(n))
.unwrap();
self.ci.nodes[node].outputs.swap(idx, 0);
if bre == Nid::MAX {
self.ci.ctrl = NEVER;
return None;
}
self.ci.ctrl = bre;
self.ci.nodes.lock(self.ci.ctrl);
core::mem::swap(&mut self.ci.scope, &mut bres);
for (((_, dest_value), (_, &mut mut scope_value)), (_, &mut loop_value)) in self
.ci
.scope
.iter_elems_mut()
.zip(scope.iter_elems_mut())
.zip(bres.iter_elems_mut())
{
self.ci.nodes.unlock(loop_value);
if loop_value != VOID {
self.ci.nodes.unlock(scope_value);
if loop_value != scope_value {
scope_value = self.ci.nodes.modify_input(scope_value, 2, loop_value);
self.ci.nodes.lock(scope_value);
} else {
if *dest_value == scope_value {
self.ci.nodes.unlock(*dest_value);
*dest_value = VOID;
self.ci.nodes.lock(*dest_value);
}
let phi = &self.ci.nodes[scope_value];
debug_assert_eq!(phi.kind, Kind::Phi);
debug_assert_eq!(phi.inputs[2], VOID);
let prev = phi.inputs[1];
self.ci.nodes.replace(scope_value, prev);
scope_value = prev;
self.ci.nodes.lock(prev);
}
}
if *dest_value == VOID {
self.ci.nodes.unlock(*dest_value);
*dest_value = scope_value;
self.ci.nodes.lock(*dest_value);
}
debug_assert!(
self.ci.nodes[*dest_value].kind != Kind::Phi
|| self.ci.nodes[*dest_value].inputs[2] != 0
);
self.ci.nodes.unlock_remove(scope_value);
}
scope.loads.iter().for_each(|&n| _ = self.ci.nodes.unlock_remove(n));
bres.loads.iter().for_each(|&n| _ = self.ci.nodes.unlock_remove(n));
self.ci.nodes.unlock(self.ci.ctrl);
Some(Value::VOID)
}
Expr::Break { pos } => self.jump_to(pos, 1),
Expr::Continue { pos } => self.jump_to(pos, 0),
Expr::If { cond, then, else_, .. } => {
let cond = self.expr_ctx(cond, Ctx::default().with_ty(ty::BOOL))?;
let if_node =
self.ci.nodes.new_node(ty::Id::VOID, Kind::If, [self.ci.ctrl, cond.id]);
'b: {
let branch = match self.tof(if_node).expand().inner() {
ty::LEFT_UNREACHABLE => else_,
ty::RIGHT_UNREACHABLE => Some(then),
_ => break 'b,
};
self.ci.nodes.lock(self.ci.ctrl);
self.ci.nodes.remove(if_node);
self.ci.nodes.unlock(self.ci.ctrl);
if let Some(branch) = branch {
return self.expr(branch);
} else {
return Some(Value::VOID);
}
}
self.ci.nodes.load_loop_store(&mut self.ci.scope.store, &mut self.ci.loops);
let orig_store = self.ci.scope.store;
self.ci.nodes.lock(orig_store);
let else_scope = self.ci.scope.clone();
self.ci.nodes.lock_scope(&else_scope);
self.ci.ctrl = self.ci.nodes.new_node(ty::Id::VOID, Kind::Then, [if_node]);
let lcntrl = self.expr(then).map_or(Nid::MAX, |_| self.ci.ctrl);
let mut then_scope = core::mem::replace(&mut self.ci.scope, else_scope);
self.ci.ctrl = self.ci.nodes.new_node(ty::Id::VOID, Kind::Else, [if_node]);
let rcntrl = if let Some(else_) = else_ {
self.expr(else_).map_or(Nid::MAX, |_| self.ci.ctrl)
} else {
self.ci.ctrl
};
self.ci.nodes.unlock_remove(orig_store);
if lcntrl == Nid::MAX && rcntrl == Nid::MAX {
self.ci.nodes.unlock_remove_scope(&then_scope);
return None;
} else if lcntrl == Nid::MAX {
self.ci.nodes.unlock_remove_scope(&then_scope);
return Some(Value::VOID);
} else if rcntrl == Nid::MAX {
self.ci.nodes.unlock_remove_scope(&self.ci.scope);
self.ci.scope = then_scope;
self.ci.ctrl = lcntrl;
return Some(Value::VOID);
}
self.ci.ctrl = self.ci.nodes.new_node(ty::Id::VOID, Kind::Region, [lcntrl, rcntrl]);
Self::merge_scopes(
&mut self.ci.nodes,
&mut self.ci.loops,
self.ci.ctrl,
&mut self.ci.scope,
&mut then_scope,
true,
);
Some(Value::VOID)
}
ref e => self.report_unhandled_ast(e, "bruh"),
}
}
fn expr_ctx(&mut self, expr: &Expr, ctx: Ctx) -> Option<Value> {
let mut n = self.raw_expr_ctx(expr, ctx)?;
