holey-bytes/hbvm/src/vmrun.rs

561 lines
25 KiB
Rust
Raw Normal View History

2023-08-17 18:41:05 -05:00
//! Welcome to the land of The Great Dispatch Loop
//!
//! Have fun
use {
2023-11-02 10:53:44 -05:00
super::{bmc::BlockCopier, mem::Memory, value::ValueVariant, Vm, VmRunError, VmRunOk},
2023-10-22 09:17:51 -05:00
crate::{
mem::{addr::AddressOp, Address},
value::CheckedDivRem,
},
2023-10-01 09:02:06 -05:00
core::{cmp::Ordering, ops},
2023-08-17 18:41:05 -05:00
hbbytecode::{
2023-10-22 09:17:51 -05:00
OpsN, OpsO, OpsP, OpsRB, OpsRD, OpsRH, OpsRR, OpsRRA, OpsRRAH, OpsRRB, OpsRRD, OpsRRH,
OpsRRO, OpsRROH, OpsRRP, OpsRRPH, OpsRRR, OpsRRRR, OpsRW, RoundingMode,
2023-08-17 18:41:05 -05:00
},
};
2023-10-01 09:02:06 -05:00
macro_rules! handler {
($self:expr, |$ty:ident ($($ident:pat),* $(,)?)| $expr:expr) => {{
2023-11-15 12:03:56 -06:00
#[allow(unused_unsafe)]
let $ty($($ident),*) = unsafe { $self.decode::<$ty>() };
#[allow(clippy::no_effect)] let e = $expr;
2023-11-12 17:12:18 -06:00
$self.bump_pc::<$ty>();
e
2023-10-01 09:02:06 -05:00
}};
}
2023-08-17 18:41:05 -05:00
impl<Mem, const TIMER_QUOTIENT: usize> Vm<Mem, TIMER_QUOTIENT>
where
Mem: Memory,
{
/// Execute program
///
/// Program can return [`VmRunError`] if a trap handling failed
#[cfg_attr(feature = "nightly", repr(align(4096)))]
pub fn run(&mut self) -> Result<VmRunOk, VmRunError> {
2024-09-20 01:20:48 -05:00
use hbbytecode::Instr as I;
2023-08-17 18:41:05 -05:00
loop {
// Big match
//
// Contribution guide:
// - Zero register shall never be overwitten. It's value has to always be 0.
// - Prefer `Self::read_reg` and `Self::write_reg` functions
2023-11-23 09:25:06 -06:00
// - Try to use `handler!` macro for decoding and then bumping program counter
2023-08-17 18:41:05 -05:00
// - Prioritise speed over code size
// - Memory is cheap, CPUs not that much
// - Do not heap allocate at any cost
// - Yes, user-provided trap handler may allocate,
// but that is not our »fault«.
// - Unsafe is kinda must, but be sure you have validated everything
2023-11-23 09:25:06 -06:00
// - Your contributions have to pass sanitizers, fuzzer and Miri
2023-08-17 18:41:05 -05:00
// - Strictly follow the spec
// - The spec does not specify how you perform actions, in what order,
// just that the observable effects have to be performed in order and
// correctly.
// - Yes, we assume you run 64 bit CPU. Else ?conradluget a better CPU
// sorry 8 bit fans, HBVM won't run on your Speccy :(
unsafe {
2024-09-20 01:20:48 -05:00
match self
.memory
.prog_read::<u8>(self.pc as _)
.try_into()
.map_err(VmRunError::InvalidOpcode)?
