use { self::reg::{RET_ADDR, STACK_PTR, ZERO}, crate::{ ident::{self, Ident}, instrs::{self, *}, lexer::{self, TokenKind}, log, parser::{self, find_symbol, idfl, CtorField, Expr, ExprRef, FileId, Pos}, HashMap, }, std::{collections::BTreeMap, fmt::Display, ops::Range, rc::Rc, u32}, }; type Offset = u32; type Size = u32; type ArrayLen = u32; fn load_value(ptr: *const u8, size: u32) -> u64 { let mut dst = [0u8; 8]; dst[..size as usize].copy_from_slice(unsafe { std::slice::from_raw_parts(ptr, size as usize) }); u64::from_ne_bytes(dst) } fn ensure_loaded(value: CtValue, derefed: bool, size: u32) -> u64 { if derefed { load_value(value.0 as *const u8, size) } else { value.0 } } mod stack { use { super::{Offset, Size}, std::num::NonZeroU32, }; #[derive(Debug, PartialEq, Eq)] pub struct Id(NonZeroU32); impl Id { fn index(&self) -> usize { (self.0.get() as usize - 1) & !(1 << 31) } pub fn repr(&self) -> u32 { self.0.get() } pub fn as_ref(&self) -> Self { Self(unsafe { NonZeroU32::new_unchecked(self.0.get() | 1 << 31) }) } pub fn is_ref(&self) -> bool { self.0.get() & (1 << 31) != 0 } } impl Drop for Id { fn drop(&mut self) { if !std::thread::panicking() && !self.is_ref() { unreachable!("stack id leaked: {:?}", self.0); } } } #[derive(PartialEq)] struct Meta { size: Size, offset: Offset, rc: u32, } #[derive(Default)] pub struct Alloc { height: Size, pub max_height: Size, meta: Vec, } impl Alloc { pub fn allocate(&mut self, size: Size) -> Id { self.meta.push(Meta { size, offset: 0, rc: 1 }); self.height += size; self.max_height = self.max_height.max(self.height); Id(unsafe { NonZeroU32::new_unchecked(self.meta.len() as u32) }) } pub fn free(&mut self, id: Id) { if id.is_ref() { return; } let meta = &mut self.meta[id.index()]; std::mem::forget(id); meta.rc -= 1; if meta.rc != 0 { return; } meta.offset = self.height; self.height -= meta.size; } pub fn dup_id(&mut self, id: &Id) -> Id { if id.is_ref() { return id.as_ref(); } self.meta[id.index()].rc += 1; Id(id.0) } pub fn finalize_leaked(&mut self) { for meta in self.meta.iter_mut().filter(|m| m.rc > 0) { meta.offset = self.height; self.height -= meta.size; } } pub fn clear(&mut self) { self.height = 0; self.max_height = 0; self.meta.clear(); } pub fn final_offset(&self, id: u32, extra_offset: Offset) -> Offset { debug_assert_ne!(id, 0); (self.max_height - self.meta[(id as usize - 1) & !(1 << 31)].offset) + extra_offset } } } mod reg { pub const STACK_PTR: Reg = 254; pub const ZERO: Reg = 0; pub const RET: Reg = 1; pub const RET_ADDR: Reg = 31; type Reg = u8; #[derive(Default, Debug, PartialEq, Eq)] pub struct Id(Reg, bool); impl Id { pub const RET: Self = Id(RET, false); pub fn get(&self) -> Reg { self.0 } pub fn as_ref(&self) -> Self { Self(self.0, false) } pub fn is_ref(&self) -> bool { !self.1 } } impl From for Id { fn from(value: u8) -> Self { Self(value, false) } } impl Drop for Id { fn drop(&mut self) { if !std::thread::panicking() && self.1 { unreachable!("reg id leaked: {:?}", self.0); } } } #[derive(Default, PartialEq, Eq)] pub struct Alloc { free: Vec, max_used: Reg, } impl Alloc { pub fn init(&mut self) { self.free.clear(); self.free.extend((32..=253).rev()); self.max_used = RET_ADDR; } pub fn allocate(&mut self) -> Id { let reg = self.free.pop().expect("TODO: we need to spill"); self.max_used = self.max_used.max(reg); Id(reg, true) } pub fn free(&mut self, reg: Id) { if reg.1 { self.free.push(reg.0); std::mem::forget(reg); } } pub fn pushed_size(&self) -> usize { ((self.max_used as usize).saturating_sub(RET_ADDR as usize) + 1) * 8 } } } pub mod ty { use { crate::{ codegen::ArrayLen, lexer::TokenKind, parser::{self, Expr}, }, std::{num::NonZeroU32, ops::Range}, }; pub type Builtin = u32; pub type Struct = u32; pub type Ptr = u32; pub type Func = u32; pub type Global = u32; pub type Module = u32; pub type Param = u32; pub type Slice = u32; #[derive(Clone, Copy)] pub struct Tuple(pub u32); impl Tuple { const LEN_BITS: u32 = 5; const LEN_MASK: usize = Self::MAX_LEN - 1; const MAX_LEN: usize = 1 << Self::LEN_BITS; pub fn new(pos: usize, len: usize) -> Option { if len >= Self::MAX_LEN { return None; } Some(Self((pos << Self::LEN_BITS | len) as u32)) } pub fn view(self, slice: &[Id]) -> &[Id] { &slice[self.0 as usize >> Self::LEN_BITS..][..self.len()] } pub fn range(self) -> Range { let start = self.0 as usize >> Self::LEN_BITS; start..start + self.len() } pub fn len(self) -> usize { self.0 as usize & Self::LEN_MASK } pub fn is_empty(self) -> bool { self.0 == 0 } pub fn empty() -> Self { Self(0) } pub fn repr(&self) -> u32 { self.0 } } #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)] pub struct Id(NonZeroU32); impl Default for Id { fn default() -> Self { Self(unsafe { NonZeroU32::new_unchecked(UNDECLARED) }) } } impl Id { pub const fn from_bt(bt: u32) -> Self { Self(unsafe { NonZeroU32::new_unchecked(bt) }) } pub fn is_signed(self) -> bool { (I8..