self.strip_var(&mut n);
if core::mem::take(&mut n.ptr) {
n.id = self.load_mem(n.id, n.ty);
}
Some(n)
}
fn offset(&mut self, val: Nid, off: Offset) -> Nid {
if off == 0 {
return val;
}
let off = self.ci.nodes.new_node_nop(ty::Id::INT, Kind::CInt { value: off as i64 }, [VOID]);
let inps = [VOID, val, off];
self.ci.nodes.new_node(ty::Id::INT, Kind::BinOp { op: TokenKind::Add }, inps)
}
fn strip_var(&mut self, n: &mut Value) {
if core::mem::take(&mut n.var) {
let id = (u16::MAX - n.id) as usize;
self.ci.nodes.load_loop_var(id, &mut self.ci.scope.vars[id].value, &mut self.ci.loops);
n.ptr = self.ci.scope.vars[id].ptr;
n.id = self.ci.scope.vars[id].value;
}
}
fn expr(&mut self, expr: &Expr) -> Option<Value> {
self.expr_ctx(expr, Default::default())
}
fn jump_to(&mut self, pos: Pos, id: usize) -> Option<Value> {
let Some(mut loob) = self.ci.loops.last_mut() else {
self.report(pos, "break outside a loop");
return None;
};
if loob.ctrl[id] == Nid::MAX {
loob.ctrl[id] = self.ci.ctrl;
loob.ctrl_scope[id] = self.ci.scope.clone();
loob.ctrl_scope[id].vars.truncate(loob.scope.vars.len());
self.ci.nodes.lock_scope(&loob.ctrl_scope[id]);
} else {
let reg =
self.ci.nodes.new_node(ty::Id::VOID, Kind::Region, [self.ci.ctrl, loob.ctrl[id]]);
let mut scope = core::mem::take(&mut loob.ctrl_scope[id]);
Self::merge_scopes(
&mut self.ci.nodes,
&mut self.ci.loops,
reg,
&mut scope,
&mut self.ci.scope,
false,
);
loob = self.ci.loops.last_mut().unwrap();
loob.ctrl_scope[id] = scope;
loob.ctrl[id] = reg;
}
self.ci.ctrl = NEVER;
None
}
fn merge_scopes(
nodes: &mut Nodes,
loops: &mut [Loop],
ctrl: Nid,
to: &mut Scope,
from: &mut Scope,
drop_from: bool,
) {
for (i, ((ty, to_value), (_, from_value))) in
to.iter_elems_mut().zip(from.iter_elems_mut()).enumerate()
{
if to_value != from_value {
nodes.load_loop_var(i, from_value, loops);
nodes.load_loop_var(i, to_value, loops);
if to_value != from_value {
let inps = [ctrl, *from_value, *to_value];
nodes.unlock(*to_value);
*to_value = nodes.new_node(ty, Kind::Phi, inps);
nodes.lock(*to_value);
}
}
}
for load in to.loads.drain(..) {
nodes.unlock_remove(load);
}
for load in from.loads.drain(..) {
nodes.unlock_remove(load);
}
if drop_from {
nodes.unlock_remove_scope(from);
}
}
#[inline(always)]
fn tof(&self, id: Nid) -> ty::Id {
self.ci.nodes[id].ty
}
fn complete_call_graph(&mut self) {
while self.ci.task_base < self.tasks.len()
&& let Some(task_slot) = self.tasks.pop()
{
let Some(task) = task_slot else { continue };
self.emit_func(task);
}
}
fn emit_func(&mut self, FTask { file, id }: FTask) {
let func = &mut self.tys.ins.funcs[id as usize];
debug_assert_eq!(func.file, file);
func.offset = u32::MAX - 1;
let sig = func.sig.expect("to emmit only concrete functions");
let ast = &self.files[file as usize];
let expr = func.expr.get(ast).unwrap();
self.pool.push_ci(file, Some(sig.ret), 0, &mut self.ci);
let &Expr::Closure { body, args, .. } = expr else {
unreachable!("{}", self.ast_display(expr))
};
let mut sig_args = sig.args.range();
for arg in args.iter() {
let ty = self.tys.ins.args[sig_args.next().unwrap()];
let value = self.ci.nodes.new_node_nop(ty, Kind::Arg, [VOID]);
self.ci.nodes.lock(value);
let sym = parser::find_symbol(&ast.symbols, arg.id);
assert!(sym.flags & idfl::COMPTIME == 0, "TODO");
self.ci.scope.vars.push(Variable { id: arg.id, value, ty, ptr: false });
}
if self.expr(body).is_some() && sig.ret == ty::Id::VOID {
self.report(
body.pos(),
"expected all paths in the fucntion to return \
or the return type to be 'void'",
