use { crate::{ ctx_map::CtxEntry, ident::Ident, instrs, lexer::{self, TokenKind}, parser::{ self, idfl::{self}, Expr, ExprRef, FileId, Pos, }, reg, task, ty::{self}, vc::{BitSet, Vc}, Func, HashMap, Offset, Reloc, Sig, Size, SymKey, TypedReloc, Types, }, alloc::{borrow::ToOwned, string::String, vec::Vec}, core::{ assert_matches::debug_assert_matches, cell::RefCell, fmt::{self, Debug, Display, Write}, format_args as fa, mem, ops::{self}, }, hashbrown::hash_map, regalloc2::VReg, }; const VOID: Nid = 0; const NEVER: Nid = 1; const ENTRY: Nid = 2; const MEM: Nid = 3; type Nid = u16; type Lookup = crate::ctx_map::CtxMap; impl crate::ctx_map::CtxEntry for Nid { type Ctx = [Result]; type Key<'a> = (Kind, &'a [Nid], ty::Id); fn key<'a>(&self, ctx: &'a Self::Ctx) -> Self::Key<'a> { ctx[*self as usize].as_ref().unwrap().key() } } struct Nodes { values: Vec>, visited: BitSet, free: Nid, lookup: Lookup, } impl Default for Nodes { fn default() -> Self { Self { values: Default::default(), free: Nid::MAX, lookup: Default::default(), visited: Default::default(), } } } impl Nodes { fn remove_low(&mut self, id: Nid) -> Node { let value = mem::replace(&mut self.values[id as usize], Err(self.free)).unwrap(); self.free = id; value } fn clear(&mut self) { self.values.clear(); self.lookup.clear(); self.free = Nid::MAX; } fn new_node_nop(&mut self, ty: ty::Id, kind: Kind, inps: impl Into) -> Nid { let node = Node { ralloc_backref: u16::MAX, inputs: inps.into(), kind, ty, ..Default::default() }; let mut lookup_meta = None; if !node.is_lazy_phi() { let (raw_entry, hash) = self.lookup.entry(node.key(), &self.values); let entry = match raw_entry { hash_map::RawEntryMut::Occupied(o) => return o.get_key_value().0.value, hash_map::RawEntryMut::Vacant(v) => v, }; lookup_meta = Some((entry, hash)); } if self.free == Nid::MAX { self.free = self.values.len() as _; self.values.push(Err(Nid::MAX)); } let free = self.free; for &d in node.inputs.as_slice() { debug_assert_ne!(d, free); self.values[d as usize].as_mut().unwrap_or_else(|_| panic!("{d}")).outputs.push(free); } self.free = mem::replace(&mut self.values[free as usize], Ok(node)).unwrap_err(); if let Some((entry, hash)) = lookup_meta { entry.insert(crate::ctx_map::Key { value: free, hash }, ()); } free } fn remove_node_lookup(&mut self, target: Nid) { if !self[target].is_lazy_phi() { self.lookup.remove(&target, &self.values).unwrap(); } } fn new_node_low(&mut self, ty: ty::Id, kind: Kind, inps: impl Into) -> (Nid, bool) { let id = self.new_node_nop(ty, kind, inps); if let Some(opt) = self.peephole(id) { debug_assert_ne!(opt, id); self.lock(opt); self.remove(id); self.unlock(opt); (opt, true) } else { (id, false) } } fn new_node(&mut self, ty: ty::Id, kind: Kind, inps: impl Into) -> Nid { self.new_node_low(ty, kind, inps).0 } fn new_node_lit(&mut self, ty: ty::Id, kind: Kind, inps: impl Into) -> Value { Value::new(self.new_node_low(ty, kind, inps).0).ty(ty) } fn lock(&mut self, target: Nid) { self[target].lock_rc += 1; } #[track_caller] fn unlock(&mut self, target: Nid) { self[target].lock_rc -= 1; } fn remove(&mut self, target: Nid) -> bool { if !self[target].is_dangling() { return false; } for i in 0..self[target].inputs.len() { let inp = self[target].inputs[i]; let index = self[inp].outputs.iter().position(|&p| p == target).unwrap(); self[inp].outputs.swap_remove(index); self.remove(inp); } self.remove_node_lookup(target); self.remove_low(target); true } fn peephole(&mut self, target: Nid) -> Option { use {Kind as K, TokenKind as T}; match self[target].kind { K::BinOp { op } => { let &[ctrl, mut lhs, mut rhs] = self[target].inputs.as_slice() else { unreachable!() }; let ty = self[target].ty; if let (&K::CInt { value: a }, &K::CInt { value: b }) = (&self[lhs].kind, &self[rhs].kind) { return Some( self.new_node(ty, K::CInt { value: op.apply_binop(a, b) }, [ctrl]), ); } if lhs == rhs { match op { T::Sub => return Some(self.new_node(ty, K::CInt { value: 0 }, [ctrl])), T::Add => { let rhs = self.new_node_nop(ty, K::CInt { value: 2 }, [ctrl]); return Some( self.new_node(ty, K::BinOp { op: T::Mul }, [ctrl, lhs, rhs]), ); } _ => {} } } // this is more general the pushing constants to left to help deduplicate expressions more let mut changed = false; if op.is_comutative() && self[lhs].key() < self[rhs].key() { core::mem::swap(&mut lhs, &mut rhs); changed = true; } if let K::CInt { value } = self[lhs].kind && op == T::Sub { let lhs = self.new_node_nop(ty, K::CInt { value: -value }, [ctrl]); return Some(self.new_node(ty, K::BinOp { op: T::Add }, [ctrl, rhs, lhs])); } if let K::CInt { value } = self[rhs].kind { match (op, value) { (T::Add | T::Sub | T::Shl, 0) | (T::Mul | T::Div, 1) => return Some(lhs), (T::Mul, 0) => return Some(rhs), _ => {} } } if op.is_comutative() && self[lhs].kind == (K::BinOp { op }) { let &[_, a, b] = self[lhs].inputs.as_slice() else { unreachable!() }; if let K::CInt { value: av } = self[b].kind && let K::CInt { value: bv } = self[rhs].kind { // (a op #b) op #c => a op (#b op #c) let new_rhs = self.new_node_nop(ty, K::CInt { value: op.apply_binop(av, bv) }, [ ctrl, ]); return Some(self.new_node(ty, K::BinOp { op }, [ctrl, a, new_rhs])); } if self.is_const(b) { // (a op #b) op c => (a op c) op #b let new_lhs = self.new_node(ty, K::BinOp { op }, [ctrl, a, rhs]); return Some(self.new_node(ty, K::BinOp { op }, [ctrl, new_lhs, b])); } } if op == T::Add && self[lhs].kind == (K::BinOp { op: T::Mul }) && self[lhs].inputs[1] == rhs && let K::CInt { value } = self[self[lhs].inputs[2]].kind { // a * #n + a => a * (#n + 1) let new_rhs = self.new_node_nop(ty, K::CInt { value: value + 1 }, [ctrl]); return Some(self.new_node(ty, K::BinOp { op: T::Mul }, [ctrl, rhs, new_rhs])); } if op == T::Sub && self[lhs].kind == (K::BinOp { op }) { // (a - b) - c => a - (b + c) let &[_, a, b] = self[lhs].inputs.as_slice() else { unreachable!() }; let c = rhs; let new_rhs = self.new_node(ty, K::BinOp { op: T::Add }, [ctrl, b, c]); return Some(self.new_node(ty, K::BinOp { op }, [ctrl, a, new_rhs])); } if changed { return Some(self.new_node(ty, self[target].kind, [ctrl, lhs, rhs])); } } K::UnOp { op } => { let &[ctrl, oper] = self[target].inputs.as_slice() else { unreachable!() }; let ty = self[target].ty; if let K::CInt { value } = self[oper].kind { return Some( self.new_node(ty, K::CInt { value: op.apply_unop(value) }, [ctrl]), ); } } K::If => { let cond = self[target].inputs[1]; if let K::CInt { value } = self[cond].kind { let ty = if value == 0 { ty::Id::LEFT_UNREACHABLE } else { ty::Id::RIGHT_UNREACHABLE }; return Some(self.new_node_nop(ty, K::If, [self[target].inputs[0], cond])); } } K::Phi => { if self[target].inputs[1] == self[target].inputs[2] { return Some(self[target].inputs[1]); } } _ => {} } None } fn is_const(&self, id: Nid) -> bool { matches!(self[id].kind, Kind::CInt { .. }) } fn replace(&mut self, target: Nid, with: Nid) { let mut back_press = 0; for i in 0..self[target].outputs.len() { let out = self[target].outputs[i - back_press]; let index = self[out].inputs.iter().position(|&p| p == target).unwrap(); self.lock(target); let prev_len = self[target].outputs.len(); self.modify_input(out, index, with); back_press += (self[target].outputs.len() != prev_len) as usize; self.unlock(target); } self.remove(target); } fn modify_input(&mut self, target: Nid, inp_index: usize, with: Nid) -> Nid { self.remove_node_lookup(target); debug_assert_ne!(self[target].inputs[inp_index], with); let prev = self[target].inputs[inp_index]; self[target].inputs[inp_index] = with; let (entry, hash) = self.lookup.entry(target.key(&self.values), &self.values); match entry { hash_map::RawEntryMut::Occupied(other) => { let rpl = other.get_key_value().0.value; self[target].inputs[inp_index] = prev; self.replace(target, rpl); rpl } hash_map::RawEntryMut::Vacant(slot) => { slot.insert(crate::ctx_map::Key { value: target, hash }, ()); let index = self[prev].outputs.iter().position(|&o| o == target).unwrap(); self[prev].outputs.swap_remove(index); self[with].outputs.push(target); self.remove(prev); target } } } #[track_caller] fn unlock_remove(&mut self, id: Nid) -> bool { self[id].lock_rc -= 1; self.remove(id) } fn iter(&self) -> impl DoubleEndedIterator { self.values.iter().enumerate().filter_map(|(i, s)| Some((i as _, s.as_ref().ok()?))) } #[allow(clippy::format_in_format_args)] fn basic_blocks_instr(&mut self, out: &mut String, node: Nid) -> core::fmt::Result { if self[node].kind != Kind::Loop && self[node].kind != Kind::Region { write!