=INT).contains(&self.repr()) } pub fn is_unsigned(self) -> bool { (U8..=UINT).contains(&self.repr()) } pub fn is_integer(self) -> bool { (U8..=INT).contains(&self.repr()) } pub fn strip_pointer(self) -> Self { match self.expand() { Kind::Ptr(_) => Kind::Builtin(UINT).compress(), _ => self, } } pub fn is_pointer(self) -> bool { matches!(Kind::from_ty(self), Kind::Ptr(_)) } pub fn try_upcast(self, ob: Self) -> Option { let (oa, ob) = (Self(self.0.min(ob.0)), Self(self.0.max(ob.0))); let (a, b) = (oa.strip_pointer(), ob.strip_pointer()); Some(match () { _ if oa == ob => oa, _ if oa.is_pointer() && ob.is_pointer() => return None, _ if a.is_signed() && b.is_signed() || a.is_unsigned() && b.is_unsigned() => ob, _ if a.is_unsigned() && b.is_signed() && a.repr() - U8 < b.repr() - I8 => ob, _ if oa.is_integer() && ob.is_pointer() => ob, _ => return None, }) } pub fn expand(self) -> Kind { Kind::from_ty(self) } pub const fn repr(self) -> u32 { self.0.get() } } impl From for Id { fn from(id: u64) -> Self { Self(unsafe { NonZeroU32::new_unchecked(id as _) }) } } impl From for Id { fn from(id: u32) -> Self { Kind::Builtin(id).compress() } } const fn array_to_lower_case(array: [u8; N]) -> [u8; N] { let mut result = [0; N]; let mut i = 0; while i < N { result[i] = array[i].to_ascii_lowercase(); i += 1; } result } // const string to lower case macro_rules! builtin_type { ($($name:ident;)*) => { $(pub const $name: Builtin = ${index(0)} + 1;)* mod __lc_names { use super::*; $(pub const $name: &[u8] = &array_to_lower_case(unsafe { *(stringify!($name).as_ptr() as *const [u8; stringify!($name).len()]) });)* } pub fn from_str(name: &str) -> Option { match name.as_bytes() { $(__lc_names::$name => Some($name),)* _ => None, } } pub fn to_str(ty: Builtin) -> &'static str { match ty { $($name => unsafe { std::str::from_utf8_unchecked(__lc_names::$name) },)* v => unreachable!("invalid type: {}", v), } } }; } builtin_type! { UNDECLARED; NEVER; VOID; TYPE; BOOL; U8; U16; U32; UINT; I8; I16; I32; INT; } macro_rules! type_kind { ($(#[$meta:meta])* $vis:vis enum $name:ident {$( $variant:ident, )*}) => { $(#[$meta])* $vis enum $name { $($variant($variant),)* } impl $name { const FLAG_BITS: u32 = (${count($variant)} as u32).next_power_of_two().ilog2(); const FLAG_OFFSET: u32 = std::mem::size_of::() as u32 * 8 - Self::FLAG_BITS; const INDEX_MASK: u32 = (1 << (32 - Self::FLAG_BITS)) - 1; $vis fn from_ty(ty: Id) -> Self { let (flag, index) = (ty.repr() >> Self::FLAG_OFFSET, ty.repr() & Self::INDEX_MASK); match flag { $(${index(0)} => Self::$variant(index),)* i => unreachable!("{i}"), } } $vis const fn compress(self) -> Id { let (index, flag) = match self { $(Self::$variant(index) => (index, ${index(0)}),)* }; Id(unsafe { NonZeroU32::new_unchecked((flag << Self::FLAG_OFFSET) | index) }) } $vis const fn inner(self) -> u32 { match self { $(Self::$variant(index) => index,)* } } } }; } type_kind! { #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub enum Kind { Builtin, Struct, Ptr, Func, Global, Module, Slice, } } impl Default for Kind { fn default() -> Self { Self::Builtin(UNDECLARED) } } pub struct Display<'a> { tys: &'a super::Types, files: &'a [parser::Ast], ty: Id, } impl<'a> Display<'a> { pub(super) fn new(tys: &'a super::Types, files: &'a [parser::Ast], ty: Id) -> Self { Self { tys, files, ty } } fn rety(&self, ty: Id) -> Self { Self::new(self.tys, self.files, ty) } } impl<'a> std::fmt::Display for Display<'a> { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { use Kind as TK; match TK::from_ty(self.ty) { TK::Module(idx) => write!(f, "module{}", idx), TK::Builtin(ty) => write!(f, "{}", to_str(ty)), TK::Ptr(ty) => { write!(f, "^{}", self.rety(self.tys.ptrs[ty as usize].base)) } _ if let Some((key, _)) = self .tys .syms .iter() .find(|(sym, &ty)| sym.file < self.files.len() as u32 && ty == self.ty) && let Some(name) = self.files[key.file as usize].exprs().iter().find_map( |expr| match expr { Expr::BinOp { left: &Expr::Ident { name, id, .. }, op: TokenKind::Decl, .. } if id == key.ident => Some(name), _ => None, }, ) => { write!(f, "{name}") } TK::Struct(idx) => { let record = &self.tys.structs[idx as usize]; write!(f, "{{")?; for (i, &super::Field { ref name, ty }) in record.fields.iter().enumerate() { if i != 0 { write!(f, ", ")?; } write!(f, "{name}: {}", self.rety(ty))?; } write!