{
I::UN => {
2023-11-12 17:12:18 -06:00
self.bump_pc::<OpsN>();
2023-08-17 18:41:05 -05:00
return Err(VmRunError::Unreachable);
}
2024-09-20 01:20:48 -05:00
I::TX => {
2023-11-12 17:12:18 -06:00
self.bump_pc::<OpsN>();
2023-08-17 18:41:05 -05:00
return Ok(VmRunOk::End);
}
2024-09-20 01:20:48 -05:00
I::NOP => handler!(self, |OpsN()| ()),
I::ADD8 => self.binary_op(u8::wrapping_add),
I::ADD16 => self.binary_op(u16::wrapping_add),
I::ADD32 => self.binary_op(u32::wrapping_add),
I::ADD64 => self.binary_op(u64::wrapping_add),
I::SUB8 => self.binary_op(u8::wrapping_sub),
I::SUB16 => self.binary_op(u16::wrapping_sub),
I::SUB32 => self.binary_op(u32::wrapping_sub),
I::SUB64 => self.binary_op(u64::wrapping_sub),
I::MUL8 => self.binary_op(u8::wrapping_mul),
I::MUL16 => self.binary_op(u16::wrapping_mul),
I::MUL32 => self.binary_op(u32::wrapping_mul),
I::MUL64 => self.binary_op(u64::wrapping_mul),
I::AND => self.binary_op::<u64>(ops::BitAnd::bitand),
I::OR => self.binary_op::<u64>(ops::BitOr::bitor),
I::XOR => self.binary_op::<u64>(ops::BitXor::bitxor),
I::SLU8 => self.binary_op_shift::<u8>(u8::wrapping_shl),
I::SLU16 => self.binary_op_shift::<u16>(u16::wrapping_shl),
I::SLU32 => self.binary_op_shift::<u32>(u32::wrapping_shl),
I::SLU64 => self.binary_op_shift::<u64>(u64::wrapping_shl),
I::SRU8 => self.binary_op_shift::<u8>(u8::wrapping_shr),
I::SRU16 => self.binary_op_shift::<u16>(u16::wrapping_shr),
I::SRU32 => self.binary_op_shift::<u32>(u32::wrapping_shr),
I::SRU64 => self.binary_op_shift::<u64>(u64::wrapping_shr),
I::SRS8 => self.binary_op_shift::<i8>(i8::wrapping_shr),
I::SRS16 => self.binary_op_shift::<i16>(i16::wrapping_shr),
I::SRS32 => self.binary_op_shift::<i32>(i32::wrapping_shr),
I::SRS64 => self.binary_op_shift::<i64>(i64::wrapping_shr),
I::CMPU => handler!(self, |OpsRRR(tg, a0, a1)| self.cmp(
2023-10-22 11:18:50 -05:00
tg,
a0,
self.read_reg(a1).cast::<u64>()
)),
2024-09-20 01:20:48 -05:00
I::CMPS => handler!(self, |OpsRRR(tg, a0, a1)| self.cmp(
2023-10-22 11:18:50 -05:00
tg,
a0,
self.read_reg(a1).cast::<i64>()
)),
2024-09-20 01:20:48 -05:00
I::DIRU8 => self.dir::<u8>(),
I::DIRU16 => self.dir::<u16>(),
I::DIRU32 => self.dir::<u32>(),
I::DIRU64 => self.dir::<u64>(),
I::DIRS8 => self.dir::<i8>(),
I::DIRS16 => self.dir::<i16>(),
I::DIRS32 => self.dir::<i32>(),
I::DIRS64 => self.dir::<i64>(),
I::NEG => handler!(self, |OpsRR(tg, a0)| {
2023-09-30 18:51:51 -05:00
// Bit negation
2024-09-14 04:26:54 -05:00
self.write_reg(tg, self.read_reg(a0).cast::<u64>().wrapping_neg())
2023-10-01 09:02:06 -05:00
}),
2024-09-20 01:20:48 -05:00
I::NOT => handler!(self, |OpsRR(tg, a0)| {
2023-08-17 18:41:05 -05:00
// Logical negation
2023-09-30 18:51:51 -05:00
self.write_reg(tg, u64::from(self.read_reg(a0).cast::<u64>() == 0));