(out, " {node:>2}-c{:>2}: ", self[node].ralloc_backref)?; } match self[node].kind { Kind::Start => unreachable!(), Kind::End => unreachable!(), Kind::If => write!(out, " if: "), Kind::Region | Kind::Loop => writeln!(out, " goto: {node}"), Kind::Return => write!(out, " ret: "), Kind::CInt { value } => write!(out, "cint: #{value:<4}"), Kind::Phi => write!(out, " phi: "), Kind::Arg { index } => write!(out, " arg: {index:<5}"), Kind::BinOp { op } | Kind::UnOp { op } => { write!(out, "{:>4}: ", op.name()) } Kind::Call { func } => { write!(out, "call: {func} {} ", self[node].depth) } Kind::Entry => write!(out, "ctrl: {:<5}", "entry"), Kind::Then => write!(out, "ctrl: {:<5}", "then"), Kind::Else => write!(out, "ctrl: {:<5}", "else"), Kind::Stck => write!(out, "stck: "), Kind::Load { offset } => write!(out, "load: {offset:<5}"), Kind::Stre { offset } => write!(out, "stre: {offset:<5}"), _ => unreachable!(), }?; if self[node].kind != Kind::Loop && self[node].kind != Kind::Region { writeln!( out, " {:<14} {}", format!("{:?}", self[node].inputs), format!("{:?}", self[node].outputs) )?; } Ok(()) } fn basic_blocks_low(&mut self, out: &mut String, mut node: Nid) -> core::fmt::Result { let iter = |nodes: &Nodes, node| nodes[node].outputs.clone().into_iter().rev(); while self.visited.set(node) { match self[node].kind { Kind::Start => { writeln!(out, "start: {}", self[node].depth)?; let mut cfg_index = Nid::MAX; for o in iter(self, node) { self.basic_blocks_instr(out, o)?; if self[o].kind.is_cfg() { cfg_index = o; } } node = cfg_index; } Kind::End => break, Kind::If => { self.basic_blocks_low(out, self[node].outputs[0])?; node = self[node].outputs[1]; } Kind::Region => { writeln!( out, "region{node}: {} {} {:?}", self[node].depth, self[node].loop_depth, self[node].inputs )?; let mut cfg_index = Nid::MAX; for o in iter(self, node) { self.basic_blocks_instr(out, o)?; if self.is_cfg(o) { cfg_index = o; } } node = cfg_index; } Kind::Loop => { writeln!( out, "loop{node}: {} {} {:?}", self[node].depth, self[node].loop_depth, self[node].outputs )?; let mut cfg_index = Nid::MAX; for o in iter(self, node) { self.basic_blocks_instr(out, o)?; if self.is_cfg(o) { cfg_index = o; } } node = cfg_index; } Kind::Return => { node = self[node].outputs[0]; } Kind::Then | Kind::Else | Kind::Entry => { writeln!( out, "b{node}: {} {} {:?}", self[node].depth, self[node].loop_depth, self[node].outputs )?; let mut cfg_index = Nid::MAX; for o in iter(self, node) { self.basic_blocks_instr(out, o)?; if self.is_cfg(o) { cfg_index = o; } } node = cfg_index; } Kind::Call { .. } => { let mut cfg_index = Nid::MAX; let mut print_ret = true; for o in iter(self, node) { if self[o].inputs[0] == node && (self[node].outputs[0] != o || core::mem::take(&mut print_ret)) { self.basic_blocks_instr(out, o)?; } if self.is_cfg(o) { cfg_index = o; } } node = cfg_index; } _ => unreachable!(), } } Ok(()) } fn basic_blocks(&mut self) { let mut out = String::new(); self.visited.clear(self.values.len()); self.basic_blocks_low(&mut out, VOID).unwrap(); log::info!("{out}"); } fn is_cfg(&self, o: Nid) -> bool { self[o].kind.is_cfg() } fn check_final_integrity(&self) { //let mut failed = false; for (_, node) in self.iter() { debug_assert_eq!(node.lock_rc, 0, "{:?}", node.kind); // if !matches!(node.kind, Kind::Return | Kind::End) && node.outputs.is_empty() { // log::err!("outputs are empry {i} {:?}", node.kind); // failed = true; // } // let mut allowed_cfgs = 1 + (node.kind == Kind::If) as usize; // for &o in node.outputs.iter() { // if self.is_cfg(i) { // if allowed_cfgs == 0 && self.is_cfg(o) { // log::err!( // "multiple cfg outputs detected: {:?} -> {:?}", // node.kind, // self[o].kind // ); // failed = true; // } else { // allowed_cfgs += self.is_cfg(o) as usize; // } // } // let other = match &self.values[o as usize] { // Ok(other) => other, // Err(_) => { // log::err!("the edge points to dropped node: {i} {:?} {o}", node.kind,); // failed = true; // continue; // } // }; // let occurs = self[o].inputs.iter().filter(|&&el| el == i).count(); // let self_occurs = self[i].outputs.iter().filter(|&&el| el == o).count(); // if occurs != self_occurs { // log::err!( // "the edge is not bidirectional: {i} {:?} {self_occurs} {o} {:?} {occurs}", // node.kind, // other.kind // ); // failed = true; // } // } } //if failed { // panic!() //} } #[expect(dead_code)] fn climb_expr(&mut self, from: Nid, mut for_each: impl FnMut(Nid, &Node) -> bool) -> bool { fn climb_impl( nodes: &mut Nodes, from: Nid, for_each: &mut impl FnMut(Nid, &Node) -> bool, ) -> bool { for i in 0..nodes[from].inputs.len() { let n = nodes[from].inputs[i]; if n != Nid::MAX && nodes.visited.set(n) && !nodes.is_cfg(n) && (for_each(n, &nodes[n]) || climb_impl(nodes, n, for_each)) { return true; } } false } self.visited.clear(self.values.len()); climb_impl(self, from, &mut for_each) } #[expect(dead_code)] fn late_peephole(&mut self, target: Nid) -> Nid { if let Some(id) = self.peephole(target) { self.replace(target, id); return id; } target } fn load_loop_value(&mut self, index: usize, value: &mut Nid, loops: &mut [Loop]) { if *value != 0 { return; } let [loob, loops @ ..] = loops else { unreachable!() }; let lvalue = &mut loob.scope[index].value; self.load_loop_value(index, &mut lvalue.id, loops); if !self[lvalue.id].is_lazy_phi() { self.unlock(*value); let inps = [loob.node, lvalue.id, VOID]; self.unlock(inps[1]); let ty = self[inps[1]].ty; let phi = self.new_node_nop(ty, Kind::Phi, inps); self[phi].lock_rc += 2; *value = phi; lvalue.id = phi; } else { self.lock(lvalue.id); self.unlock(*value); *value = lvalue.id; } } fn check_dominance(&mut self, nd: Nid, min: Nid, check_outputs: bool) { let node = self[nd].clone(); for &i in node.inputs.iter() { let dom = idom(self, i); debug_assert!( self.dominates(dom, min), "{dom} {min} {node:?} {:?}", self.basic_blocks() ); } if check_outputs { for &o in node.outputs.iter() { let dom = use_block(nd, o, self); debug_assert!( self.dominates(min, dom), "{min} {dom} {node:?} {:?}", self.basic_blocks() ); } } } fn dominates(&mut self, dominator: Nid, mut dominated: Nid) -> bool { loop { if dominator == dominated { break true; } if idepth(self, dominator) > idepth(self, dominated) { break false; } dominated = idom(self, dominated); } } #[expect(dead_code)] fn iter_mut(&mut self) -> impl Iterator { self.values.iter_mut().flat_map(Result::as_mut) } } impl ops::Index for Nodes { type Output = Node; fn index(&self, index: Nid) -> &Self::Output { self.values[index as usize].as_ref().unwrap() } } impl ops::IndexMut for Nodes { fn index_mut(&mut self, index: Nid) -> &mut Self::Output { self.values[index as usize].as_mut().unwrap() } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, Default)] #[repr(u8)] pub enum Kind { #[default] Start, // [ctrl] Entry, Mem, // [terms...] End, // [ctrl, cond] If, Then, Else, // [lhs, rhs] Region, // [entry, back] Loop, // [ctrl, ?value] Return, // [ctrl] CInt { value: i64, }, // [ctrl, lhs, rhs] Phi, Arg { index: u32, }, // [ctrl, oper] UnOp { op: lexer::TokenKind, }, // [ctrl, lhs, rhs] BinOp { op: lexer::TokenKind, }, // [ctrl, ...args] Call { func: ty::Func, }, // [ctrl] Stck, // [ctrl, memory] Load { offset: Offset, }, // [ctrl, value, memory] Stre { offset: Offset, }, } impl Kind { fn is_pinned(&self) -> bool { self.is_cfg() || matches!(self, Self::Phi | Self::Mem) } fn is_cfg(&self) -> bool { matches!( self, Self::Start | Self::End | Self::Return | Self::Entry | Self::Then | Self::Else | Self::Arg { .. } | Self::Call { .. } | Self::If | Self::Region | Self::Loop ) } fn ends_basic_block(&self) -> bool { matches!(self, Self::Return | Self::If | Self::End) } } impl fmt::Display for Kind { fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { match self { Kind::CInt { value } => write!(f, "#{value}"), Kind::Entry => write!(f, "ctrl[entry]"), Kind::Then => write!(f, "ctrl[then]"), Kind::Else => write!(f, "ctrl[else]"), Kind::BinOp { op } => write!(f, "{op}"), Kind::Call { func, .. } => write!(f, "call {func}"), slf => write!(f, "{slf:?