(f, "}}") } TK::Func(idx) => write!(f, "fn{idx}"), TK::Global(idx) => write!(f, "global{idx}"), TK::Slice(idx) => { let array = self.tys.arrays[idx as usize]; match array.len { ArrayLen::MAX => write!(f, "[{}]", self.rety(array.ty)), len => write!(f, "[{}; {len}]", self.rety(array.ty)), } } } } } } #[derive(Clone, Copy, Debug)] struct Reloc { offset: Offset, sub_offset: u8, width: u8, } impl Reloc { fn new(offset: u32, sub_offset: u8, width: u8) -> Self { Self { offset, sub_offset, width } } fn apply_stack_offset(&self, code: &mut [u8], stack: &stack::Alloc) { let bytes = &code[self.offset as usize + self.sub_offset as usize..][..self.width as usize]; let (id, off) = Self::unpack_srel(u64::from_ne_bytes(bytes.try_into().unwrap())); self.write_offset(code, stack.final_offset(id, off) as i64); } fn pack_srel(id: &stack::Id, off: u32) -> u64 { ((id.repr() as u64) << 32) | (off as u64) } fn unpack_srel(id: u64) -> (u32, u32) { ((id >> 32) as u32, id as u32) } fn apply_jump(mut self, code: &mut [u8], to: u32, from: u32) -> i64 { self.offset += from; let offset = to as i64 - self.offset as i64; self.write_offset(code, offset); offset } fn write_offset(&self, code: &mut [u8], offset: i64) { let bytes = offset.to_ne_bytes(); let slice = &mut code[self.offset as usize + self.sub_offset as usize..]; slice[..self.width as usize].copy_from_slice(&bytes[..self.width as usize]); } } struct Value { ty: ty::Id, loc: Loc, } impl Value { fn new(ty: impl Into, loc: impl Into) -> Self { Self { ty: ty.into(), loc: loc.into() } } fn void() -> Self { Self { ty: ty::VOID.into(), loc: Loc::ct(0) } } fn imm(value: u64) -> Self { Self { ty: ty::UINT.into(), loc: Loc::ct(value) } } fn ty(ty: ty::Id) -> Self { Self { ty: ty::TYPE.into(), loc: Loc::ct(ty.repr() as u64) } } } enum LocCow<'a> { Ref(&'a Loc), Owned(Loc), } impl<'a> LocCow<'a> { fn as_ref(&self) -> &Loc { match self { Self::Ref(value) => value, Self::Owned(value) => value, } } } impl<'a> From<&'a Loc> for LocCow<'a> { fn from(value: &'a Loc) -> Self { Self::Ref(value) } } impl<'a> From for LocCow<'a> { fn from(value: Loc) -> Self { Self::Owned(value) } } #[repr(packed)] #[derive(Debug, PartialEq, Eq, Clone, Copy)] struct CtValue(u64); #[derive(Debug, PartialEq, Eq)] enum Loc { Rt { derefed: bool, reg: reg::Id, stack: Option, offset: Offset }, Ct { derefed: bool, value: CtValue }, } impl Loc { fn stack(stack: stack::Id) -> Self { Self::Rt { stack: Some(stack), reg: reg::STACK_PTR.into(), derefed: true, offset: 0 } } fn reg(reg: impl Into) -> Self { let reg = reg.into(); assert!(reg.get() != 0); Self::Rt { derefed: false, reg, stack: None, offset: 0 } } fn ct(value: u64) -> Self { Self::Ct { value: CtValue(value), derefed: false } } fn ct_ptr(value: u64) -> Self { Self::Ct { value: CtValue(value), derefed: true } } fn ty(ty: ty::Id) -> Self { Self::ct(ty.repr() as _) } fn offset(mut self, offset: u32) -> Self { match &mut self { Self::Rt { offset: off, .. } => *off += offset, Self::Ct { derefed: false, value } => value.0 += offset as u64, _ => unreachable!("offseting constant"), } self } fn as_ref(&self) -> Self { match *self { Loc::Rt { derefed, ref reg, ref stack, offset } => Loc::Rt { derefed, reg: reg.as_ref(), stack: stack.as_ref().map(stack::Id::as_ref), offset, }, Loc::Ct { value, derefed } => Self::Ct { derefed, value }, } } fn into_derefed(mut self) -> Self { match &mut self { Self::Rt { derefed, .. } => *derefed = true, val => unreachable!("{val:?}"), } self } fn assert_valid(&self) { assert!(!matches!(self, Self::Rt { reg, .. } if reg.get() == 0)); } fn take_owned(&mut self) -> Option { if self.is_ref() { return None; } Some(std::mem::replace(self, self.as_ref())) } fn is_ref(&self) -> bool { matches!(self, Self::Rt { reg, stack, .. } if reg.is_ref() && stack.as_ref().map_or(true, stack::Id::is_ref)) } fn to_ty(&self) -> Option { match *self { Self::Ct { derefed: false, value } => Some(ty::Id::from(value.0)), Self::Ct { derefed: true, value } => { Some(unsafe { std::ptr::read(value.0 as *const u8 as _) }) } Self::Rt { .. } => None, } } fn is_stack(&self) -> bool { matches!