);
}
self.ci.finalize();
if self.errors.borrow().is_empty() {
self.ci.emit_body(&mut self.tys, self.files, sig);
self.tys.ins.funcs[id as usize].code.append(&mut self.ci.code);
self.tys.ins.funcs[id as usize].relocs.append(&mut self.ci.relocs);
}
self.pool.pop_ci(&mut self.ci);
}
fn ty(&mut self, expr: &Expr) -> ty::Id {
self.parse_ty(self.ci.file, expr, None, self.files)
}
fn ty_display(&self, ty: ty::Id) -> ty::Display {
ty::Display::new(&self.tys, self.files, ty)
}
fn ast_display(&self, ast: &'a Expr<'a>) -> parser::Display<'a> {
parser::Display::new(&self.cfile().file, ast)
}
#[must_use]
#[track_caller]
fn binop_ty(&self, pos: Pos, lhs: ty::Id, rhs: ty::Id, op: TokenKind) -> ty::Id {
if let Some(res) = lhs.try_upcast(rhs, ty::TyCheck::BinOp) {
res
} else {
let ty = self.ty_display(lhs);
let expected = self.ty_display(rhs);
self.report(pos, fa!("'{ty} {op} {expected}' is not supported"));
ty::Id::NEVER
}
}
#[track_caller]
fn assert_ty(&self, pos: Pos, ty: ty::Id, expected: ty::Id, hint: impl fmt::Display) -> bool {
if ty.try_upcast(expected, ty::TyCheck::BinOp) != Some(expected) {
let ty = self.ty_display(ty);
let expected = self.ty_display(expected);
self.report(pos, fa!("expected {hint} to be of type {expected}, got {ty}"));
return false;
}
true
}
#[track_caller]
fn assert_report(&self, cond: bool, pos: Pos, msg: impl core::fmt::Display) {
if !cond {
self.report(pos, msg);
}
}
#[track_caller]
fn report(&self, pos: Pos, msg: impl core::fmt::Display) {
let mut buf = self.errors.borrow_mut();
write!(buf, "{}", self.cfile().report(pos, msg)).unwrap();
}
#[track_caller]
fn report_unhandled_ast(&self, ast: &Expr, hint: &str) -> ! {
log::info!("{ast:#?}");
self.fatal_report(ast.pos(), fa!("compiler does not (yet) know how to handle ({hint})"));
}
fn cfile(&self) -> &'a parser::Ast {
&self.files[self.ci.file as usize]
}
fn fatal_report(&self, pos: Pos, msg: impl Display) -> ! {
self.report(pos, msg);
panic!("{}", self.errors.borrow());
}
}
// FIXME: make this more efficient (allocated with arena)
#[derive(Debug)]
struct Block {
nid: Nid,
preds: Vec<regalloc2::Block>,
succs: Vec<regalloc2::Block>,
instrs: regalloc2::InstRange,
params: Vec<regalloc2::VReg>,
branch_blockparams: Vec<regalloc2::VReg>,
}
#[derive(Debug)]
struct Instr {
nid: Nid,
ops: Vec<regalloc2::Operand>,
}
struct Function<'a> {
sig: Sig,
nodes: &'a mut Nodes,
tys: &'a Types,
blocks: Vec<Block>,
instrs: Vec<Instr>,
}
impl Debug for Function<'_> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
for (i, block) in self.blocks.iter().enumerate() {
writeln!(f, "sb{i}{:?}-{:?}:", block.params, block.preds)?;
for inst in block.instrs.iter() {
let instr = &self.instrs[inst.index()];
writeln!(f, "{}: i{:?}:{:?}", inst.index(), self.nodes[instr.nid].kind, instr.ops)?;
}
writeln!(f, "eb{i}{:?}-{:?}:", block.branch_blockparams, block.succs)?;
}
Ok(())
}
}
impl<'a> Function<'a> {
fn new(nodes: &'a mut Nodes, tys: &'a Types, sig: Sig) -> Self {
let mut s =
Self { nodes, tys, sig, blocks: Default::default(), instrs: Default::default() };
s.nodes.visited.clear(s.nodes.values.len());
s.emit_node(VOID, VOID);
s.add_block(0);
s.blocks.pop();
s
}
fn add_block(&mut self, nid: Nid) -> RallocBRef {
if let Some(prev) = self.blocks.last_mut() {
prev.instrs = regalloc2::InstRange::new(
prev.instrs.first(),
regalloc2::Inst::new(self.instrs.len()),
);
}
self.blocks.push(Block {
nid,
preds: Default::default(),
succs: Default::default(),
instrs: regalloc2::InstRange::new(
regalloc2::Inst::new(self.instrs.len()),