2023-10-01 09:02:06 -05:00
}),
2024-09-20 01:20:48 -05:00
I::SXT8 => handler!(self, |OpsRR(tg, a0)| {
self.write_reg(tg, self.read_reg(a0).cast::<i8>() as i64)
2023-10-01 09:02:06 -05:00
}),
2024-09-20 01:20:48 -05:00
I::SXT16 => handler!(self, |OpsRR(tg, a0)| {
self.write_reg(tg, self.read_reg(a0).cast::<i16>() as i64)
}),
2024-09-20 01:20:48 -05:00
I::SXT32 => handler!(self, |OpsRR(tg, a0)| {
self.write_reg(tg, self.read_reg(a0).cast::<i32>() as i64)
}),
2024-09-20 01:20:48 -05:00
I::ADDI8 => self.binary_op_imm(u8::wrapping_add),
I::ADDI16 => self.binary_op_imm(u16::wrapping_add),
I::ADDI32 => self.binary_op_imm(u32::wrapping_add),
I::ADDI64 => self.binary_op_imm(u64::wrapping_add),
I::MULI8 => self.binary_op_imm(u8::wrapping_mul),
I::MULI16 => self.binary_op_imm(u16::wrapping_mul),
I::MULI32 => self.binary_op_imm(u32::wrapping_mul),
I::MULI64 => self.binary_op_imm(u64::wrapping_mul),
I::ANDI => self.binary_op_imm::<u64>(ops::BitAnd::bitand),
I::ORI => self.binary_op_imm::<u64>(ops::BitOr::bitor),
I::XORI => self.binary_op_imm::<u64>(ops::BitXor::bitxor),
I::SLUI8 => self.binary_op_ims::<u8>(u8::wrapping_shl),
I::SLUI16 => self.binary_op_ims::<u16>(u16::wrapping_shl),
I::SLUI32 => self.binary_op_ims::<u32>(u32::wrapping_shl),
I::SLUI64 => self.binary_op_ims::<u64>(u64::wrapping_shl),
I::SRUI8 => self.binary_op_ims::<u8>(u8::wrapping_shr),
I::SRUI16 => self.binary_op_ims::<u16>(u16::wrapping_shr),
I::SRUI32 => self.binary_op_ims::<u32>(u32::wrapping_shr),
I::SRUI64 => self.binary_op_ims::<u64>(u64::wrapping_shr),
I::SRSI8 => self.binary_op_ims::<i8>(i8::wrapping_shr),
I::SRSI16 => self.binary_op_ims::<i16>(i16::wrapping_shr),
I::SRSI32 => self.binary_op_ims::<i32>(i32::wrapping_shr),
I::SRSI64 => self.binary_op_ims::<i64>(i64::wrapping_shr),
I::CMPUI => handler!(self, |OpsRRD(tg, a0, imm)| { self.cmp(tg, a0, imm) }),
I::CMPSI => {
handler!(self, |OpsRRD(tg, a0, imm)| { self.cmp(tg, a0, imm as i64) })
}
I::CP => handler!(self, |OpsRR(tg, a0)| self.write_reg(tg, self.read_reg(a0))),
I::SWA => handler!(self, |OpsRR(r0, r1)| {
2023-08-17 18:41:05 -05:00
// Swap registers
match (r0, r1) {
(0, 0) => (),
(dst, 0) | (0, dst) => self.write_reg(dst, 0_u64),
(r0, r1) => {
core::ptr::swap(
self.registers.get_unchecked_mut(usize::from(r0)),
self.registers.get_unchecked_mut(usize::from(r1)),
);
}
}
2023-10-01 09:02:06 -05:00
}),
2024-09-20 01:20:48 -05:00
I::LI8 => handler!(self, |OpsRB(tg, imm)| self.write_reg(tg, imm)),
I::LI16 => handler!(self, |OpsRH(tg, imm)| self.write_reg(tg, imm)),
I::LI32 => handler!(self, |OpsRW(tg, imm)| self.write_reg(tg, imm)),
I::LI64 => handler!(self, |OpsRD(tg, imm)| self.write_reg(tg, imm)),
I::LRA => handler!(self, |OpsRRO(tg, reg, off)| self.write_reg(