}"), } } } #[derive(Debug, Default, Clone)] //#[repr(align(64))] pub struct Node { kind: Kind, inputs: Vc, outputs: Vc, ty: ty::Id, offset: Offset, ralloc_backref: RallocBRef, depth: IDomDepth, lock_rc: LockRc, loop_depth: LoopDepth, } impl Node { fn is_dangling(&self) -> bool { self.outputs.len() + self.lock_rc as usize == 0 } fn key(&self) -> (Kind, &[Nid], ty::Id) { (self.kind, &self.inputs, self.ty) } fn is_lazy_phi(&self) -> bool { self.kind == Kind::Phi && self.inputs[2] == 0 } } type RallocBRef = u16; type LoopDepth = u16; type LockRc = u16; type IDomDepth = u16; struct Loop { node: Nid, ctrl: [Nid; 2], ctrl_scope: [Vec; 2], scope: Vec, } #[derive(Clone, Copy)] struct Variable { id: Ident, value: Value, } #[derive(PartialEq, Eq, Clone, Copy, Debug)] struct MemKey { region: Nid, offset: u32, node: Nid, } #[derive(Default)] struct ItemCtx { file: FileId, #[expect(dead_code)] id: ty::Id, ret: Option, task_base: usize, nodes: Nodes, ctrl: Nid, call_count: u16, filled: Vec, loops: Vec, vars: Vec, memories: Vec, clobbered: Vec, ret_relocs: Vec, relocs: Vec, jump_relocs: Vec<(Nid, Reloc)>, code: Vec, } impl ItemCtx { fn emit(&mut self, instr: (usize, [u8; instrs::MAX_SIZE])) { crate::emit(&mut self.code, instr); } } fn write_reloc(doce: &mut [u8], offset: usize, value: i64, size: u16) { let value = value.to_ne_bytes(); doce[offset..offset + size as usize].copy_from_slice(&value[..size as usize]); } struct FTask { file: FileId, id: ty::Func, } #[derive(Default, Debug)] struct Ctx { ty: Option, } impl Ctx { pub fn with_ty(self, ty: impl Into) -> Self { Self { ty: Some(ty.into()) } } } #[derive(Default)] struct Pool { cis: Vec, } struct Regalloc { env: regalloc2::MachineEnv, ctx: regalloc2::Ctx, } impl Default for Regalloc { fn default() -> Self { Self { env: regalloc2::MachineEnv { preferred_regs_by_class: [ (1..13).map(|i| regalloc2::PReg::new(i, regalloc2::RegClass::Int)).collect(), vec![], vec![], ], non_preferred_regs_by_class: [ (13..64).map(|i| regalloc2::PReg::new(i, regalloc2::RegClass::Int)).collect(), vec![], vec![], ], scratch_by_class: Default::default(), fixed_stack_slots: Default::default(), }, ctx: Default::default(), } } } #[derive(Default, Clone, Copy)] struct Value { ty: ty::Id, off: Offset, var: bool, ptr: bool, id: Nid, } impl Value { const NEVER: Option = Some(Self { ty: ty::Id::NEVER, off: 0, var: false, ptr: false, id: NEVER }); const VOID: Value = Self { ty: ty::Id::VOID, off: 0, var: false, ptr: false, id: VOID }; pub fn new(id: Nid) -> Self { Self { id, ..Default::default() } } pub fn var(id: usize) -> Self { Self { id: id as Nid, var: true, ..Default::default() } } #[inline(always)] pub fn ty(self, ty: impl Into) -> Self { Self { ty: ty.into(), ..self } } #[inline(always)] #[expect(dead_code)] pub fn off(self, off: Offset) -> Self { Self { off, ..self } } } #[derive(Default)] pub struct Codegen { pub files: Vec, tasks: Vec>, tys: Types, ci: ItemCtx, pool: Pool, ralloc: Regalloc, errors: RefCell, } impl Codegen { fn graphviz_low(&self, out: &mut String) -> core::fmt::Result { use core::fmt::Write; for (i, node) in self.ci.nodes.iter() { let color = if self.ci.nodes.is_cfg(i) { "yellow" } else { "white" }; writeln!( out, "node{i}[label=\"{} {}\" color={color}]", node.kind, self.ty_display(node.ty) )?; for (j, &o) in node.outputs.iter().enumerate() { let color = if self.ci.nodes.is_cfg(i) && self.ci.nodes.is_cfg(o) { "red" } else { "lightgray" }; let index = self.ci.nodes[o].inputs.iter().position(|&inp| i == inp).unwrap(); let style = if index == 0 && !self.ci.nodes.is_cfg(o) { "style=dotted" } else { "" }; writeln!( out, "node{o} -> node{i}[color={color} taillabel={index} headlabel={j} {style}]", )?; } } Ok(()) } #[allow(dead_code)] fn graphviz(&self) { let out = &mut String::new(); _ = self.graphviz_low(out); log::info!("{out}"); } fn region_range(&self, region: Nid, offset: Offset, size: Size) -> core::ops::Range { let start = self .ci .memories .binary_search_by_key(&(region, offset), |k| (k.region, k.offset)) .unwrap_or_else(core::convert::identity); let end = self .ci .memories .binary_search_by(|k| (k.region, k.offset).cmp(&(region, offset + size))) .unwrap_or_else(core::convert::identity); start..end } fn mem_op(&mut self, region: Nid, offset: Offset, kind: Kind, ty: ty::Id, mut inps: Vc) -> Nid { let size = self.tys.size_of(ty); let range = self.region_range(region, offset, size); for mk in &self.ci.memories[range.clone()] { debug_assert_eq!(mk.region, region); debug_assert!(mk.offset >= offset); debug_assert!(mk.offset < offset + size); inps.push(mk.node); } if range.is_empty() { inps.push(region); } let (new_op, peeped) = self.ci.nodes.new_node_low(ty, kind, inps); if !peeped { for mk in &self.ci.memories[range.clone()] { self.ci.nodes.unlock(mk.node); } self.ci .memories .splice(range, core::iter::once(MemKey { node: new_op, region, offset })); self.ci.nodes.lock(new_op); } new_op } fn store_mem(&mut self, region: Nid, offset: Offset, value: Nid) -> Nid { self.mem_op(region, offset, Kind::Stre { offset }, self.tof(value), [VOID, value].into()) } fn load_mem(&mut self, region: Nid, offset: Offset, ty: ty::Id) -> Nid { self.mem_op(region, offset, Kind::Load { offset }, ty, [VOID].into()) } pub fn generate(&mut self) { self.find_or_declare(0, 0, None, "main"); self.make_func_reachable(0); self.complete_call_graph(); } fn make_func_reachable(&mut self, func: ty::Func) { let fuc = &mut self.tys.ins.funcs[func as usize]; if fuc.offset == u32::MAX { fuc.offset = task::id(self.tasks.len() as _); self.tasks.push(Some(FTask { file: fuc.file, id: func })); } } fn raw_expr(&mut self, expr: &Expr) -> Option { self.raw_expr_ctx(expr, Ctx::default()) } fn raw_expr_ctx(&mut self, expr: &Expr, ctx: Ctx) -> Option { let msg = "i know nothing about this name, gal, which is vired \ because we parsed succesfully"; // ordered by complexity of the expression match *expr { Expr::Comment { .. } => Some(Value::VOID), Expr::Ident { pos, id, .. } => { let Some(index) = self.ci.vars.iter().position(|v| v.id == id) else { self.report(pos, msg); return Value::NEVER; }; self.ci.nodes.load_loop_value( index, &mut self.ci.vars[index].value.id, &mut self.ci.loops, ); Some(Value::var(index).ty(self.ci.vars[index].value.ty)) } Expr::Number { value, .. } => Some(self.ci.nodes.new_node_lit( ctx.ty.filter(|ty| ty.is_integer() || ty.is_pointer()).unwrap_or(ty::Id::INT), Kind::CInt { value }, [VOID], )), Expr::Return { pos, val } => { let value = if let Some(val) = val { self.expr_ctx(val, Ctx { ty: self.ci.ret })? } else { Value { ty: ty::Id::VOID, ..Default::default() } }; let mut inps = Vc::from([self.ci.ctrl, value.id]); for m in self.ci.memories.iter() { inps.push(m.node); } self.ci.ctrl = self.ci.nodes.new_node(ty::Id::VOID, Kind::Return, inps); self.ci.nodes[NEVER].inputs.push(self.ci.ctrl); self.ci.nodes[self.ci.ctrl].outputs.push(NEVER); let expected = *self.ci.ret.get_or_insert(value.ty); _ = self.assert_ty(pos, value.ty, expected, true, "return value"); None } //Expr::Field { target, name, pos } => { // let vtarget = self.raw_expr(target)?; // let tty = vtarget.ty; // let ty::Kind::Struct(s) = self.tys.base_of(tty).unwrap_or(tty).expand() else { // self.report( // pos, // fa!( // "the '{}' is not a struct, or pointer to one, \ // but accessing fields is only possible on structs", // self.ty_display(tty) // ), // ); // return Value::NEVER; // }; // let Some((offset, ty)) = OffsetIter::offset_of(&self.tys, s, name) else { // let field_list = self // .tys // .struct_fields(s) // .iter() // .map(|f| self.tys.names.ident_str(f.name)) // .intersperse("', '") // .collect::(); // self.report( // pos, // fa!( // "the '{}' does not have this field, \ // but it does have '{field_list}'", // self.ty_display(tty) // ), // ); // return Value::NEVER; // }; // todo!() // //Some(self.ptr_mem(vtarget, offset, ty, true)) //} Expr::UnOp { op: TokenKind::Band, val, .. } => { let ctx = Ctx { ty: ctx.ty.and_then(|ty| self.tys.base_of(ty)) }; let mut val = self.raw_expr_ctx(val, ctx)?; self.strip_var(&mut val); if val.ptr { val.ptr = false; val.ty = self.tys.make_ptr(val.ty); if val.off != 0 { let off = self.ci.nodes.new_node_nop( ty::Id::INT, Kind::CInt { value: val.off as i64 }, [VOID], ); let inps = [VOID, val.id, off]; val.id = self.ci.nodes.new_node(val.ty, Kind::UnOp { op: TokenKind::Add }, inps) } return Some(val); } let stack = self.ci.nodes.new_node_nop(val.ty, Kind::Stck, [VOID, MEM]); self.store_mem(stack, 0, val.id); Some(Value::new(stack).ty(self.tys.make_ptr(val.ty))) } Expr::UnOp { op: TokenKind::Mul, val, pos } => { let ctx = Ctx { ty: ctx.ty.map(|ty| self.tys.make_ptr(ty)) }; let mut val = self.expr_ctx(val, ctx)?; let Some(base) = self.tys.base_of(val.ty) else { self.report( pos, fa!("the '{}' can not be dereferneced", self.ty_display(val.ty)), ); return Value::NEVER; }; val.ptr = true; val.ty = base; Some(val) } Expr::UnOp { pos, op: op @ TokenKind::Sub, val } => { let val = self.expr_ctx(val, ctx)?; if !val.ty.is_integer() { self.report(pos, fa!