regalloc2::Inst::new(self.instrs.len() + 1),
),
params: Default::default(),
branch_blockparams: Default::default(),
});
self.blocks.len() as RallocBRef - 1
}
fn add_instr(&mut self, nid: Nid, ops: Vec<regalloc2::Operand>) {
self.instrs.push(Instr { nid, ops });
}
fn urg(&mut self, nid: Nid) -> regalloc2::Operand {
regalloc2::Operand::reg_use(self.rg(nid))
}
fn def_nid(&mut self, _nid: Nid) {}
fn drg(&mut self, nid: Nid) -> regalloc2::Operand {
self.def_nid(nid);
regalloc2::Operand::reg_def(self.rg(nid))
}
fn rg(&self, nid: Nid) -> VReg {
regalloc2::VReg::new(nid as _, regalloc2::RegClass::Int)
}
fn emit_node(&mut self, nid: Nid, prev: Nid) {
if matches!(self.nodes[nid].kind, Kind::Region | Kind::Loop) {
let prev_bref = self.nodes[prev].ralloc_backref;
let node = self.nodes[nid].clone();
let idx = 1 + node.inputs.iter().position(|&i| i == prev).unwrap();
for ph in node.outputs {
if self.nodes[ph].kind != Kind::Phi || self.nodes[ph].ty == ty::Id::VOID {
continue;
}
let rg = self.rg(self.nodes[ph].inputs[idx]);
self.blocks[prev_bref as usize].branch_blockparams.push(rg);
}
self.add_instr(nid, vec![]);
match (self.nodes[nid].kind, self.nodes.visited.set(nid)) {
(Kind::Loop, false) => {
for i in node.inputs {
self.bridge(i, nid);
}
return;
}
(Kind::Region, true) => return,
_ => {}
}
} else if !self.nodes.visited.set(nid) {
return;
}
let node = self.nodes[nid].clone();
match node.kind {
Kind::Start => {
debug_assert_matches!(self.nodes[node.outputs[0]].kind, Kind::Entry);
self.emit_node(node.outputs[0], VOID)
}
Kind::End => {}
Kind::If => {
self.nodes[nid].ralloc_backref = self.nodes[prev].ralloc_backref;
let &[_, cond] = node.inputs.as_slice() else { unreachable!() };
let &[mut then, mut else_] = node.outputs.as_slice() else { unreachable!() };
if let Kind::BinOp { op } = self.nodes[cond].kind
&& let Some((_, swapped)) = op.cond_op(node.ty.is_signed())
{
if swapped {
core::mem::swap(&mut then, &mut else_);
}
let &[_, lhs, rhs] = self.nodes[cond].inputs.as_slice() else { unreachable!() };
let ops = vec![self.urg(lhs), self.urg(rhs)];
self.add_instr(nid, ops);
} else {
todo!()
}
self.emit_node(then, nid);
self.emit_node(else_, nid);
}
Kind::Region | Kind::Loop => {
self.nodes[nid].ralloc_backref = self.add_block(nid);
if node.kind == Kind::Region {
for i in node.inputs {
self.bridge(i, nid);
}
}
let mut block = vec![];
for ph in node.outputs.clone() {
if self.nodes[ph].kind != Kind::Phi || self.nodes[ph].ty == ty::Id::VOID {
continue;
}
self.def_nid(ph);
block.push(self.rg(ph));
}
self.blocks[self.nodes[nid].ralloc_backref as usize].params = block;
for o in node.outputs.into_iter().rev() {
self.emit_node(o, nid);
}
}
Kind::Return => {
let ops = match self.tys.size_of(self.sig.ret) {
0 => vec![],
1..=8 => {
vec![regalloc2::Operand::reg_fixed_use(
self.rg(node.inputs[1]),
regalloc2::PReg::new(1, regalloc2::RegClass::Int),
)]
}
9..=16 => todo!(),
17.. => {
vec![self.urg(node.inputs[1])]
}
};
self.add_instr(nid, ops);
self.emit_node(node.outputs[0], nid);
}
Kind::CInt { .. }
if node.outputs.iter().all(|&o| {
let ond = &self.nodes[o];
matches!(ond.kind, Kind::BinOp { op }
if op.imm_binop(ond.ty.is_signed(), 8).is_some()
&& self.nodes.is_const(ond.inputs[2])
&& op.cond_op(ond.ty.is_signed()).is_none())
}) =>
{
self.nodes.lock(nid)
}
Kind::CInt { .. } => {
let ops = vec![self.drg(nid)];
self.add_instr(nid, ops);
}
Kind::Entry => {
self.nodes[nid].ralloc_backref = self.add_block(nid);
let mut parama = self.tys.parama(self.sig.ret);
for (arg, ti) in