2023-10-22 11:18:50 -05:00
tg,
2024-07-08 00:22:53 -05:00
self.pcrel(off).wrapping_add(self.read_reg(reg).cast::<i64>()).get(),
2023-10-22 11:18:50 -05:00
)),
// Load. If loading more than register size, continue on adjecent registers
2024-09-20 01:20:48 -05:00
I::LD => handler!(self, |OpsRRAH(dst, base, off, count)| self
2023-10-22 11:18:50 -05:00
.load(dst, base, off, count)?),
// Store. Same rules apply as to LD
2024-09-20 01:20:48 -05:00
I::ST => handler!(self, |OpsRRAH(dst, base, off, count)| self
2023-10-22 11:18:50 -05:00
.store(dst, base, off, count)?),
2024-09-20 01:20:48 -05:00
I::LDR => handler!(self, |OpsRROH(dst, base, off, count)| self.load(
2023-10-22 11:18:50 -05:00
dst,
base,
self.pcrel(off).get(),
2023-10-22 11:18:50 -05:00
count
)?),
2024-09-20 01:20:48 -05:00
I::STR => handler!(self, |OpsRROH(dst, base, off, count)| self.store(
2023-10-22 11:18:50 -05:00
dst,
base,
self.pcrel(off).get(),
2023-10-22 11:18:50 -05:00
count
)?),
2024-09-20 01:20:48 -05:00
I::BMC => {
2023-08-17 18:41:05 -05:00
// Block memory copy
match if let Some(copier) = &mut self.copier {
// There is some copier, poll.
copier.poll(&mut self.memory)
} else {
// There is none, make one!
2023-09-26 16:36:27 -05:00
let OpsRRH(src, dst, count) = self.decode();
2023-08-17 18:41:05 -05:00
self.copier = Some(BlockCopier::new(
Address::new(self.read_reg(src).cast()),
Address::new(self.read_reg(dst).cast()),
2023-08-17 18:41:05 -05:00
count as _,
));
self.copier
.as_mut()
.unwrap_unchecked() // SAFETY: We just assigned there
.poll(&mut self.memory)
} {
// We are done, shift program counter
core::task::Poll::Ready(Ok(())) => {
self.copier = None;
2023-11-12 17:12:18 -06:00
self.bump_pc::<OpsRRH>();
2023-08-17 18:41:05 -05:00
}
// Error, shift program counter (for consistency)
// and yield error
core::task::Poll::Ready(Err(e)) => {
return Err(e.into());
}
// Not done yet, proceed to next cycle
core::task::Poll::Pending => (),
}
}
2024-09-20 01:20:48 -05:00
I::BRC => handler!(self, |OpsRRB(src, dst, count)| {
2023-08-17 18:41:05 -05:00
// Block register copy
if src.checked_add(count).is_none() || dst.checked_add(count).is_none() {
return Err(VmRunError::RegOutOfBounds);
}
core::ptr::copy(
self.registers.get_unchecked(usize::from(src)),
self.registers.get_unchecked_mut(usize::from(dst)),
usize::from(count),
);
2023-10-01 09:02:06 -05:00
}),
2024-09-20 01:20:48 -05:00
I::JMP => {
let OpsO(off) = self.decode();
2024-05-11 09:04:13 -05:00
self.pc = self.pc.wrapping_add(off);
}
2024-09-20 01:20:48 -05:00
I::JAL => {
2023-08-17 18:41:05 -05:00
// Jump and link. Save PC after this instruction to
2023-10-19 17:42:45 -05:00
// specified register and jump to reg + relative offset.