("cant negate '{}'", self.ty_display(val.ty))); } Some(self.ci.nodes.new_node_lit(val.ty, Kind::UnOp { op }, [VOID, val.id])) } Expr::BinOp { left: &Expr::Ident { id, .. }, op: TokenKind::Decl, right } => { let value = self.expr(right)?; self.ci.nodes.lock(value.id); self.ci.vars.push(Variable { id, value }); Some(Value::VOID) } Expr::BinOp { left, op: TokenKind::Assign, right } => { let dest = self.raw_expr(left)?; let value = self.expr(right)?; self.ci.nodes.lock(value.id); _ = self.assert_ty(left.pos(), value.ty, dest.ty, true, "assignment dest"); if dest.var { let var = &mut self.ci.vars[dest.id as usize]; let prev = core::mem::replace(&mut var.value, value); self.ci.nodes.unlock_remove(prev.id); } else if dest.ptr { self.store_mem(dest.id, dest.off, value.id); } else { self.report(left.pos(), "cannot assign to this expression"); } Some(Value::VOID) } //Expr::BinOp { // left: &Expr::UnOp { pos, op: TokenKind::Mul, val }, // op: TokenKind::Assign, // right, //} => { // //let ctx = Ctx { ty: ctx.ty.map(|ty| self.tys.make_ptr(ty)) }; // //let val = self.expr_ctx(val, ctx)?; // //let base = self.get_load_type(val).unwrap_or_else(|| { // // self.report( // // pos, // // fa!("the '{}' can not be dereferneced", self.ty_display(self.tof(val))), // // ); // // ty::Id::NEVER // //}); // //let value = self.expr_ctx(right, Ctx::default().with_ty(base))?; // //_ = self.assert_ty(right.pos(), self.tof(value), base, true, "stored value"); // //self.store_mem(val, 0, value); // //Some(Value::VOID) // todo!() //} Expr::BinOp { left, op, right } if op != TokenKind::Assign => { let lhs = self.expr_ctx(left, ctx)?; self.ci.nodes.lock(lhs.id); let rhs = self.expr_ctx(right, Ctx::default().with_ty(lhs.ty)); self.ci.nodes.unlock(lhs.id); let rhs = rhs?; let ty = self.assert_ty(left.pos(), rhs.ty, lhs.ty, false, "right operand"); let inps = [VOID, lhs.id, rhs.id]; Some(self.ci.nodes.new_node_lit(ty::bin_ret(ty, op), Kind::BinOp { op }, inps)) } Expr::Directive { name: "sizeof", args: [ty], .. } => { let ty = self.ty(ty); Some(self.ci.nodes.new_node_lit( ty::Id::INT, Kind::CInt { value: self.tys.size_of(ty) as _ }, [VOID], )) } Expr::Call { func: &Expr::Ident { pos, id, .. }, args, .. } => { self.ci.call_count += 1; let cfile = self.cfile().clone(); let func = self.find_or_declare(pos, self.ci.file, Some(id), cfile.ident_str(id)); let ty::Kind::Func(func) = func else { self.report( pos, fa!("compiler cant (yet) call '{}'", self.ty_display(func.compress())), ); return Value::NEVER; }; self.make_func_reachable(func); let fuc = &self.tys.ins.funcs[func as usize]; let sig = fuc.sig.expect("TODO: generic functions"); let ast = self.files[fuc.file as usize].clone(); let Expr::BinOp { right: &Expr::Closure { args: cargs, .. }, .. } = fuc.expr.get(&ast).unwrap() else { unreachable!() }; self.assert_report( args.len() == cargs.len(), pos, fa!( "expected {} function argumenr{}, got {}", cargs.len(), if cargs.len() == 1 { "" } else { "s" }, args.len() ), ); let mut inps = Vc::from([self.ci.ctrl]); for ((arg, carg), tyx) in args.iter().zip(cargs).zip(sig.args.range()) { let ty = self.tys.ins.args[tyx]; if self.tys.size_of(ty) == 0 { continue; } let value = self.expr_ctx(arg, Ctx::default().with_ty(ty))?; _ = self.assert_ty( arg.pos(), value.ty, ty, true, fa!("argument {}", carg.name), ); inps.push(value.id); } self.ci.ctrl = self.ci.nodes.new_node(sig.ret, Kind::Call { func }, inps); for c in self.ci.clobbered.drain(..) { self.ci.nodes[self.ci.ctrl].inputs.push(c); self.ci.nodes[c].outputs.push(self.ci.ctrl); } Some(Value::new(self.ci.ctrl).ty(sig.ret)) } //Expr::Ctor { pos, ty, fields, .. } => { // //let Some(sty) = ty.map(|ty| self.ty(ty)).or(ctx.ty) else { // // self.report( // // pos, // // "the type of struct cannot be inferred from context, \ // // use an explicit type instead: .{ ... }", // // ); // // return Value::NEVER; // //}; // //let ty::Kind::Struct(s) = sty.expand() else { // // let inferred = if ty.is_some() { "" } else { "inferred " }; // // self.report( // // pos, // // fa!( // // "the {inferred}type of the constructor is `{}`, \ // // but thats not a struct", // // self.ty_display(sty) // // ), // // ); // // return Value::NEVER; // //}; // //// TODO: dont allocate // //let mut offs = OffsetIter::new(s, &self.tys) // // .into_iter(&self.tys) // // .map(|(f, o)| (f.ty, o)) // // .collect::>(); // //let mem = self.ci.nodes.new_node(sty, Kind::Stck, [VOID, MEM]); // //for field in fields { // // let Some(index) = self.tys.find_struct_field(s, field.name) else { // // self.report( // // field.pos, // // fa!("struct '{}' does not have this field", self.ty_display(sty)), // // ); // // continue; // // }; // // let (ty, offset) = // // core::mem::replace(&mut offs[index], (ty::Id::UNDECLARED, field.pos)); // // if ty == ty::Id::UNDECLARED { // // self.report(field.pos, "the struct field is already initialized"); // // self.report(offset, "previous initialization is here"); // // continue; // // } // // let value = self.expr_ctx(&field.value, Ctx::default().with_ty(ty))?; // // self.store_mem(mem, offset, value); // //} // //let field_list = self // // .tys // // .struct_fields(s) // // .iter() // // .zip(offs) // // .filter(|&(_, (ty, _))| ty != ty::Id::UNDECLARED) // // .map(|(f, _)| self.tys.names.ident_str(f.name)) // // .intersperse(", ") // // .collect::(); // //if !field_list.is_empty() { // // self.report(pos, fa!("the struct initializer is missing {field_list}")); // //} // //Some(mem) // todo!() //} Expr::Block { stmts, .. } => { let base = self.ci.vars.len(); let mut ret = Some(Value::VOID); for stmt in stmts { ret = ret.and(self.expr(stmt)); if let Some(id) = ret { _ = self.assert_ty(stmt.pos(), id.ty, ty::Id::VOID, true, "statement"); } else { break; } } self.ci.nodes.lock(self.ci.ctrl); for var in self.ci.vars.drain(base..) { self.ci.nodes.unlock_remove(var.value.id); } self.ci.nodes.unlock(self.ci.ctrl); ret } Expr::Loop { body, .. } => { self.ci.ctrl = self.ci.nodes.new_node(ty::Id::VOID, Kind::Loop, [self.ci.ctrl; 2]); self.ci.loops.push(Loop { node: self.ci.ctrl, ctrl: [Nid::MAX; 2], ctrl_scope: core::array::from_fn(|_| vec![]), scope: self.ci.vars.clone(), }); for var in &mut self.ci.vars { var.value = Value::VOID; } self.ci.nodes[VOID].lock_rc += self.ci.vars.len() as LockRc; self.expr(body); let Loop { node, ctrl: [mut con, bre], ctrl_scope: [mut cons, mut bres], scope } = self.ci.loops.pop().unwrap(); if con != Nid::MAX { con = self.ci.nodes.new_node(ty::Id::VOID, Kind::Region, [con, self.ci.ctrl]); Self::merge_scopes( &mut self.ci.nodes, &mut self.ci.loops, con, &mut self.ci.vars, &mut cons, true, ); self.ci.ctrl = con; } self.ci.nodes.modify_input(node, 1, self.ci.ctrl); let idx = self.ci.nodes[node] .outputs .iter() .position(|&n| self.ci.nodes.is_cfg(n)) .unwrap(); self.ci.nodes[node].outputs.swap(idx, 0); if bre == Nid::MAX { self.ci.ctrl = NEVER; return None; } self.ci.ctrl = bre; self.ci.nodes.lock(self.ci.ctrl); core::mem::swap(&mut self.ci.vars, &mut bres); for ((dest_var, mut scope_var), loop_var) in self.ci.vars.iter_mut().zip(scope).zip(bres) { self.ci.nodes.unlock(loop_var.value.id); if loop_var.value.id != VOID { self.ci.nodes.unlock(scope_var.value.id); if loop_var.value.id != scope_var.value.id { scope_var.value.id = self.ci.nodes.modify_input( scope_var.value.id, 2, loop_var.value.id, ); self.ci.nodes.lock(scope_var.value.id); } else { if dest_var.value.id == scope_var.value.id { self.ci.nodes.unlock(dest_var.value.id); dest_var.value.id = VOID; self.ci.nodes.lock(dest_var.value.id); } let phi = &self.ci.nodes[scope_var.value.id]; debug_assert_eq!(phi.kind, Kind::Phi); debug_assert_eq!(phi.inputs[2], VOID); let prev = phi.inputs[1]; self.ci.nodes.replace(scope_var.value.id, prev); scope_var.value.id = prev; self.ci.nodes.lock(prev); } } if dest_var.value.id == VOID { self.ci.nodes.unlock(dest_var.value.id); dest_var.value.id = scope_var.value.id; self.ci.nodes.lock(dest_var.value.id); } debug_assert!