self.nodes[VOID].clone().outputs.into_iter().skip(2).zip(self.sig.args.range())
{
let ty = self.tys.ins.args[ti];
match self.tys.size_of(ty) {
0 => continue,
1..=8 => {
self.def_nid(arg);
self.add_instr(NEVER, vec![regalloc2::Operand::reg_fixed_def(
self.rg(arg),
regalloc2::PReg::new(parama.next() as _, regalloc2::RegClass::Int),
)]);
}
9..=16 => todo!(),
_ => {
self.def_nid(arg);
self.add_instr(NEVER, vec![regalloc2::Operand::reg_fixed_def(
self.rg(arg),
regalloc2::PReg::new(parama.next() as _, regalloc2::RegClass::Int),
)]);
}
}
}
for o in node.outputs.into_iter().rev() {
self.emit_node(o, nid);
}
}
Kind::Then | Kind::Else => {
self.nodes[nid].ralloc_backref = self.add_block(nid);
self.bridge(prev, nid);
for o in node.outputs.into_iter().rev() {
self.emit_node(o, nid);
}
}
Kind::BinOp { op: TokenKind::Add }
if self.nodes.is_const(node.inputs[2])
&& node.outputs.iter().all(|&n| {
matches!(self.nodes[n].kind, Kind::Stre | Kind::Load)
&& self.tys.size_of(self.nodes[n].ty) <= 8
}) =>
{
self.nodes.lock(nid)
}
Kind::BinOp { op } => {
let &[_, lhs, rhs] = node.inputs.as_slice() else { unreachable!() };
let ops = if let Kind::CInt { .. } = self.nodes[rhs].kind
&& self.nodes[rhs].lock_rc != 0
{
vec![self.drg(nid), self.urg(lhs)]
} else if op.binop(node.ty.is_signed(), 8).is_some() {
vec![self.drg(nid), self.urg(lhs), self.urg(rhs)]
} else if op.cond_op(node.ty.is_signed()).is_some() {
return;
} else {
todo!("{op}")
};
self.add_instr(nid, ops);
}
Kind::UnOp { .. } => {
let ops = vec![self.drg(nid), self.urg(node.inputs[1])];
self.add_instr(nid, ops);
}
Kind::Call { func } => {
self.nodes[nid].ralloc_backref = self.nodes[prev].ralloc_backref;
let mut ops = vec![];
let fuc = self.tys.ins.funcs[func as usize].sig.unwrap();
if self.tys.size_of(fuc.ret) != 0 {
self.def_nid(nid);
ops.push(regalloc2::Operand::reg_fixed_def(
self.rg(nid),
regalloc2::PReg::new(1, regalloc2::RegClass::Int),
));
}
let mut parama = self.tys.parama(fuc.ret);
for (&(mut i), ti) in node.inputs[1..].iter().zip(fuc.args.range()) {
let ty = self.tys.ins.args[ti];
match self.tys.size_of(ty) {
0 => continue,
1..=8 => {
ops.push(regalloc2::Operand::reg_fixed_use(
self.rg(i),
regalloc2::PReg::new(parama.next() as _, regalloc2::RegClass::Int),
));
}
9..=16 => todo!("pass in two register"),
_ => {
loop {
match self.nodes[i].kind {
Kind::Stre { .. } => i = self.nodes[i].inputs[2],
Kind::Load { .. } => i = self.nodes[i].inputs[1],
_ => break,
}
debug_assert_ne!(i, 0);
}
debug_assert!(i != 0);
ops.push(regalloc2::Operand::reg_fixed_use(
self.rg(i),
regalloc2::PReg::new(parama.next() as _, regalloc2::RegClass::Int),
));
}
}
}
match self.tys.size_of(fuc.ret) {
0..=8 => {}
9..=16 => todo!(),
17.. => {
ops.push(regalloc2::Operand::reg_fixed_use(
self.rg(*node.inputs.last().unwrap()),
regalloc2::PReg::new(1, regalloc2::RegClass::Int),
));
}
}
self.add_instr(nid, ops);
for o in node.outputs.into_iter().rev() {
if self.nodes[o].inputs[0] == nid {
self.emit_node(o, nid);
}
}
}
Kind::Global { .. } => {
let ops = vec![self.drg(nid)];
self.add_instr(nid, ops);
}
//Kind::Stck
// if node.outputs.iter().all(|&n| {
// matches!(self.nodes[n].kind, Kind::Stre | Kind::Load)
// || matches!(self.nodes[n].kind, Kind::BinOp { op: TokenKind::Add }
// if self.nodes.is_const(self.nodes[n].inputs[2])
// && self.nodes[n]
// .outputs
// .iter()
// .all(|&n| matches!(self.nodes[n].kind, Kind::Stre | Kind::Load)))
// }) => {}
Kind::Stck => {
let ops = vec![self.drg(nid)];
self.add_instr(nid, ops);
}
Kind::Idk => {
let ops = vec![self.drg(nid)];