let OpsRRO(save, reg, offset) = self.decode();
self.write_reg(save, self.pc.next::<OpsRRO>());
2024-07-08 00:22:53 -05:00
self.pc = self.pcrel(offset).wrapping_add(self.read_reg(reg).cast::<i64>());
}
2024-09-20 01:20:48 -05:00
I::JALA => {
2023-10-19 17:42:45 -05:00
// Jump and link. Save PC after this instruction to
// specified register and jump to reg
let OpsRRA(save, reg, offset) = self.decode();
self.write_reg(save, self.pc.next::<OpsRRA>());
self.pc =
Address::new(self.read_reg(reg).cast::<u64>().wrapping_add(offset));
}
2023-08-17 18:41:05 -05:00
// Conditional jumps, jump only to immediates
2024-09-20 01:20:48 -05:00
I::JEQ => self.cond_jmp::<u64>(Ordering::Equal),
I::JNE => {
2023-10-22 11:18:50 -05:00
let OpsRRP(a0, a1, ja) = self.decode();
2023-08-17 18:41:05 -05:00
if self.read_reg(a0).cast::<u64>() != self.read_reg(a1).cast::<u64>() {
self.pc = self.pcrel(ja);
2023-10-27 20:29:02 -05:00
} else {
2023-11-12 17:12:18 -06:00
self.bump_pc::<OpsRRP>();
2023-08-17 18:41:05 -05:00
}
2023-10-22 11:18:50 -05:00
}
2024-09-20 01:20:48 -05:00
I::JLTS => self.cond_jmp::<i64>(Ordering::Less),
I::JGTS => self.cond_jmp::<i64>(Ordering::Greater),
I::JLTU => self.cond_jmp::<u64>(Ordering::Less),
I::JGTU => self.cond_jmp::<u64>(Ordering::Greater),
I::ECA => {
2023-08-17 18:41:05 -05:00
// So we don't get timer interrupt after ECALL
if TIMER_QUOTIENT != 0 {
self.timer = self.timer.wrapping_add(1);
}
2023-10-01 09:02:06 -05:00
2023-11-12 17:12:18 -06:00
self.bump_pc::<OpsN>();
2023-08-17 18:41:05 -05:00
return Ok(VmRunOk::Ecall);
}
2024-09-20 01:20:48 -05:00
I::EBP => {
2023-11-12 17:12:18 -06:00
self.bump_pc::<OpsN>();
2023-09-30 18:51:51 -05:00
return Ok(VmRunOk::Breakpoint);
}
2024-09-20 01:20:48 -05:00
I::FADD32 => self.binary_op::<f32>(ops::Add::add),
I::FADD64 => self.binary_op::<f64>(ops::Add::add),
I::FSUB32 => self.binary_op::<f32>(ops::Sub::sub),
I::FSUB64 => self.binary_op::<f64>(ops::Sub::sub),
I::FMUL32 => self.binary_op::<f32>(ops::Mul::mul),
I::FMUL64 => self.binary_op::<f64>(ops::Mul::mul),
I::FDIV32 => self.binary_op::<f32>(ops::Div::div),
I::FDIV64 => self.binary_op::<f64>(ops::Div::div),
I::FMA32 => self.fma::<f32>(),
I::FMA64 => self.fma::<f64>(),
I::FINV32 => handler!(self, |OpsRR(tg, reg)| self
2023-10-22 11:18:50 -05:00
.write_reg(tg, 1. / self.read_reg(reg).cast::<f32>())),
2024-09-20 01:20:48 -05:00
I::FINV64 => handler!(self, |OpsRR(tg, reg)| self
2023-10-22 11:18:50 -05:00
.write_reg(tg, 1. / self.read_reg(reg).cast::<f64>())),
2024-09-20 01:20:48 -05:00
I::FCMPLT32 => self.fcmp::<f32>(Ordering::Less),
I::FCMPLT64 => self.fcmp::<f64>(Ordering::Less),