( self.ci.nodes[dest_var.value.id].kind != Kind::Phi || self.ci.nodes[dest_var.value.id].inputs[2] != 0 ); self.ci.nodes.unlock_remove(scope_var.value.id); } self.ci.nodes.unlock(self.ci.ctrl); Some(Value::VOID) } Expr::Break { pos } => self.jump_to(pos, 1), Expr::Continue { pos } => self.jump_to(pos, 0), Expr::If { cond, then, else_, .. } => { let cond = self.expr_ctx(cond, Ctx::default().with_ty(ty::BOOL))?; let if_node = self.ci.nodes.new_node(ty::Id::VOID, Kind::If, [self.ci.ctrl, cond.id]); 'b: { let branch = match self.tof(if_node).expand().inner() { ty::LEFT_UNREACHABLE => else_, ty::RIGHT_UNREACHABLE => Some(then), _ => break 'b, }; self.ci.nodes.lock(self.ci.ctrl); self.ci.nodes.remove(if_node); self.ci.nodes.unlock(self.ci.ctrl); if let Some(branch) = branch { return self.expr(branch); } else { return Some(Value::VOID); } } let mut else_scope = self.ci.vars.clone(); for &el in &self.ci.vars { self.ci.nodes.lock(el.value.id); } self.ci.ctrl = self.ci.nodes.new_node(ty::Id::VOID, Kind::Then, [if_node]); let lcntrl = self.expr(then).map_or(Nid::MAX, |_| self.ci.ctrl); let mut then_scope = core::mem::replace(&mut self.ci.vars, else_scope); self.ci.ctrl = self.ci.nodes.new_node(ty::Id::VOID, Kind::Else, [if_node]); let rcntrl = if let Some(else_) = else_ { self.expr(else_).map_or(Nid::MAX, |_| self.ci.ctrl) } else { self.ci.ctrl }; if lcntrl == Nid::MAX && rcntrl == Nid::MAX { for then_var in then_scope { self.ci.nodes.unlock_remove(then_var.value.id); } return None; } else if lcntrl == Nid::MAX { for then_var in then_scope { self.ci.nodes.unlock_remove(then_var.value.id); } return Some(Value::VOID); } else if rcntrl == Nid::MAX { for else_var in &self.ci.vars { self.ci.nodes.unlock_remove(else_var.value.id); } self.ci.vars = then_scope; self.ci.ctrl = lcntrl; return Some(Value::VOID); } self.ci.ctrl = self.ci.nodes.new_node(ty::Id::VOID, Kind::Region, [lcntrl, rcntrl]); else_scope = core::mem::take(&mut self.ci.vars); Self::merge_scopes( &mut self.ci.nodes, &mut self.ci.loops, self.ci.ctrl, &mut else_scope, &mut then_scope, true, ); self.ci.vars = else_scope; Some(Value::VOID) } ref e => { self.report_unhandled_ast(e, "bruh"); Value::NEVER } } } fn expr_ctx(&mut self, expr: &Expr, ctx: Ctx) -> Option { let mut n = self.raw_expr_ctx(expr, ctx)?; self.strip_var(&mut n); if core::mem::take(&mut n.ptr) { n.id = self.load_mem(n.id, n.off, n.ty); } Some(n) } fn strip_var(&mut self, n: &mut Value) { if core::mem::take(&mut n.var) { let mut id = self.ci.vars[n.id as usize].value.id; self.ci.nodes.load_loop_value(n.id as usize, &mut id, &mut self.ci.loops); n.id = id; } } fn expr(&mut self, expr: &Expr) -> Option { self.expr_ctx(expr, Default::default()) } fn jump_to(&mut self, pos: Pos, id: usize) -> Option { let Some(mut loob) = self.ci.loops.last_mut() else { self.report(pos, "break outside a loop"); return None; }; if loob.ctrl[id] == Nid::MAX { loob.ctrl[id] = self.ci.ctrl; loob.ctrl_scope[id] = self.ci.vars[..loob.scope.len()].to_owned(); for v in &loob.ctrl_scope[id] { self.ci.nodes.lock(v.value.id) } } else { let reg = self.ci.nodes.new_node(ty::Id::VOID, Kind::Region, [self.ci.ctrl, loob.ctrl[id]]); let mut scope = core::mem::take(&mut loob.ctrl_scope[id]); Self::merge_scopes( &mut self.ci.nodes, &mut self.ci.loops, reg, &mut scope, &mut self.ci.vars, false, ); loob = self.ci.loops.last_mut().unwrap(); loob.ctrl_scope[id] = scope; loob.ctrl[id] = reg; } self.ci.ctrl = NEVER; None } fn merge_scopes( nodes: &mut Nodes, loops: &mut [Loop], ctrl: Nid, to: &mut [Variable], from: &mut [Variable], drop_from: bool, ) { for (i, (else_var, then_var)) in to.iter_mut().zip(from).enumerate() { if else_var.value.id != then_var.value.id { nodes.load_loop_value(i, &mut then_var.value.id, loops); nodes.load_loop_value(i, &mut else_var.value.id, loops); if else_var.value.id != then_var.value.id { let ty = nodes[else_var.value.id].ty; debug_assert_eq!(ty, nodes[then_var.value.id].ty, "TODO: typecheck properly"); let inps = [ctrl, then_var.value.id, else_var.value.id]; nodes.unlock(else_var.value.id); else_var.value.id = nodes.new_node(ty, Kind::Phi, inps); nodes.lock(else_var.value.id); } } if drop_from { nodes.unlock_remove(then_var.value.id); } } } #[inline(always)] fn tof(&self, id: Nid) -> ty::Id { self.ci.nodes[id].ty } fn complete_call_graph(&mut self) { while self.ci.task_base < self.tasks.len() && let Some(task_slot) = self.tasks.pop() { let Some(task) = task_slot else { continue }; self.emit_func(task); } } fn emit_func(&mut self, FTask { file, id }: FTask) { let func = &mut self.tys.ins.funcs[id as usize]; func.offset = u32::MAX - 1; debug_assert!(func.file == file); let sig = func.sig.unwrap(); let ast = self.files[file as usize].clone(); let expr = func.expr.get(&ast).unwrap(); let repl = ItemCtx { file, id: ty::Kind::Func(id).compress(), ret: Some(sig.ret), ..self.pool.cis.pop().unwrap_or_default() }; let prev_ci = core::mem::replace(&mut self.ci, repl); let start = self.ci.nodes.new_node(ty::Id::VOID, Kind::Start, []); debug_assert_eq!(start, VOID); let end = self.ci.nodes.new_node(ty::Id::NEVER, Kind::End, []); debug_assert_eq!(end, NEVER); self.ci.nodes.lock(end); self.ci.ctrl = self.ci.nodes.new_node(ty::Id::VOID, Kind::Entry, [VOID]); debug_assert_eq!(self.ci.ctrl, ENTRY); let mem = self.ci.nodes.new_node(ty::Id::VOID, Kind::Mem, [VOID]); debug_assert_eq!(mem, MEM); self.ci.nodes.lock(mem); let Expr::BinOp { left: Expr::Ident { .. }, op: TokenKind::Decl, right: &Expr::Closure { body, args, .. }, } = expr else { unreachable!("{}", self.ast_display(expr)) }; let mut sig_args = sig.args.range(); for (arg, index) in args.iter().zip(0u32..) { let ty = self.tys.ins.args[sig_args.next().unwrap()]; let value = self.ci.nodes.new_node(ty, Kind::Arg { index }, [VOID]); self.ci.nodes.lock(value); let sym = parser::find_symbol(&ast.symbols, arg.id); assert!(sym.flags & idfl::COMPTIME == 0, "TODO"); self.ci.vars.push(Variable { id: arg.id, value: Value::new(value).ty(ty) }); } let orig_vars = self.ci.vars.clone(); if self.expr(body).is_some() { self.report(body.pos(), "expected all paths in the fucntion to return"); } self.ci.nodes.unlock(end); for mem in self.ci.memories.drain(..) { if self.ci.nodes[mem.region].kind == Kind::Stck && self.ci.nodes[mem.node] .outputs .iter() .all(|&n| self.ci.nodes[n].kind == Kind::Return) { let outs = core::mem::take(&mut self.ci.nodes[mem.node].outputs); for out in outs { let index = self.ci.nodes[out].inputs.iter().rposition(|&o| o == mem.node).unwrap(); self.ci.nodes[out].inputs.swap_remove(index); } } self.ci.nodes.unlock_remove(mem.node); } self.ci.nodes.unlock(mem); for var in self.ci.vars.drain(..) { self.ci.nodes.unlock(var.value.id); } if self.errors.borrow().is_empty() { self.graphviz(); self.gcm(); #[cfg(debug_assertions)] { self.ci.nodes.check_final_integrity(); } '_open_function: { self.ci.emit(instrs::addi64(reg::STACK_PTR, reg::STACK_PTR, 0)); self.ci.emit(instrs::st(reg::RET_ADDR, reg::STACK_PTR, 0, 0)); } //self.ci.nodes.basic_blocks(); self.graphviz(); let mut stack_size = 0; '_compute_stack: { let mems = core::mem::take(&mut self.ci.nodes[MEM].outputs); for &stck in mems.iter() { stack_size += self.tys.size_of(self.ci.nodes[stck].ty); self.ci.nodes[stck].offset = stack_size; } for &stck in mems.iter() { self.ci.nodes[stck].offset = stack_size - self.ci.nodes[stck].offset; } self.ci.nodes[mem].outputs = mems; } self.ci.vars = orig_vars; self.ci.nodes.visited.clear(self.ci.nodes.values.len()); let saved = self.emit_body(sig); self.ci.vars.clear(); if let Some(last_ret) = self.ci.ret_relocs.last() && last_ret.offset as usize == self.ci.code.len() - 5 { self.ci.code.truncate(self.ci.code.len() - 5); self.ci.ret_relocs.pop(); } // FIXME: maybe do this incrementally for (nd, rel) in self.ci.jump_relocs.drain(..) { let offset = self.ci.nodes[nd].offset; rel.apply_jump(&mut self.ci.code, offset, 0); } let end = self.ci.code.len(); for ret_rel in self.ci.ret_relocs.drain(..) { ret_rel.apply_jump(&mut self.ci.code, end as _, 0); } let mut stripped_prelude_size = 0; '_close_function: { let pushed = (saved as i64 + (core::mem::take(&mut self.ci.call_count) != 0) as i64) * 8; let stack = stack_size as i64; match (pushed, stack) { (0, 0) => { stripped_prelude_size = instrs::addi64(0, 0, 0).0 + instrs::st(0, 0, 0, 0).0; self.ci.code.drain(0..stripped_prelude_size); break '_close_function; } (0, stack) => { write_reloc(&mut self.ci.code, 3, -stack, 8); stripped_prelude_size = instrs::addi64(0, 0, 0).0; let end = stripped_prelude_size + instrs::st(0, 0, 0, 0).0; self.ci.code.drain(stripped_prelude_size..end); self.ci.emit(instrs::addi64(reg::STACK_PTR, reg::STACK_PTR, stack as _)); break '_close_function; } _ => {} } write_reloc(&mut self.ci.code, 3, -(pushed + stack), 8); write_reloc(&mut self.ci.code, 3 + 8 + 3, stack, 8); write_reloc(&mut self.ci.code, 3 + 8 + 3 + 8, pushed, 2); self.ci.emit(instrs::ld(reg::RET_ADDR, reg::STACK_PTR, stack as _, pushed as _)); self.ci.emit(instrs::addi64(reg::STACK_PTR, reg::STACK_PTR, (pushed + stack) as _)); } self.ci.relocs.iter_mut().for_each(|r| r.reloc.offset -= stripped_prelude_size as u32); self.ci.emit(instrs::jala(reg::ZERO, reg::RET_ADDR, 0)); } self.tys.ins.funcs[id as usize].code.append(&mut self.ci.code); self.tys.ins.funcs[id as usize].relocs.append(&mut self.ci.relocs); self.ci.nodes.clear(); self.ci.filled.clear(); self.pool.cis.push(core::mem::replace(&mut self.ci, prev_ci)); } fn emit_body(&mut self, sig: Sig) -> usize { let mut nodes = core::mem::take(&mut self.ci.nodes); let func = Function::new(&mut nodes, &self.tys, sig); if self.ci.call_count != 0 { core::mem::swap( &mut self.ralloc.env.preferred_regs_by_class, &mut self.ralloc.env.non_preferred_regs_by_class, ); }; let options = regalloc2::RegallocOptions { verbose_log: false, validate_ssa: false, algorithm: regalloc2::Algorithm::Ion, }; regalloc2::run_with_ctx(&func, &self.ralloc.env, &options, &mut self.ralloc.ctx) .unwrap_or_else(|err| panic!