self.add_instr(nid, ops);
}
Kind::Phi | Kind::Arg | Kind::Mem => {}
Kind::Load { .. } => {
let mut region = node.inputs[1];
if self.nodes[region].kind == (Kind::BinOp { op: TokenKind::Add })
&& self.nodes.is_const(self.nodes[region].inputs[2])
{
region = self.nodes[region].inputs[1]
}
if self.tys.size_of(node.ty) <= 8 {
let ops = match self.nodes[region].kind {
Kind::Stck => vec![self.drg(nid)],
_ => vec![self.drg(nid), self.urg(region)],
};
self.add_instr(nid, ops);
}
}
Kind::Stre if node.inputs[2] == VOID => self.nodes.lock(nid),
Kind::Stre => {
let mut region = node.inputs[2];
if self.nodes[region].kind == (Kind::BinOp { op: TokenKind::Add })
&& self.nodes.is_const(self.nodes[region].inputs[2])
{
region = self.nodes[region].inputs[1]
}
let ops = match self.nodes[region].kind {
_ if self.tys.size_of(node.ty) > 8 => {
vec![self.urg(region), self.urg(self.nodes[node.inputs[1]].inputs[1])]
}
Kind::Stck => vec![self.urg(node.inputs[1])],
_ => vec![self.urg(region), self.urg(node.inputs[1])],
};
self.add_instr(nid, ops);
}
}
}
fn bridge(&mut self, pred: u16, succ: u16) {
if self.nodes[pred].ralloc_backref == u16::MAX
|| self.nodes[succ].ralloc_backref == u16::MAX
{
return;
}
self.blocks[self.nodes[pred].ralloc_backref as usize]
.succs
.push(regalloc2::Block::new(self.nodes[succ].ralloc_backref as usize));
self.blocks[self.nodes[succ].ralloc_backref as usize]
.preds
.push(regalloc2::Block::new(self.nodes[pred].ralloc_backref as usize));
}
}
impl regalloc2::Function for Function<'_> {
fn num_insts(&self) -> usize {
self.instrs.len()
}
fn num_blocks(&self) -> usize {
self.blocks.len()
}
fn entry_block(&self) -> regalloc2::Block {
regalloc2::Block(0)
}
fn block_insns(&self, block: regalloc2::Block) -> regalloc2::InstRange {
self.blocks[block.index()].instrs
}
fn block_succs(&self, block: regalloc2::Block) -> &[regalloc2::Block] {
&self.blocks[block.index()].succs
}
fn block_preds(&self, block: regalloc2::Block) -> &[regalloc2::Block] {
&self.blocks[block.index()].preds
}
fn block_params(&self, block: regalloc2::Block) -> &[regalloc2::VReg] {
&self.blocks[block.index()].params
}
fn is_ret(&self, insn: regalloc2::Inst) -> bool {
self.nodes[self.instrs[insn.index()].nid].kind == Kind::Return
}
fn is_branch(&self, insn: regalloc2::Inst) -> bool {
matches!(
self.nodes[self.instrs[insn.index()].nid].kind,
Kind::If | Kind::Then | Kind::Else | Kind::Entry | Kind::Loop | Kind::Region
)
}
fn branch_blockparams(
&self,
block: regalloc2::Block,
_insn: regalloc2::Inst,
_succ_idx: usize,
) -> &[regalloc2::VReg] {
debug_assert!(
self.blocks[block.index()].succs.len() == 1
|| self.blocks[block.index()].branch_blockparams.is_empty()
);
&self.blocks[block.index()].branch_blockparams
}
fn inst_operands(&self, insn: regalloc2::Inst) -> &[regalloc2::Operand] {
&self.instrs[insn.index()].ops
}
fn inst_clobbers(&self, insn: regalloc2::Inst) -> regalloc2::PRegSet {
if matches!(self.nodes[self.instrs[insn.index()].nid].kind, Kind::Call { .. }) {
let mut set = regalloc2::PRegSet::default();
for i in 2..13 {
set.add(regalloc2::PReg::new(i, regalloc2::RegClass::Int));
}
set
} else {
regalloc2::PRegSet::default()
}
}
fn num_vregs(&self) -> usize {
self.nodes.values.len()
}
fn spillslot_size(&self, regclass: regalloc2::RegClass) -> usize {
match regclass {
regalloc2::RegClass::Int => 1,
regalloc2::RegClass::Float => unreachable!(),
regalloc2::RegClass::Vector => unreachable!(),
}
}
}
fn loop_depth(target: Nid, nodes: &mut Nodes) -> LoopDepth {
if nodes[target].loop_depth != 0 {