I::FCMPGT32 => self.fcmp::<f32>(Ordering::Greater),
I::FCMPGT64 => self.fcmp::<f64>(Ordering::Greater),
I::ITF32 => handler!(self, |OpsRR(tg, reg)| self
2023-10-22 11:18:50 -05:00
.write_reg(tg, self.read_reg(reg).cast::<i64>() as f32)),
2024-09-20 01:20:48 -05:00
I::ITF64 => handler!(self, |OpsRR(tg, reg)| self
2023-10-22 11:18:50 -05:00
.write_reg(tg, self.read_reg(reg).cast::<i64>() as f64)),
2024-09-20 01:20:48 -05:00
I::FTI32 => handler!(self, |OpsRRB(tg, reg, mode)| self.write_reg(
2023-10-22 11:18:50 -05:00
tg,
crate::float::f32toint(
self.read_reg(reg).cast::<f32>(),
RoundingMode::try_from(mode)
.map_err(|()| VmRunError::InvalidOperand)?,
),
)),
2024-09-20 01:20:48 -05:00
I::FTI64 => handler!(self, |OpsRRB(tg, reg, mode)| self.write_reg(
2023-10-22 11:18:50 -05:00
tg,
crate::float::f64toint(
self.read_reg(reg).cast::<f64>(),
RoundingMode::try_from(mode)
.map_err(|()| VmRunError::InvalidOperand)?,
),
)),
2024-09-20 01:20:48 -05:00
I::FC32T64 => handler!(self, |OpsRR(tg, reg)| self
2023-10-22 11:18:50 -05:00
.write_reg(tg, self.read_reg(reg).cast::<f32>() as f64)),
2024-09-20 01:20:48 -05:00
I::FC64T32 => handler!(self, |OpsRRB(tg, reg, mode)| self.write_reg(
2023-10-22 11:18:50 -05:00
tg,
crate::float::conv64to32(
self.read_reg(reg).cast(),
RoundingMode::try_from(mode)
.map_err(|()| VmRunError::InvalidOperand)?,
),
)),
2024-09-20 01:20:48 -05:00
I::LRA16 => handler!(self, |OpsRRP(tg, reg, imm)| self.write_reg(
2023-10-22 11:18:50 -05:00
tg,
(self.pc + self.read_reg(reg).cast::<u64>() + imm + 3_u16).get(),
)),
2024-09-20 01:20:48 -05:00
I::LDR16 => handler!(self, |OpsRRPH(dst, base, off, count)| self.load(
2023-10-22 11:18:50 -05:00
dst,
base,
self.pcrel(off).get(),
2023-10-22 11:18:50 -05:00
count
)?),
2024-09-20 01:20:48 -05:00
I::STR16 => handler!(self, |OpsRRPH(dst, base, off, count)| self.store(
2023-10-22 11:18:50 -05:00
dst,
base,
self.pcrel(off).get(),
2023-10-22 11:18:50 -05:00
count
)?),
2024-09-20 01:20:48 -05:00
I::JMP16 => {
let OpsP(off) = self.decode();
self.pc = self.pcrel(off);
}
2023-08-17 18:41:05 -05:00
}
}
if TIMER_QUOTIENT != 0 {
self.timer = self.timer.wrapping_add(1);
if self.timer % TIMER_QUOTIENT == 0 {
return Ok(VmRunOk::Timer);
}
}
}
}
2023-10-01 09:02:06 -05:00
/// Bump instruction pointer
#[inline(always)]
2023-11-12 17:12:18 -06:00
fn bump_pc<T: Copy>(&mut self) {
2024-07-08 00:22:53 -05:00
self.pc = self.pc.wrapping_add(core::mem::size_of::<T>()).wrapping_add(1);
2023-10-01 09:02:06 -05:00
}
2023-08-17 18:41:05 -05:00
/// Decode instruction operands
#[inline(always)]
unsafe fn decode<T: Copy>(&mut self) -> T {
2023-11-15 12:03:56 -06:00