("{err}")); if self.ci.call_count != 0 { core::mem::swap( &mut self.ralloc.env.preferred_regs_by_class, &mut self.ralloc.env.non_preferred_regs_by_class, ); }; let mut saved_regs = HashMap::::default(); let mut atr = |allc: regalloc2::Allocation| { debug_assert!(allc.is_reg()); let hvenc = regalloc2::PReg::from_index(allc.index()).hw_enc() as u8; if hvenc <= 12 { return hvenc; } let would_insert = saved_regs.len() as u8 + reg::RET_ADDR + 1; *saved_regs.entry(hvenc).or_insert(would_insert) }; for (i, block) in func.blocks.iter().enumerate() { let blk = regalloc2::Block(i as _); func.nodes[block.nid].offset = self.ci.code.len() as _; for instr_or_edit in self.ralloc.ctx.output.block_insts_and_edits(&func, blk) { let inst = match instr_or_edit { regalloc2::InstOrEdit::Inst(inst) => inst, regalloc2::InstOrEdit::Edit(®alloc2::Edit::Move { from, to }) => { self.ci.emit(instrs::cp(atr(to), atr(from))); continue; } }; let nid = func.instrs[inst.index()].nid; if nid == NEVER { continue; }; let allocs = self.ralloc.ctx.output.inst_allocs(inst); let node = &func.nodes[nid]; match node.kind { Kind::If => { let &[_, cond] = node.inputs.as_slice() else { unreachable!() }; if let Kind::BinOp { op } = func.nodes[cond].kind && let Some((op, swapped)) = op.cond_op(node.ty.is_signed()) { let rel = Reloc::new(self.ci.code.len(), 3, 2); self.ci.jump_relocs.push((node.outputs[!swapped as usize], rel)); let &[lhs, rhs] = allocs else { unreachable!() }; self.ci.emit(op(atr(lhs), atr(rhs), 0)); } else { todo!() } } Kind::Loop | Kind::Region => { if node.ralloc_backref as usize != i + 1 { let rel = Reloc::new(self.ci.code.len(), 1, 4); self.ci.jump_relocs.push((nid, rel)); self.ci.emit(instrs::jmp(0)); } } Kind::Return => { if i != func.blocks.len() - 1 { let rel = Reloc::new(self.ci.code.len(), 1, 4); self.ci.ret_relocs.push(rel); self.ci.emit(instrs::jmp(0)); } } Kind::CInt { value } => { self.ci.emit(instrs::li64(atr(allocs[0]), value as _)); } Kind::UnOp { op } => { let op = op.unop().expect("TODO: unary operator not supported"); let &[dst, oper] = allocs else { unreachable!() }; self.ci.emit(op(atr(dst), atr(oper))); } Kind::BinOp { op } => { let &[.., rhs] = node.inputs.as_slice() else { unreachable!() }; if let Kind::CInt { value } = func.nodes[rhs].kind && let Some(op) = op.imm_binop(node.ty.is_signed(), func.tys.size_of(node.ty)) { let &[dst, lhs] = allocs else { unreachable!() }; self.ci.emit(op(atr(dst), atr(lhs), value as _)); } else if let Some(op) = op.binop(node.ty.is_signed(), func.tys.size_of(node.ty)) { let &[dst, lhs, rhs] = allocs else { unreachable!() }; self.ci.emit(op(atr(dst), atr(lhs), atr(rhs))); } else if op.cond_op(node.ty.is_signed()).is_some() { } else { todo!() } } Kind::Call { func } => { self.ci.relocs.push(TypedReloc { target: ty::Kind::Func(func).compress(), reloc: Reloc::new(self.ci.code.len(), 3, 4), }); self.ci.emit(instrs::jal(reg::RET_ADDR, reg::ZERO, 0)); } Kind::Stck => { let base = reg::STACK_PTR; let offset = func.nodes[nid].offset; self.ci.emit(instrs::addi64(atr(allocs[0]), base, offset as _)); } Kind::Load { offset } => { let region = node.inputs[1]; let size = self.tys.size_of(node.ty); debug_assert_eq!(size, 8, "TODO"); let (base, offset) = match func.nodes[region].kind { Kind::Stck => (reg::STACK_PTR, func.nodes[region].offset + offset), _ => (atr(allocs[1]), func.nodes[region].offset + offset), }; self.ci.emit(instrs::ld(atr(allocs[0]), base, offset as _, size as _)); } Kind::Stre { offset } => { let region = node.inputs[2]; let size = self.tys.size_of(node.ty); debug_assert_eq!(size, 8, "TODO"); let nd = &func.nodes[region]; let (base, offset, src) = match nd.kind { Kind::Stck => (reg::STACK_PTR, nd.offset + offset, allocs[0]), _ => (atr(allocs[0]), offset, allocs[1]), }; self.ci.emit(instrs::st(atr(src), base, offset as _, size as _)); } _ => unreachable!(), } } } self.ci.nodes = nodes; saved_regs.len() } fn ty(&mut self, expr: &Expr) -> ty::Id { if let Some(ty) = self.tys.ty(self.ci.file, expr, &self.files) { return ty; } self.report_unhandled_ast(expr, "type"); ty::Id::NEVER } fn find_or_declare( &mut self, pos: Pos, file: FileId, name: Option, lit_name: &str, ) -> ty::Kind { log::trace!("find_or_declare: {lit_name} {file}"); if let Some(ty) = self.tys.find_type(file, name.ok_or(lit_name), &self.files) { return ty.expand(); } let f = self.files[file as usize].clone(); let Some((expr, ident)) = f.find_decl(name.ok_or(lit_name)) else { match name.ok_or(lit_name) { Ok(name) => { let name = self.cfile().ident_str(name); self.report(pos, fa!("idk indentifier: {name}")) } Err("main") => self.report( pos, fa!( "missing main function in '{}', compiler can't \ emmit libraries since such concept is not defined", f.path ), ), Err(name) => self.report(pos, fa!("idk indentifier: {name}")), } return ty::Kind::Builtin(ty::NEVER); }; let key = SymKey::Decl(file, ident); if let Some(existing) = self.tys.syms.get(key, &self.tys.ins) { if let ty::Kind::Func(id) = existing.expand() && let func = &mut self.tys.ins.funcs[id as usize] && let Err(idx) = task::unpack(func.offset) && idx < self.tasks.len() { func.offset = task::id(self.tasks.len()); let task = self.tasks[idx].take(); self.tasks.push(task); } return existing.expand(); } let prev_file = core::mem::replace(&mut self.ci.file, file); let sym = match expr { Expr::BinOp { left: &Expr::Ident { id, .. }, op: TokenKind::Decl, right: &Expr::Closure { pos, args, ret, .. }, } => { let func = Func { file, name: id, sig: '_b: { let arg_base = self.tys.tmp.args.len(); for arg in args { let sym = parser::find_symbol(&f.symbols, arg.id); assert!(sym.flags & idfl::COMPTIME == 0, "TODO"); let ty = self.ty(&arg.ty); self.tys.tmp.args.push(ty); } let Some(args) = self.tys.pack_args(arg_base) else { self.fatal_report( pos, "you cant be serious, using more the 31 arguments in a function", ); }; let ret = self.ty(ret); Some(Sig { args, ret }) }, expr: { let refr = ExprRef::new(expr); debug_assert!(refr.get(&f).is_some()); refr }, ..Default::default() }; let id = self.tys.ins.funcs.len() as _; self.tys.ins.funcs.push(func); ty::Kind::Func(id) } Expr::BinOp { left: Expr::Ident { .. }, op: TokenKind::Decl, right: right @ Expr::Struct { .. }, } => self.ty(right).expand(), e => unimplemented!("{e:#?}"), }; self.ci.file = prev_file; self.tys.syms.insert(key, sym.compress(), &self.tys.ins); sym } fn ty_display(&self, ty: ty::Id) -> ty::Display { ty::Display::new(&self.tys, &self.files, ty) } fn ast_display<'a>(&'a self, ast: &'a Expr<'a>) -> parser::Display<'a> { parser::Display::new(&self.cfile().file, ast) } #[must_use] #[track_caller] fn assert_ty( &self, pos: Pos, ty: ty::Id, expected: ty::Id, preserve_expected: bool, hint: impl fmt::Display, ) -> ty::Id { if let Some(res) = ty.try_upcast(expected, ty::TyCheck::BinOp) && (!preserve_expected || res == expected) { res } else { let ty = self.ty_display(ty); let expected = self.ty_display(expected); self.report(pos, fa!("expected {hint} to be of type {expected}, got {ty}")); ty::Id::NEVER } } #[track_caller] fn assert_report(&self, cond: bool, pos: Pos, msg: impl core::fmt::Display) { if !cond { self.report(pos, msg); } } #[track_caller] fn report(&self, pos: Pos, msg: impl core::fmt::Display) { let mut buf = self.errors.borrow_mut(); writeln!(buf, "{}", self.cfile().report(pos, msg)).unwrap(); } #[track_caller] fn report_unhandled_ast(&self, ast: &Expr, hint: &str) { log::debug!