(self, Self::Rt { derefed: true, reg, stack: Some(_), offset: 0 } if reg.get() == STACK_PTR) } } impl From for Loc { fn from(reg: reg::Id) -> Self { Loc::reg(reg) } } impl Default for Loc { fn default() -> Self { Self::ct(0) } } #[derive(Clone, Copy)] struct Loop { var_count: u32, offset: u32, reloc_base: u32, } struct Variable { id: Ident, uses_left: u32, value: Value, } #[derive(Default)] struct ItemCtx { file: FileId, id: ty::Kind, ret: Option, ret_reg: reg::Id, inline_ret_loc: Loc, task_base: usize, snap: Snapshot, stack: stack::Alloc, regs: reg::Alloc, stack_relocs: Vec, ret_relocs: Vec, loop_relocs: Vec, loops: Vec, vars: Vec, } impl ItemCtx { pub fn dup_loc(&mut self, loc: &Loc) -> Loc { match *loc { Loc::Rt { derefed, ref reg, ref stack, offset } => Loc::Rt { reg: reg.as_ref(), derefed, stack: stack.as_ref().map(|s| self.stack.dup_id(s)), offset, }, ref loc => loc.as_ref(), } } fn finalize(&mut self, output: &mut Output) { let base = self.snap.code as Offset; if let Some(last_ret) = self.ret_relocs.last() && (last_ret.offset + base) as usize == output.code.len() - 5 { output.code.truncate(output.code.len() - 5); self.ret_relocs.pop(); } let len = output.code.len() as Offset; self.stack.finalize_leaked(); for rel in self.stack_relocs.drain(..) { rel.apply_stack_offset(&mut output.code[base as usize..], &self.stack) } for rel in self.ret_relocs.drain(..) { let off = rel.apply_jump(&mut output.code, len, base); debug_assert!(off > 0); } self.finalize_frame(output); self.stack.clear(); debug_assert!(self.loops.is_empty()); debug_assert!(self.loop_relocs.is_empty()); debug_assert!(self.vars.is_empty()); } fn finalize_frame(&mut self, output: &mut Output) { let mut cursor = self.snap.code; let mut allocate = |size| (cursor += size, cursor).1; let pushed = self.regs.pushed_size() as i64; let stack = self.stack.max_height as i64; let mut exmpl = Output::default(); exmpl.emit_prelude(); debug_assert_eq!(exmpl.code.as_slice(), &output.code[self.snap.code..][..exmpl.code.len()],); write_reloc(&mut output.code, allocate(3), -(pushed + stack), 8); write_reloc(&mut output.code, allocate(8 + 3), stack, 8); write_reloc(&mut output.code, allocate(8), pushed, 2); output.emit(ld(RET_ADDR, STACK_PTR, stack as _, pushed as _)); output.emit(addi64(STACK_PTR, STACK_PTR, (pushed + stack) as _)); } fn free_loc(&mut self, src: impl Into) { if let LocCow::Owned(Loc::Rt { reg, stack, .. }) = src.into() { self.regs.free(reg); if let Some(stack) = stack { self.stack.free(stack); } } } } fn write_reloc(doce: &mut [u8], offset: usize, value: i64, size: u16) { let value = value.to_ne_bytes(); doce[offset..offset + size as usize].copy_from_slice(&value[..size as usize]); } #[derive(PartialEq, Eq, Hash)] struct SymKey { file: u32, ident: u32, } impl SymKey { pub fn pointer_to(ty: ty::Id) -> Self { Self { file: u32::MAX, ident: ty.repr() } } } #[derive(Clone, Copy)] struct Sig { args: ty::Tuple, ret: ty::Id, } #[derive(Clone, Copy)] struct Func { file: FileId, expr: ExprRef, sig: Option, runtime: bool, offset: Offset, size: Size, } struct Global { offset: Offset, ty: ty::Id, runtime: bool, _file: FileId, _name: Ident, } struct Field { name: Rc, ty: ty::Id, } struct Struct { fields: Rc<[Field]>, } struct Ptr { base: ty::Id, } struct ParamAlloc(Range); impl ParamAlloc { pub fn next(&mut self) -> u8 { self.0.next().expect("too many paramteters") } fn next_wide(&mut self) -> u8 { (self.next(), self.next()).0 } } #[derive(Clone, Copy)] struct Array { ty: ty::Id, len: ArrayLen, } #[derive(Default)] struct Types { syms: HashMap, funcs: Vec, args: Vec, globals: Vec, structs: Vec, ptrs: Vec, arrays: Vec, } impl Types { pub fn offset_of_item(&self, item: ty::Kind, ct_hint: Option) -> Option { task::unpack(match item { ty::Kind::Func(f) => self.funcs[f as usize].offset, ty::Kind::Global(g) => self.globals[g as usize].offset, ty::Kind::Builtin(u32::MAX) => ct_hint?, _ => unreachable!(), }) .ok() } pub fn is_runtime_item(&self, item: ty::Kind) -> bool { match item { ty::Kind::Func(f) => self.funcs[f as usize].runtime, ty::Kind::Global(f) => self.globals[f as usize].runtime, ty::Kind::Builtin(u32::MAX) => false, _ => unreachable!(), } } fn parama(&self, ret: impl Into) -> ParamAlloc { ParamAlloc(2 + (9..=16).contains(&self.size_of(ret.into())) as u8..12) } fn offset_of(&self, idx: ty::Struct, field: &str) -> Option<(Offset, ty::Id)> { let record = &self.structs[idx as usize]; let until = record.fields.iter().position(|f| f.name.as_ref() == field)?; let mut offset = 0; for &Field { ty, .. } in &record.fields[..until] { offset = Self::align_up(offset, self.align_of(ty)); offset += self.size_of(ty); } Some((offset, record.fields[until].ty)) } fn make_ptr(&mut self, base: ty::Id) -> ty::Id { ty::Kind::Ptr(self.make_ptr_low(base)).compress() } fn make_ptr_low(&mut self, base: ty::Id) -> ty::Ptr { let id = SymKey::pointer_to(base); self.syms .entry(id) .or_insert_with(|| { self.ptrs.push(Ptr { base }); ty::Kind::Ptr(self.ptrs.len() as u32 - 1).compress() }) .expand() .inner() } fn make_array(&mut self, ty: ty::Id, len: ArrayLen) -> ty::Id { ty::Kind::Slice(self.make_array_low(ty, len)).compress() } fn make_array_low(&mut self, ty: ty::Id, len: ArrayLen) -> ty::Slice { let id = SymKey { file: match len { ArrayLen::MAX => ArrayLen::MAX - 1, len => ArrayLen::MAX - len - 2, }, ident: ty.repr(), }; self.syms .entry(id) .or_insert_with(|| { self.arrays.push(Array { ty, len }); ty::Kind::Slice(self.arrays.len() as u32 - 1).compress() }) .expand() .inner() } fn align_up(value: Size, align: Size) -> Size { (value + align - 1) & !