unsafe { self.memory.prog_read::<T>(self.pc + 1_u64) }
2023-08-17 18:41:05 -05:00
}
/// Load
#[inline(always)]
unsafe fn load(
&mut self,
dst: u8,
base: u8,
offset: u64,
count: u16,
) -> Result<(), VmRunError> {
let n: u8 = match dst {
0 => 1,
_ => 0,
};
2023-11-15 12:03:56 -06:00
unsafe {
self.memory.load(
self.ldst_addr_uber(dst, base, offset, count, n)?,
2024-07-08 00:22:53 -05:00
self.registers.as_mut_ptr().add(usize::from(dst) + usize::from(n)).cast(),
2023-11-15 12:03:56 -06:00
usize::from(count).saturating_sub(n.into()),
)
}?;
Ok(())
}
/// Store
#[inline(always)]
unsafe fn store(
&mut self,
dst: u8,
base: u8,
offset: u64,
count: u16,
) -> Result<(), VmRunError> {
2023-11-15 12:03:56 -06:00
unsafe {
self.memory.store(
self.ldst_addr_uber(dst, base, offset, count, 0)?,
self.registers.as_ptr().add(usize::from(dst)).cast(),
count.into(),
)
}?;
Ok(())
}
2023-10-22 11:18:50 -05:00
/// Three-way comparsion
#[inline(always)]
unsafe fn cmp<T: ValueVariant + Ord>(&mut self, to: u8, reg: u8, val: T) {
self.write_reg(to, self.read_reg(reg).cast::<T>().cmp(&val) as i64);
}
2023-08-17 18:41:05 -05:00
/// Perform binary operating over two registers
#[inline(always)]
unsafe fn binary_op<T: ValueVariant>(&mut self, op: impl Fn(T, T) -> T) {
2023-11-15 12:03:56 -06:00
let OpsRRR(tg, a0, a1) = unsafe { self.decode() };
2024-07-08 00:22:53 -05:00
self.write_reg(tg, op(self.read_reg(a0).cast::<T>(), self.read_reg(a1).cast::<T>()));
2023-11-12 17:12:18 -06:00
self.bump_pc::<OpsRRR>();
2023-08-17 18:41:05 -05:00
}
/// Perform binary operation over register and immediate
#[inline(always)]
unsafe fn binary_op_imm<T: ValueVariant>(&mut self, op: impl Fn(T, T) -> T) {
2023-11-12 17:12:18 -06:00
#[derive(Clone, Copy)]
#[repr(packed)]
struct OpsRRImm<I>(OpsRR, I);
2023-11-15 12:03:56 -06:00
let OpsRRImm::<T>(OpsRR(tg, reg), imm) = unsafe { self.decode() };
self.write_reg(tg, op(self.read_reg(reg).cast::<T>(), imm));
2023-11-12 17:12:18 -06:00
self.bump_pc::<OpsRRImm<T>>();
2023-08-17 18:41:05 -05:00
}
/// Perform binary operation over register and shift immediate
#[inline(always)]
2023-11-08 05:38:14 -06:00
unsafe fn binary_op_shift<T: ValueVariant>(&mut self, op: impl Fn(T, u32) -> T) {
2023-11-15 12:03:56 -06:00
let OpsRRR(tg, a0, a1) = unsafe { self.decode() };
2024-07-08 00:22:53 -05:00
self.write_reg(tg, op(self.read_reg(a0).cast::<T>(), self.read_reg(a1).cast::<u32>()));
2023-11-12 17:12:18 -06:00
self.bump_pc::<OpsRRR>();
2023-11-08 05:38:14 -06:00
}
/// Perform binary operation over register and shift immediate
#[inline(always)]
unsafe fn binary_op_ims<T: ValueVariant>(&mut self, op: impl Fn(T, u32) -> T) {
2023-11-15 12:03:56 -06:00