("{ast:#?}"); self.fatal_report( ast.pos(), fa!("compiler does not (yet) know how to handle ({hint}):\n{}", self.ast_display(ast)), ); } fn cfile(&self) -> &parser::Ast { &self.files[self.ci.file as usize] } fn fatal_report(&self, pos: Pos, msg: impl Display) -> ! { self.report(pos, msg); panic!("{}", self.errors.borrow()); } fn gcm(&mut self) { self.ci.nodes.visited.clear(self.ci.nodes.values.len()); push_up(&mut self.ci.nodes, NEVER); // TODO: handle infinte loops self.ci.nodes.visited.clear(self.ci.nodes.values.len()); push_down(&mut self.ci.nodes, VOID); } //fn get_load_type(&self, val: Nid) -> Option { // Some(match self.ci.nodes[val].kind { // Kind::Stre { .. } | Kind::Load { .. } | Kind::Stck | Kind::Arg { .. } => { // self.ci.nodes[val].ty // } // Kind::Ptr { .. } => self.tys.base_of(self.ci.nodes[val].ty).unwrap(), // _ => return None, // }) //} } // FIXME: make this more efficient (allocated with arena) #[derive(Debug)] struct Block { nid: Nid, preds: Vec, succs: Vec, instrs: regalloc2::InstRange, params: Vec, branch_blockparams: Vec, } #[derive(Debug)] struct Instr { nid: Nid, ops: Vec, } struct Function<'a> { sig: Sig, nodes: &'a mut Nodes, tys: &'a Types, blocks: Vec, instrs: Vec, } impl Debug for Function<'_> { fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { for (i, block) in self.blocks.iter().enumerate() { writeln!(f, "sb{i}{:?}-{:?}:", block.params, block.preds)?; for inst in block.instrs.iter() { let instr = &self.instrs[inst.index()]; writeln!(f, "{}: i{:?}:{:?}", inst.index(), self.nodes[instr.nid].kind, instr.ops)?; } writeln!(f, "eb{i}{:?}-{:?}:", block.branch_blockparams, block.succs)?; } Ok(()) } } impl<'a> Function<'a> { fn new(nodes: &'a mut Nodes, tys: &'a Types, sig: Sig) -> Self { let mut s = Self { nodes, tys, sig, blocks: Default::default(), instrs: Default::default() }; s.nodes.visited.clear(s.nodes.values.len()); s.emit_node(VOID, VOID); s.add_block(0); s.blocks.pop(); s } fn add_block(&mut self, nid: Nid) -> RallocBRef { if let Some(prev) = self.blocks.last_mut() { prev.instrs = regalloc2::InstRange::new( prev.instrs.first(), regalloc2::Inst::new(self.instrs.len()), ); } self.blocks.push(Block { nid, preds: Default::default(), succs: Default::default(), instrs: regalloc2::InstRange::new( regalloc2::Inst::new(self.instrs.len()), regalloc2::Inst::new(self.instrs.len() + 1), ), params: Default::default(), branch_blockparams: Default::default(), }); self.blocks.len() as RallocBRef - 1 } fn add_instr(&mut self, nid: Nid, ops: Vec) { self.instrs.push(Instr { nid, ops }); } fn urg(&mut self, nid: Nid) -> regalloc2::Operand { regalloc2::Operand::reg_use(self.rg(nid)) } fn def_nid(&mut self, _nid: Nid) {} fn drg(&mut self, nid: Nid) -> regalloc2::Operand { self.def_nid(nid); regalloc2::Operand::reg_def(self.rg(nid)) } fn rg(&self, nid: Nid) -> VReg { regalloc2::VReg::new(nid as _, regalloc2::RegClass::Int) } fn emit_node(&mut self, nid: Nid, prev: Nid) { if matches!(self.nodes[nid].kind, Kind::Region | Kind::Loop) { let prev_bref = self.nodes[prev].ralloc_backref; let node = self.nodes[nid].clone(); let idx = 1 + node.inputs.iter().position(|&i| i == prev).unwrap(); for ph in node.outputs { if self.nodes[ph].kind != Kind::Phi { continue; } let rg = self.rg(self.nodes[ph].inputs[idx]); self.blocks[prev_bref as usize].branch_blockparams.push(rg); } self.add_instr(nid, vec![]); match (self.nodes[nid].kind, self.nodes.visited.set(nid)) { (Kind::Loop, false) => { for i in node.inputs { self.bridge(i, nid); } return; } (Kind::Region, true) => return, _ => {} } } else if !self.nodes.visited.set(nid) { return; } let node = self.nodes[nid].clone(); match node.kind { Kind::Start => { debug_assert_matches!(self.nodes[node.outputs[0]].kind, Kind::Entry); self.emit_node(node.outputs[0], VOID) } Kind::End => {} Kind::If => { self.nodes[nid].ralloc_backref = self.nodes[prev].ralloc_backref; let &[_, cond] = node.inputs.as_slice() else { unreachable!() }; let &[mut then, mut else_] = node.outputs.as_slice() else { unreachable!() }; if let Kind::BinOp { op } = self.nodes[cond].kind && let Some((_, swapped)) = op.cond_op(node.ty.is_signed()) { if swapped { core::mem::swap(&mut then, &mut else_); } let &[_, lhs, rhs] = self.nodes[cond].inputs.as_slice() else { unreachable!() }; let ops = vec![self.urg(lhs), self.urg(rhs)]; self.add_instr(nid, ops); } else { todo!() } self.emit_node(then, nid); self.emit_node(else_, nid); } Kind::Region | Kind::Loop => { self.nodes[nid].ralloc_backref = self.add_block(nid); if node.kind == Kind::Region { for i in node.inputs { self.bridge(i, nid); } } let mut block = vec![]; for ph in node.outputs.clone() { if self.nodes[ph].kind != Kind::Phi { continue; } self.def_nid(ph); block.push(self.rg(ph)); } self.blocks[self.nodes[nid].ralloc_backref as usize].params = block; for o in node.outputs.into_iter().rev() { self.emit_node(o, nid); } } Kind::Return => { let ops = if node.inputs[1] != VOID { vec![regalloc2::Operand::reg_fixed_use( self.rg(node.inputs[1]), regalloc2::PReg::new(1, regalloc2::RegClass::Int), )] } else { vec![] }; self.add_instr(nid, ops); self.emit_node(node.outputs[0], nid); } Kind::CInt { .. } => { let unused = node.outputs.into_iter().all(|o| { let ond = &self.nodes[o]; matches!(ond.kind, Kind::BinOp { op } if op.imm_binop(ond.ty.is_signed(), 8).is_some() && self.nodes.is_const(ond.inputs[2]) && op.cond_op(ond.ty.is_signed()).is_none()) }); if !unused { let ops = vec![self.drg(nid)]; self.add_instr(nid, ops); } } Kind::Entry => { self.nodes[nid].ralloc_backref = self.add_block(nid); let mut parama = self.tys.parama(self.sig.ret); for (arg, ti) in self.nodes[VOID].clone().outputs.into_iter().skip(2).zip(self.sig.args.range()) { let ty = self.tys.ins.args[ti]; match self.tys.size_of(ty) { 0 => continue, 1..=8 => { self.def_nid(arg); self.add_instr(NEVER, vec![regalloc2::Operand::reg_fixed_def( self.rg(arg), regalloc2::PReg::new(parama.next() as _, regalloc2::RegClass::Int), )]); } _ => todo!(), } } for o in node.outputs.into_iter().rev() { self.emit_node(o, nid); } } Kind::Then | Kind::Else => { self.nodes[nid].ralloc_backref = self.add_block(nid); self.bridge(prev, nid); for o in node.outputs.into_iter().rev() { self.emit_node(o, nid); } } Kind::BinOp { op } => { let &[_, lhs, rhs] = node.inputs.as_slice() else { unreachable!() }; let ops = if let Kind::CInt { .. } = self.nodes[rhs].kind && op.imm_binop(node.ty.is_signed(), 8).is_some() { vec![self.drg(nid), self.urg(lhs)] } else if op.binop(node.ty.is_signed(), 8).is_some() { vec![self.drg(nid), self.urg(lhs), self.urg(rhs)] } else if op.cond_op(node.ty.is_signed()).is_some() { return; } else { todo!("{op}") }; self.add_instr(nid, ops); } Kind::UnOp { .. } => { let ops = vec![self.drg(nid), self.urg(node.inputs[1])]; self.add_instr(nid, ops); } Kind::Call { func } => { self.nodes[nid].ralloc_backref = self.nodes[prev].ralloc_backref; let mut ops = vec![]; let fuc = self.tys.ins.funcs[func as usize].sig.unwrap(); if self.tys.size_of(fuc.ret) != 0 { self.def_nid(nid); ops.push(regalloc2::Operand::reg_fixed_def( self.rg(nid), regalloc2::PReg::new(1, regalloc2::RegClass::Int), )); } let mut parama = self.tys.parama(fuc.ret); for (&(mut i), ti) in node.inputs[1..].iter().zip(fuc.args.range()) { let ty = self.tys.ins.args[ti]; loop { match self.nodes[i].kind { Kind::Stre { .. } => i = self.nodes[i].inputs[2], Kind::Load { .. } => i = self.nodes[i].inputs[1], _ => break, } } match self.tys.size_of(ty) { 0 => continue, 1..=8 => { ops.push(regalloc2::Operand::reg_fixed_use( self.rg(i), regalloc2::PReg::new(parama.next() as _, regalloc2::RegClass::Int), )); } _ => todo!