return nodes[target].loop_depth;
}
nodes[target].loop_depth = match nodes[target].kind {
Kind::Entry | Kind::Then | Kind::Else | Kind::Call { .. } | Kind::Return | Kind::If => {
let dpth = loop_depth(nodes[target].inputs[0], nodes);
if nodes[target].loop_depth != 0 {
return nodes[target].loop_depth;
}
dpth
}
Kind::Region => {
let l = loop_depth(nodes[target].inputs[0], nodes);
let r = loop_depth(nodes[target].inputs[1], nodes);
debug_assert_eq!(l, r);
l
}
Kind::Loop => {
let depth = loop_depth(nodes[target].inputs[0], nodes) + 1;
nodes[target].loop_depth = depth;
let mut cursor = nodes[target].inputs[1];
while cursor != target {
nodes[cursor].loop_depth = depth;
let next = if nodes[cursor].kind == Kind::Region {
loop_depth(nodes[cursor].inputs[0], nodes);
nodes[cursor].inputs[1]
} else {
idom(nodes, cursor)
};
debug_assert_ne!(next, VOID);
if matches!(nodes[cursor].kind, Kind::Then | Kind::Else) {
let other = *nodes[next]
.outputs
.iter()
.find(|&&n| nodes[n].kind != nodes[cursor].kind)
.unwrap();
if nodes[other].loop_depth == 0 {
nodes[other].loop_depth = depth - 1;
}
}
cursor = next;
}
depth
}
Kind::Start | Kind::End => 1,
u => unreachable!("{u:?}"),
};
nodes[target].loop_depth
}
fn idepth(nodes: &mut Nodes, target: Nid) -> IDomDepth {
if target == VOID {
return 0;
}
if nodes[target].depth == 0 {
nodes[target].depth = match nodes[target].kind {
Kind::End | Kind::Start => unreachable!("{:?}", nodes[target].kind),
Kind::Region => {
idepth(nodes, nodes[target].inputs[0]).max(idepth(nodes, nodes[target].inputs[1]))
}
_ => idepth(nodes, nodes[target].inputs[0]),
} + 1;
}
nodes[target].depth
}
fn push_up(nodes: &mut Nodes) {
fn collect_rpo(node: Nid, nodes: &mut Nodes, rpo: &mut Vec<Nid>) {
if !nodes.is_cfg(node) || !nodes.visited.set(node) {
return;
}
for i in 0..nodes[node].outputs.len() {
collect_rpo(nodes[node].outputs[i], nodes, rpo);
}
rpo.push(node);
}
fn push_up_impl(node: Nid, nodes: &mut Nodes) {
if !nodes.visited.set(node) {
return;
}
for i in 0..nodes[node].inputs.len() {
let inp = nodes[node].inputs[i];
if !nodes[inp].kind.is_pinned() {
push_up_impl(inp, nodes);
}
}
if nodes[node].kind.is_pinned() {
return;
}
let mut deepest = VOID;
for i in 1..nodes[node].inputs.len() {
let inp = nodes[node].inputs[i];
if idepth(nodes, inp) > idepth(nodes, deepest) {
deepest = idom(nodes, inp);
}
}
if deepest == VOID {
return;
}
let index = nodes[0].outputs.iter().position(|&p| p == node).unwrap();
nodes[0].outputs.remove(index);
nodes[node].inputs[0] = deepest;
debug_assert!(
!nodes[deepest].outputs.contains(&node)
|| matches!(nodes[deepest].kind, Kind::Call { .. }),
"{node} {:?} {deepest} {:?}",
nodes[node],
nodes[deepest]
);
nodes[deepest].outputs.push(node);
}
let mut rpo = vec![];
collect_rpo(VOID, nodes, &mut rpo);
for node in rpo.into_iter().rev() {
loop_depth(node, nodes);
for i in 0..nodes[node].inputs.len() {
push_up_impl(nodes[node].inputs[i], nodes);
}
if matches!(nodes[node].kind, Kind::Loop | Kind::Region) {
for i in 0..nodes[node].outputs.len() {
let usage = nodes[node].outputs[i];
if nodes[usage].kind == Kind::Phi {
push_up_impl(usage, nodes);
}
}
}
}
}
fn push_down(nodes: &mut Nodes, node: Nid) {
fn is_forward_edge(usage: Nid, def: Nid, nodes: &mut Nodes) -> bool {
match nodes[usage].kind {
Kind::Phi => {
nodes[usage].inputs[2] != def || nodes[nodes[usage].inputs[0]].kind != Kind::Loop
}
Kind::Loop => nodes[usage].inputs[1] != def,
_ => true,
}
}
fn better(nodes: &mut Nodes, is: Nid, then: Nid) -> bool {
loop_depth(is, nodes) < loop_depth(then, nodes)