(align - 1) } fn size_of(&self, ty: ty::Id) -> Size { match ty.expand() { ty::Kind::Ptr(_) => 8, ty::Kind::Builtin(ty::VOID) => 0, ty::Kind::Builtin(ty::NEVER) => unreachable!(), ty::Kind::Builtin(ty::INT | ty::UINT) => 8, ty::Kind::Builtin(ty::I32 | ty::U32 | ty::TYPE) => 4, ty::Kind::Builtin(ty::I16 | ty::U16) => 2, ty::Kind::Builtin(ty::I8 | ty::U8 | ty::BOOL) => 1, ty::Kind::Slice(arr) => { let arr = &self.arrays[arr as usize]; match arr.len { 0 => 0, ArrayLen::MAX => 16, len => self.size_of(arr.ty) * len, } } ty::Kind::Struct(stru) => { let mut offset = 0u32; let record = &self.structs[stru as usize]; for &Field { ty, .. } in record.fields.iter() { let align = self.align_of(ty); offset = Self::align_up(offset, align); offset += self.size_of(ty); } offset } ty => unimplemented!("size_of: {:?}", ty), } } fn align_of(&self, ty: ty::Id) -> Size { match ty.expand() { ty::Kind::Struct(stru) => self.structs[stru as usize] .fields .iter() .map(|&Field { ty, .. }| self.align_of(ty)) .max() .unwrap(), ty::Kind::Slice(arr) => { let arr = &self.arrays[arr as usize]; match arr.len { ArrayLen::MAX => 8, _ => self.align_of(arr.ty), } } _ => self.size_of(ty).max(1), } } } mod task { use super::Offset; pub fn unpack(offset: Offset) -> Result { if offset >> 31 != 0 { Err((offset & !(1 << 31)) as usize) } else { Ok(offset) } } pub fn id(index: usize) -> Offset { 1 << 31 | index as u32 } } #[derive(Debug)] struct FTask { file: FileId, id: ty::Func, } #[derive(Default, Clone, Copy, PartialEq, Eq, Debug)] pub struct Snapshot { code: usize, relocs: usize, } impl Snapshot { fn _sub(&mut self, other: &Self) { self.code -= other.code; self.relocs -= other.relocs; } fn _add(&mut self, other: &Self) { self.code += other.code; self.relocs += other.relocs; } } struct OutReloc { from: ty::Kind, to: ty::Kind, rel: Reloc, } #[derive(Default)] struct Output { code: Vec, string_data: Vec, relocs: Vec, strings: Vec, } impl Output { fn emit_addi(&mut self, dest: u8, op: u8, delta: u64) { if delta == 0 { if dest != op { self.emit(cp(dest, op)); } return; } self.emit(addi64(dest, op, delta)); } fn emit(&mut self, (len, instr): (usize, [u8; instrs::MAX_SIZE])) { let name = instrs::NAMES[instr[0] as usize]; log::trc!( "{:08x}: {}: {}", self.code.len(), name, instr.iter().take(len).skip(1).map(|b| format!("{:02x}", b)).collect::() ); self.code.extend_from_slice(&instr[..len]); } fn emit_prelude(&mut self) { self.emit(instrs::addi64(STACK_PTR, STACK_PTR, 0)); self.emit(instrs::st(RET_ADDR, STACK_PTR, 0, 0)); } fn emit_entry_prelude(&mut self) { self.emit(jal(RET_ADDR, reg::ZERO, 0)); self.emit(tx()); } fn append(&mut self, val: &mut Self) { val.pop(self, &Snapshot::default()); } fn pop(&mut self, stash: &mut Self, snap: &Snapshot) { stash.code.extend(self.code.drain(snap.code..)); stash.relocs.extend(self.relocs.drain(snap.relocs..)); } fn trunc(&mut self, snap: &Snapshot) { self.code.truncate(snap.code); self.relocs.truncate(snap.relocs); } fn write_trap(&mut self, kind: trap::Trap) { self.emit(eca()); self.code.push(255); self.code.extend(kind.as_slice()); } fn snap(&mut self) -> Snapshot { Snapshot { code: self.code.len(), relocs: self.relocs.len() } } } #[derive(Default, Debug)] struct Ctx { loc: Option, ty: Option, } impl Ctx { pub fn with_loc(self, loc: Loc) -> Self { Self { loc: Some(loc), ..self } } pub fn with_ty(self, ty: impl Into) -> Self { Self { ty: Some(ty.into()), ..self } } fn into_value(self) -> Option { Some(Value { ty: self.ty.unwrap(), loc: self.loc? }) } } impl From for Ctx { fn from(value: Value) -> Self { Self { loc: Some(value.loc), ty: Some(value.ty) } } } #[derive(Default)] struct Pool { cis: Vec, outputs: Vec, arg_locs: Vec, } #[derive(Default)] pub struct LoggedMem { pub mem: hbvm::mem::HostMemory, } impl hbvm::mem::Memory for LoggedMem { unsafe fn load( &mut self, addr: hbvm::mem::Address, target: *mut u8, count: usize, ) -> Result<(), hbvm::mem::LoadError> { log::trc!( "load: {:x} {:?}", addr.get(), core::slice::from_raw_parts(addr.get() as *const u8, count) .iter() .rev() .map(|&b| format!("{b:02x}")) .collect::() ); self.mem.load(addr, target, count) } unsafe fn store( &mut self, addr: hbvm::mem::Address, source: *const u8, count: usize, ) -> Result<(), hbvm::mem::StoreError> { log::trc!