let OpsRRB(tg, reg, imm) = unsafe { self.decode() };
2023-11-08 05:38:14 -06:00
self.write_reg(tg, op(self.read_reg(reg).cast::<T>(), imm.into()));
self.bump_pc::<OpsRRB>();
2023-09-26 16:36:27 -05:00
}
/// Fused division-remainder
#[inline(always)]
unsafe fn dir<T: ValueVariant + CheckedDivRem>(&mut self) {
handler!(self, |OpsRRRR(td, tr, a0, a1)| {
let a0 = self.read_reg(a0).cast::<T>();
let a1 = self.read_reg(a1).cast::<T>();
if let Some(div) = a0.checked_div(a1) {
self.write_reg(td, div);
} else {
self.write_reg(td, -1_i64);
}
if let Some(rem) = a0.checked_rem(a1) {
self.write_reg(tr, rem);
} else {
self.write_reg(tr, a0);
}
});
}
/// Fused multiply-add
#[inline(always)]
unsafe fn fma<T>(&mut self)
where
T: ValueVariant + core::ops::Mul<Output = T> + core::ops::Add<Output = T>,
{
handler!(self, |OpsRRRR(tg, a0, a1, a2)| {
let a0 = self.read_reg(a0).cast::<T>();
let a1 = self.read_reg(a1).cast::<T>();
let a2 = self.read_reg(a2).cast::<T>();
self.write_reg(tg, a0 * a1 + a2)
});
}
/// Float comparsion
#[inline(always)]
unsafe fn fcmp<T: PartialOrd + ValueVariant>(&mut self, nan: Ordering) {
handler!(self, |OpsRRR(tg, a0, a1)| {
let a0 = self.read_reg(a0).cast::<T>();
let a1 = self.read_reg(a1).cast::<T>();
self.write_reg(tg, (a0.partial_cmp(&a1).unwrap_or(nan) as i8 + 1) as u8)
});
}
2023-10-22 07:46:45 -05:00
/// Calculate pc-relative address
#[inline(always)]
fn pcrel(&self, offset: impl AddressOp) -> Address {
self.pc.wrapping_add(offset)
2023-10-22 07:46:45 -05:00
}
2023-09-26 16:36:27 -05:00
/// Jump at `PC + #3` if ordering on `#0 <=> #1` is equal to expected
2023-08-17 18:41:05 -05:00
#[inline(always)]
unsafe fn cond_jmp<T: ValueVariant + Ord>(&mut self, expected: Ordering) {
2023-11-15 12:03:56 -06:00
let OpsRRP(a0, a1, ja) = unsafe { self.decode() };
2024-07-08 00:22:53 -05:00
if self.read_reg(a0).cast::<T>().cmp(&self.read_reg(a1).cast::<T>()) == expected {
self.pc = self.pcrel(ja);
2023-10-27 20:29:02 -05:00
} else {
2023-11-12 17:12:18 -06:00
self.bump_pc::<OpsRRP>();
2023-08-17 18:41:05 -05:00
}
}
/// Load / Store Address check-computation überfunction
#[inline(always)]
unsafe fn ldst_addr_uber(
&self,
dst: u8,
base: u8,
offset: u64,
size: u16,
adder: u8,
) -> Result<Address, VmRunError> {
2023-08-17 18:41:05 -05:00
let reg = dst.checked_add(adder).ok_or(VmRunError::RegOutOfBounds)?;
if usize::from(reg) * 8 + usize::from(size) > 2048 {
Err(VmRunError::RegOutOfBounds)
} else {
self.read_reg(base)
.cast::<u64>()
.checked_add(offset)
.and_then(|x| x.checked_add(adder.into()))
.ok_or(VmRunError::AddrOutOfBounds)
.map(Address::new)
2023-08-17 18:41:05 -05:00
}
}
}