(), } } self.add_instr(nid, ops); for o in node.outputs.into_iter().rev() { if self.nodes[o].inputs[0] == nid { self.emit_node(o, nid); } } } Kind::Stck => { let ops = vec![self.drg(nid)]; self.add_instr(nid, ops); } Kind::Phi | Kind::Arg { .. } | Kind::Mem => {} Kind::Load { .. } => { let region = node.inputs[1]; let ops = match self.nodes[region].kind { Kind::Stck => vec![self.drg(nid)], _ => vec![self.drg(nid), self.urg(region)], }; self.add_instr(nid, ops); } Kind::Stre { .. } => { let region = node.inputs[2]; let ops = match self.nodes[region].kind { Kind::Stck => vec![self.urg(node.inputs[1])], _ => vec![self.urg(region), self.urg(node.inputs[1])], }; self.add_instr(nid, ops); } } } fn bridge(&mut self, pred: u16, succ: u16) { if self.nodes[pred].ralloc_backref == u16::MAX || self.nodes[succ].ralloc_backref == u16::MAX { return; } self.blocks[self.nodes[pred].ralloc_backref as usize] .succs .push(regalloc2::Block::new(self.nodes[succ].ralloc_backref as usize)); self.blocks[self.nodes[succ].ralloc_backref as usize] .preds .push(regalloc2::Block::new(self.nodes[pred].ralloc_backref as usize)); } } impl regalloc2::Function for Function<'_> { fn num_insts(&self) -> usize { self.instrs.len() } fn num_blocks(&self) -> usize { self.blocks.len() } fn entry_block(&self) -> regalloc2::Block { regalloc2::Block(0) } fn block_insns(&self, block: regalloc2::Block) -> regalloc2::InstRange { self.blocks[block.index()].instrs } fn block_succs(&self, block: regalloc2::Block) -> &[regalloc2::Block] { &self.blocks[block.index()].succs } fn block_preds(&self, block: regalloc2::Block) -> &[regalloc2::Block] { &self.blocks[block.index()].preds } fn block_params(&self, block: regalloc2::Block) -> &[regalloc2::VReg] { &self.blocks[block.index()].params } fn is_ret(&self, insn: regalloc2::Inst) -> bool { self.nodes[self.instrs[insn.index()].nid].kind == Kind::Return } fn is_branch(&self, insn: regalloc2::Inst) -> bool { matches!( self.nodes[self.instrs[insn.index()].nid].kind, Kind::If | Kind::Then | Kind::Else | Kind::Entry | Kind::Loop | Kind::Region ) } fn branch_blockparams( &self, block: regalloc2::Block, _insn: regalloc2::Inst, _succ_idx: usize, ) -> &[regalloc2::VReg] { debug_assert!( self.blocks[block.index()].succs.len() == 1 || self.blocks[block.index()].branch_blockparams.is_empty() ); &self.blocks[block.index()].branch_blockparams } fn inst_operands(&self, insn: regalloc2::Inst) -> &[regalloc2::Operand] { &self.instrs[insn.index()].ops } fn inst_clobbers(&self, insn: regalloc2::Inst) -> regalloc2::PRegSet { if matches!(self.nodes[self.instrs[insn.index()].nid].kind, Kind::Call { .. }) { let mut set = regalloc2::PRegSet::default(); for i in 2..13 { set.add(regalloc2::PReg::new(i, regalloc2::RegClass::Int)); } set } else { regalloc2::PRegSet::default() } } fn num_vregs(&self) -> usize { self.nodes.values.len() } fn spillslot_size(&self, regclass: regalloc2::RegClass) -> usize { match regclass { regalloc2::RegClass::Int => 1, regalloc2::RegClass::Float => unreachable!(), regalloc2::RegClass::Vector => unreachable!(), } } } fn loop_depth(target: Nid, nodes: &mut Nodes) -> LoopDepth { if nodes[target].loop_depth != 0 { return nodes[target].loop_depth; } nodes[target].loop_depth = match nodes[target].kind { Kind::Entry | Kind::Then | Kind::Else | Kind::Call { .. } | Kind::Return | Kind::If => { let dpth = loop_depth(nodes[target].inputs[0], nodes); if nodes[target].loop_depth != 0 { return nodes[target].loop_depth; } dpth } Kind::Region => { let l = loop_depth(nodes[target].inputs[0], nodes); let r = loop_depth(nodes[target].inputs[1], nodes); debug_assert_eq!(l, r); l } Kind::Loop => { let depth = loop_depth(nodes[target].inputs[0], nodes) + 1; nodes[target].loop_depth = depth; let mut cursor = nodes[target].inputs[1]; while cursor != target { nodes[cursor].loop_depth = depth; let next = if nodes[cursor].kind == Kind::Region { loop_depth(nodes[cursor].inputs[0], nodes); nodes[cursor].inputs[1] } else { idom(nodes, cursor) }; debug_assert_ne!(next, VOID); if matches!(nodes[cursor].kind, Kind::Then | Kind::Else) { let other = *nodes[next] .outputs .iter() .find(|&&n| nodes[n].kind != nodes[cursor].kind) .unwrap(); if nodes[other].loop_depth == 0 { nodes[other].loop_depth = depth - 1; } } cursor = next; } depth } Kind::Start | Kind::End => 1, _ => unreachable!(), }; nodes[target].loop_depth } fn better(nodes: &mut Nodes, is: Nid, then: Nid) -> bool { loop_depth(is, nodes) < loop_depth(then, nodes) || idepth(nodes, is) > idepth(nodes, then) || nodes[then].kind == Kind::If } fn idepth(nodes: &mut Nodes, target: Nid) -> IDomDepth { if target == VOID { return 0; } if nodes[target].depth == 0 { nodes[target].depth = match nodes[target].kind { Kind::End | Kind::Start => unreachable!(), Kind::Region => { idepth(nodes, nodes[target].inputs[0]).max(idepth(nodes, nodes[target].inputs[1])) } _ => idepth(nodes, nodes[target].inputs[0]), } + 1; } nodes[target].depth } fn push_up(nodes: &mut Nodes, node: Nid) { if !nodes.visited.set(node) { return; } if nodes[node].kind.is_pinned() { for i in 0..nodes[node].inputs.len() { let i = nodes[node].inputs[i]; push_up(nodes, i); } } else { let mut max = VOID; for i in 0..nodes[node].inputs.len() { let i = nodes[node].inputs[i]; let is_call = matches!(nodes[i].kind, Kind::Call { .. }); if nodes.is_cfg(i) && !is_call { continue; } push_up(nodes, i); if idepth(nodes, i) > idepth(nodes, max) { max = if is_call { i } else { idom(nodes, i) }; } } #[cfg(debug_assertions)] { nodes.check_dominance(node, max, false); } if max == VOID { return; } let index = nodes[0].outputs.iter().position(|&p| p == node).unwrap(); nodes[0].outputs.remove(index); nodes[node].inputs[0] = max; debug_assert!( !nodes[max].outputs.contains(&node) || matches!(nodes[max].kind, Kind::Call { .. }), "{node} {:?} {max} {:?}", nodes[node], nodes[max] ); nodes[max].outputs.push(node); } } fn push_down(nodes: &mut Nodes, node: Nid) { if !nodes.visited.set(node) { return; } // TODO: handle memory nodes first if nodes[node].kind.is_pinned() { // TODO: use buffer to avoid allocation or better yet queue the location changes for i in nodes[node].outputs.clone() { push_down(nodes, i); } } else { let mut min = None::; for i in 0..nodes[node].outputs.len() { let i = nodes[node].outputs[i]; push_down(nodes, i); let i = use_block(node, i, nodes); min = min.map(|m| common_dom(i, m, nodes)).or(Some(i)); } let mut min = min.unwrap(); debug_assert!(nodes.dominates(nodes[node].inputs[0], min)); let mut cursor = min; loop { if better(nodes, cursor, min) { min = cursor; } if cursor == nodes[node].inputs[0] { break; } cursor = idom(nodes, cursor); } if nodes[min].kind.ends_basic_block() { min = idom(nodes, min); } #[cfg(debug_assertions)] { nodes.check_dominance(node, min, true); } let prev = nodes[node].inputs[0]; if min != prev { debug_assert!(idepth(nodes, min) > idepth(nodes, prev)); let index = nodes[prev].outputs.iter().position(|&p| p == node).unwrap(); nodes[prev].outputs.remove(index); nodes[node].inputs[0] = min; nodes[min].outputs.push(node); } } } fn use_block(target: Nid, from: Nid, nodes: &mut Nodes) -> Nid { if nodes[from].kind != Kind::Phi { return idom(nodes, from); } let index = nodes[from].inputs.iter().position(|&n| n == target).unwrap(); nodes[nodes[from].inputs[0]].inputs[index - 1] } fn idom(nodes: &mut Nodes, target: Nid) -> Nid { match nodes[target].kind { Kind::Start => VOID, Kind::End => unreachable!(), Kind::Region => { let &[lcfg, rcfg] = nodes[target].inputs.as_slice() else { unreachable!() }; common_dom(lcfg, rcfg, nodes) } _ => nodes[target].inputs[0], } } fn common_dom(mut a: Nid, mut b: Nid, nodes: &mut Nodes) -> Nid { while a != b { let [ldepth, rdepth] = [idepth(nodes, a), idepth(nodes, b)]; if ldepth >= rdepth { a = idom(nodes, a); } if ldepth <= rdepth { b = idom(nodes, b); } } a } #[cfg(test)] mod tests { use { alloc::{string::String, vec::Vec}, core::fmt::Write, }; fn generate(ident: &'static str, input: &'static str, output: &mut String) { _ = log::set_logger(&crate::fs::Logger); log::set_max_level(log::LevelFilter::Info); let (files, _embeds) = crate::test_parse_files(ident, input); let mut codegen = super::Codegen { files, ..Default::default() }; codegen.generate(); { let errors = codegen.errors.borrow(); if !errors.is_empty() { output.push_str(&errors); return; } } let mut out = Vec::new(); codegen.tys.assemble(&mut out); let err = codegen.tys.disasm(&out, &codegen.files, output, |_| {}); if let Err(e) = err { writeln!(output, "!!! asm is invalid: {e}").unwrap(); return; } //println!("{output}"); crate::test_run_vm(&out, output); } crate::run_tests! { generate: arithmetic; variables; functions; comments; if_statements; loops; fb_driver; pointers; structs; //different_types; //struct_operators; //directives; //global_variables; //generic_types; //generic_functions; //c_strings; //struct_patterns; //arrays; //struct_return_from_module_function; ////comptime_pointers; //sort_something_viredly; hex_octal_binary_literals; //comptime_min_reg_leak; ////structs_in_registers; //comptime_function_from_another_file; //inline; //inline_test; const_folding_with_arg; branch_assignments; exhaustive_loop_testing; //idk; //comptime_min_reg_leak; //some_generic_code; //integer_inference_issues; //writing_into_string; //request_page; //tests_ptr_to_ptr_copy; //wide_ret; pointer_opts; } }