( "store: {:x} {:?}", addr.get(), core::slice::from_raw_parts(source, count) .iter() .rev() .map(|&b| format!("{b:02x}")) .collect::() ); self.mem.store(addr, source, count) } unsafe fn prog_read(&mut self, addr: hbvm::mem::Address) -> T { log::trc!( "read-typed: {:x} {} {:?}", addr.get(), std::any::type_name::(), if core::mem::size_of::() == 1 && let Some(nm) = instrs::NAMES.get(std::ptr::read(addr.get() as *const u8) as usize) { nm.to_string() } else { core::slice::from_raw_parts(addr.get() as *const u8, core::mem::size_of::()) .iter() .map(|&b| format!("{:02x}", b)) .collect::() } ); self.mem.prog_read(addr) } } const VM_STACK_SIZE: usize = 1024 * 1024 * 2; struct Comptime { vm: hbvm::Vm, depth: usize, _stack: Box<[u8; VM_STACK_SIZE]>, } impl Default for Comptime { fn default() -> Self { let mut stack = Box::<[u8; VM_STACK_SIZE]>::new_uninit(); let mut vm = hbvm::Vm::default(); let ptr = unsafe { stack.as_mut_ptr().cast::().add(VM_STACK_SIZE) as u64 }; vm.write_reg(STACK_PTR, ptr); Self { vm, depth: 0, _stack: unsafe { stack.assume_init() } } } } impl Comptime { fn active(&self) -> bool { self.depth != 0 } fn enter(&mut self) { self.depth += 1; } fn exit(&mut self) { self.depth -= 1; } } mod trap { use { super::ty, crate::parser::{ExprRef, FileId}, }; macro_rules! gen_trap { ( #[derive(Trap)] $vis:vis enum $name:ident { $($variant:ident { $($fname:ident: $fty:ty,)* },)* } ) => { #[repr(u8)] $vis enum $name { $($variant($variant),)* } impl $name { $vis fn size(&self) -> usize { 1 + match self { $(Self::$variant(_) => std::mem::size_of::<$variant>(),)* } } } $( #[repr(packed)] $vis struct $variant { $($vis $fname: $fty,)* } )* }; } gen_trap! { #[derive(Trap)] pub enum Trap { MakeStruct { file: FileId, struct_expr: ExprRef, }, MomizedCall { func: ty::Func, }, } } impl Trap { pub fn as_slice(&self) -> &[u8] { unsafe { std::slice::from_raw_parts(self as *const _ as _, self.size()) } } } } struct StringReloc { // TODO: change to ty::Id from: ty::Kind, reloc: Reloc, range: std::ops::Range, shifted: bool, } #[derive(Default)] pub struct Codegen { pub files: Vec, tasks: Vec>, tys: Types, ci: ItemCtx, output: Output, pool: Pool, ct: Comptime, } impl Codegen { pub fn generate(&mut self) { self.output.emit_entry_prelude(); self.find_or_declare(0, 0, Err("main"), ""); self.make_func_reachable(0); self.complete_call_graph_low(); self.link(); } pub fn dump(&mut self, out: &mut impl std::io::Write) -> std::io::Result<()> { Reloc::new(0, 3, 4).apply_jump(&mut self.output.code, self.tys.funcs[0].offset, 0); self.link(); out.write_all(&self.output.code) } fn expr(&mut self, expr: &Expr) -> Option { self.expr_ctx(expr, Ctx::default()) } fn build_struct(&mut self, fields: &[(&str, Expr)]) -> ty::Struct { let fields = fields .iter() .map(|&(name, ty)| Field { name: name.into(), ty: self.ty(&ty) }) .collect(); self.tys.structs.push(Struct { fields }); self.tys.structs.len() as u32 - 1 } fn expr_ctx(&mut self, expr: &Expr, mut ctx: Ctx) -> Option { use {Expr as E, TokenKind as T}; let value = match *expr { E::Mod { id, .. } => Some(Value::ty(ty::Kind::Module(id).compress())), E::Struct { fields, captured, .. } => { if captured.is_empty() { Some(Value::ty(ty::Kind::Struct(self.build_struct(fields)).compress())) } else { let values = captured .iter() .map(|&id| E::Ident { pos: 0, is_ct: false, id, name: "booodab", index: u16::MAX, }) .map(|expr| self.expr(&expr)) .collect::>>()?; let values_size = values.iter().map(|value| 4 + self.tys.size_of(value.ty)).sum::(); let stack = self.ci.stack.allocate(values_size); let mut ptr = Loc::stack(stack.as_ref()); for value in values { self.store_sized(Loc::ty(value.ty), &ptr, 4); ptr = ptr.offset(4); let size = self.tys.size_of(value.ty); self.store_sized(value.loc, &ptr, size); ptr = ptr.offset(size); } self.stack_offset(2, STACK_PTR, Some(&stack), 0); let val = self.eca( trap::Trap::MakeStruct(trap::MakeStruct { file: self.ci.file, struct_expr: ExprRef::new(expr), }), ty::TYPE, ); self.ci.free_loc(Loc::stack(stack)); Some(val) } } E::Slice { size, item, .. } => { let ty = self.ty(item); let len = size.map_or(ArrayLen::MAX, |expr| self.eval_const(expr, ty::U32) as _); Some(Value::ty(self.tys.make_array(ty, len))) } E::Index { base, index } => { // TODO: we need to check if index is in bounds on debug builds let mut base_val = self.expr(base)?; if base_val.ty.is_pointer() { base_val.loc = self.make_loc_owned(base_val.loc, base_val.ty); } let index_val = self.expr(index)?; _ = self.assert_ty(index.pos(), index_val.ty, ty::INT.into(), "subsctipt"); if let ty::Kind::Ptr(ty) = base_val.ty.expand() { base_val.ty = self.tys.ptrs[ty as usize].base; base_val.loc = base_val.loc.into_derefed(); } match base_val.ty.expand() { ty::Kind::Slice(arr) => { let ty = self.tys.arrays[arr as usize].ty; let item_size = self.tys.size_of(ty); let Loc::Rt { derefed: true, ref mut reg, ref stack, offset } = base_val.loc else { unreachable!