|| idepth(nodes, is) > idepth(nodes, then)
|| nodes[then].kind == Kind::If
}
if !nodes.visited.set(node) {
return;
}
for usage in nodes[node].outputs.clone() {
if is_forward_edge(usage, node, nodes) {
push_down(nodes, usage);
}
}
if nodes[node].kind.is_pinned() {
return;
}
let mut min = None::<Nid>;
for i in 0..nodes[node].outputs.len() {
let usage = nodes[node].outputs[i];
let ub = use_block(node, usage, nodes);
min = min.map(|m| common_dom(ub, m, nodes)).or(Some(ub));
}
let mut min = min.unwrap();
debug_assert!(nodes.dominates(nodes[node].inputs[0], min));
let mut cursor = min;
loop {
if better(nodes, cursor, min) {
min = cursor;
}
if cursor == nodes[node].inputs[0] {
break;
}
cursor = idom(nodes, cursor);
}
if nodes[min].kind.ends_basic_block() {
min = idom(nodes, min);
}
nodes.check_dominance(node, min, true);
let prev = nodes[node].inputs[0];
debug_assert!(idepth(nodes, min) >= idepth(nodes, prev));
let index = nodes[prev].outputs.iter().position(|&p| p == node).unwrap();
nodes[prev].outputs.remove(index);
nodes[node].inputs[0] = min;
nodes[min].outputs.push(node);
}
fn use_block(target: Nid, from: Nid, nodes: &mut Nodes) -> Nid {
if nodes[from].kind != Kind::Phi {
return idom(nodes, from);
}
let index = nodes[from].inputs.iter().position(|&n| n == target).unwrap();
nodes[nodes[from].inputs[0]].inputs[index - 1]
}
fn idom(nodes: &mut Nodes, target: Nid) -> Nid {
match nodes[target].kind {
Kind::Start => VOID,
Kind::End => unreachable!(),
Kind::Region => {
let &[lcfg, rcfg] = nodes[target].inputs.as_slice() else { unreachable!() };
common_dom(lcfg, rcfg, nodes)
}
_ => nodes[target].inputs[0],
}
}
fn common_dom(mut a: Nid, mut b: Nid, nodes: &mut Nodes) -> Nid {
while a != b {
let [ldepth, rdepth] = [idepth(nodes, a), idepth(nodes, b)];
if ldepth >= rdepth {
a = idom(nodes, a);
}
if ldepth <= rdepth {
b = idom(nodes, b);
}
}
a
}
#[cfg(test)]
mod tests {
use {
alloc::{string::String, vec::Vec},
core::fmt::Write,
};
fn generate(ident: &'static str, input: &'static str, output: &mut String) {
_ = log::set_logger(&crate::fs::Logger);
log::set_max_level(log::LevelFilter::Info);
let (ref files, _embeds) = crate::test_parse_files(ident, input);
let mut codegen = super::Codegen { files, ..Default::default() };
codegen.generate();
{
let errors = codegen.errors.borrow();
if !errors.is_empty() {
output.push_str(&errors);
return;
}
}
let mut out = Vec::new();
codegen.tys.reassemble(&mut out);
let err = codegen.tys.disasm(&out, codegen.files, output, |_| {});
if let Err(e) = err {
writeln!(output, "!!! asm is invalid: {e}").unwrap();
return;
}
crate::test_run_vm(&out, output);
}
crate::run_tests! { generate:
// Tour Examples
main_fn;
arithmetic;
functions;
comments;
if_statements;
variables;
loops;
pointers;
structs;
hex_octal_binary_literals;
//struct_operators;
global_variables;
//directives;
c_strings;
//struct_patterns;
arrays;
//inline;
idk;
//wide_ret;
// Incomplete Examples;
//comptime_pointers;
//generic_types;
//generic_functions;
fb_driver;
// Purely Testing Examples;
comptime_min_reg_leak;
//different_types;
//struct_return_from_module_function;
sort_something_viredly;
//structs_in_registers;
comptime_function_from_another_file;
//inline_test;
//inlined_generic_functions;
//some_generic_code;
//integer_inference_issues;
writing_into_string;
//request_page;
//tests_ptr_to_ptr_copy;
// Just Testing Optimizations;
const_folding_with_arg;
branch_assignments;
exhaustive_loop_testing;
pointer_opts;
conditional_stores;
loop_stores;
}
}