() }; if reg.is_ref() { let new_reg = self.ci.regs.allocate(); self.stack_offset(new_reg.get(), reg.get(), stack.as_ref(), offset); *reg = new_reg; } else { self.stack_offset(reg.get(), reg.get(), stack.as_ref(), offset); } let idx = self.loc_to_reg(index_val.loc, 8); if item_size != 1 { self.output.emit(muli64(idx.get(), idx.get(), item_size as _)); } self.output.emit(add64(reg.get(), reg.get(), idx.get())); self.ci.regs.free(idx); Some(Value::new(ty, base_val.loc)) } _ => self.report( base.pos(), format_args!( "compiler did not (yet) learn how to index into '{}'", self.ty_display(base_val.ty) ), ), } } E::UnOp { op: T::Xor, val, .. } => { let val = self.ty(val); Some(Value::ty(self.tys.make_ptr(val))) } E::Directive { name: "inline", args: [func_ast, args @ ..], .. } => { let ty::Kind::Func(mut func) = self.ty(func_ast).expand() else { self.report(func_ast.pos(), "first argument of inline needs to be a function"); }; let fuc = self.tys.funcs[func as usize]; let fast = self.files[fuc.file as usize].clone(); let E::BinOp { right: &E::Closure { args: cargs, body, .. }, .. } = fuc.expr.get(&fast).unwrap() else { unreachable!(); }; let scope = self.ci.vars.len(); let sig = self.compute_signature(&mut func, func_ast.pos(), args)?; self.assert_arg_count(expr.pos(), args.len(), cargs.len(), "inline function call"); if scope == self.ci.vars.len() { for ((arg, ty), carg) in args.iter().zip(sig.args.view(&self.tys.args).to_owned()).zip(cargs) { let loc = self.expr_ctx(arg, Ctx::default().with_ty(ty))?.loc; let sym = parser::find_symbol(&fast.symbols, carg.id).flags; self.ci.vars.push(Variable { id: carg.id, value: Value { ty, loc }, uses_left: idfl::count(sym) as u32, }); } } let ret_reloc_base = self.ci.ret_relocs.len(); let loc = self.alloc_ret(sig.ret, ctx, true); let prev_ret_reg = std::mem::replace(&mut self.ci.inline_ret_loc, loc); let prev_file = std::mem::replace(&mut self.ci.file, fuc.file); let prev_ret = std::mem::replace(&mut self.ci.ret, Some(sig.ret)); self.expr(body); let loc = std::mem::replace(&mut self.ci.inline_ret_loc, prev_ret_reg); self.ci.file = prev_file; self.ci.ret = prev_ret; for var in self.ci.vars.drain(scope..).collect::>() { self.ci.free_loc(var.value.loc); } if let Some(last_ret) = self.ci.ret_relocs.last() && last_ret.offset as usize + self.ci.snap.code == self.output.code.len() - 5 { self.output.code.truncate(self.output.code.len() - 5); self.ci.ret_relocs.pop(); } let len = self.output.code.len() as u32; for rel in self.ci.ret_relocs.drain(ret_reloc_base..) { rel.apply_jump(&mut self.output.code, len, self.ci.snap.code as u32); } return Some(Value { ty: sig.ret, loc }); } E::Directive { name: "TypeOf", args: [expr], .. } => { Some(Value::ty(self.infer_type(expr))) } E::Directive { name: "eca", args: [ret_ty, args @ ..], .. } => { let ty = self.ty(ret_ty); let mut parama = self.tys.parama(ty); let base = self.pool.arg_locs.len(); for arg in args { let arg = self.expr(arg)?; self.pass_arg(&arg, &mut parama); self.pool.arg_locs.push(arg.loc); } for value in self.pool.arg_locs.drain(base..) { self.ci.free_loc(value); } let loc = self.alloc_ret(ty, ctx, false); self.output.emit(eca()); self.load_ret(ty, &loc); return Some(Value { ty, loc }); } E::Directive { name: "sizeof", args: [ty], .. } => { let ty = self.ty(ty); return Some(Value::imm(self.tys.size_of(ty) as _)); } E::Directive { name: "alignof", args: [ty], .. } => { let ty = self.ty(ty); return Some(Value::imm(self.tys.align_of(ty) as _)); } E::Directive { name: "intcast", args: [val], .. } => { let Some(ty) = ctx.ty else { self.report( expr.pos(), "type to cast to is unknown, use `@as(, )`", ); }; let mut val = self.expr(val)?; let from_size = self.tys.size_of(val.ty); let to_size = self.tys.size_of(ty); if from_size < to_size && val.ty.is_signed() { let reg = self.loc_to_reg(val.loc, from_size); let op = [sxt8, sxt16, sxt32][from_size.ilog2() as usize]; self.output.emit(op(reg.get(), reg.get())); val.loc = Loc::reg(reg); } Some(Value { ty, loc: val.loc }) } E::Directive { name: "bitcast", args: [val], .. } => { let Some(ty) = ctx.ty else { self.report( expr.pos(), "type to cast to is unknown, use `@as(, @bitcast())`", ); }; let size = self.tys.size_of(ty); ctx.ty = None; let val = self.expr_ctx(val, ctx)?; if self.tys.size_of(val.ty) != size { self.report( expr.pos(), format_args!( "cannot bitcast {} to {} (different sizes: {} != {size})", self.ty_display(val.ty), self.ty_display(ty), self.tys.size_of(val.ty), ), ); } debug_assert_eq!( self.tys.align_of(val.ty), self.tys.align_of(ty), "TODO: might need stack relocation" ); return Some(Value { ty, loc: val.loc }); } E::Directive { name: "as", args: [ty, val], .. } => { let ty = self.ty(ty); ctx.ty = Some(ty); return self.expr_ctx(val, ctx); } E::Bool { value, .. } => { Some(Value { ty: ty::BOOL.into(), loc: Loc::ct(value as u64) }) } E::Idk { pos } => { let Some(ty) = ctx.ty else { self.report( pos, "`idk` can be used only when type can be inferred, use @as(, idk)", ); }; if ctx.loc.is_some() { self.report( pos, "`idk` would be written to an existing memory location \ which at ths point does notthing so its prohibited. TODO: make debug \ builds write 0xAA instead.", ); } let loc = match self.tys.size_of(ty) { 0 => Loc::default(), 1..=8 => Loc::reg(self.ci.regs.allocate()), size => Loc::stack(self.ci.stack.allocate(size)), }; Some(Value { ty, loc }) } E::String { pos, mut literal } => { literal = literal.trim_matches('"'); if !literal.ends_with("\\0") { self.report(pos, "string literal must end with null byte (for now)"); } let report = |s: &Codegen, bytes: &std::str::Bytes, message| { s.report(pos + (literal.len() - bytes.len()) as u32 - 1, message) }; let start = self.output.string_data.len(); let decode_braces = |s: &mut Codegen, bytes: &mut std::str::Bytes| { while let Some(b) = bytes.next() && b != b'}' { let c = bytes .next() .unwrap_or_else(|| report(s, bytes, "incomplete escape sequence")); let decode = |s: &Codegen, b: u8| match b { b'0'..=b'9' => b - b'0', b'a'..=b'f' => b - b'a' + 10, b'A'..=b'F' => b - b'A' + 10, _ => report(s, bytes, "expected hex digit or '}'"), }; s.output.string_data.push(decode(s, b) << 4 | decode(s, c)); } }; let mut bytes = literal.bytes(); while let Some(b) = bytes.next() { if b != b'\\' { self.output.string_data.push(b); continue; } let b = match bytes .next() .unwrap_or_else(|| report(self, &bytes, "incomplete escape sequence")) { b'n' => b'\n', b'r' => b'\r', b't' => b'\t', b'\\' => b'\\', b'\'' => b'\'', b'"' => b'"', b'0' => b'\0', b'{' => { decode_braces(self, &mut bytes); continue; } _ => report(self, &bytes, "unknown escape sequence, expected [nrt\\\"'{0]"), }; self.output.string_data.push(b); } let range = start as _..self.output.string_data.len() as _; let reloc = Reloc::new(self.local_offset() as _, 3, 4); self.output.strings.push(StringReloc { from: self.ci.id, reloc, range, shifted: false, }); let reg = self.ci.regs.allocate(); self.output.emit(instrs::lra(reg.get(), 0, 0)); Some(Value::new(self.tys.make_ptr(ty::U8.into()), reg)) } E::Ctor { pos, ty, fields, .. } => { let (ty, loc) = self.prepare_struct_ctor(pos, ctx, ty, fields.len()); let ty::Kind::Struct(stru) = ty.expand() else { self.report( pos, "our current technology does not (yet) allow\ us to construct '{}' with struct constructor", ); }; for &CtorField { pos, name, ref value, .. } in fields { let Some((offset, ty)) = self.tys.offset_of(stru, name) else { self.report(pos, format_args!("field not found: {name:?}")); }; let loc = loc.as_ref().offset(offset); let value = self.expr_ctx(value, Ctx::default().with_loc(loc).with_ty(ty))?; self.ci.free_loc(value.loc); } return Some(Value { ty, loc }); } E::Tupl { pos, ty, fields, .. } => { let (ty, loc) = self.prepare_struct_ctor(pos, ctx, ty, fields.len()); match ty.expand() { ty::Kind::Struct(stru) => { let mut offset = 0; let sfields = self.tys.structs[stru as usize].fields.clone(); for (sfield, field) in sfields.iter().zip(fields) { let loc = loc.as_ref().offset(offset); let ctx = Ctx::default().with_loc(loc).with_ty(sfield.ty); let value = self.expr_ctx(field, ctx)?; self.ci.free_loc(value.loc); offset += self.tys.size_of(sfield.ty); offset = Types::align_up(offset, self.tys.align_of(sfield.ty)); } } ty::Kind::Slice(arr) => { let arr = self.tys.arrays[arr as usize]; let item_size = self.tys.size_of(arr.ty); for (i, value) in fields.iter().enumerate() { let loc = loc.as_ref().offset(i as u32 * item_size); let value = self.expr_ctx(value, Ctx::default().with_loc(loc).with_ty(arr.ty))?; self.ci.free_loc(value.loc); } } _ => self.report( pos, format_args!( "compiler does not (yet) know how to initialize\ '{}' with tuple constructor", self.ty_display(ty) ), ), } return Some(Value { ty, loc }); } E::Field { target, name: field } => { let checkpoint = self.local_snap(); let mut tal = self.expr(target)?; if let ty::Kind::Ptr(ty) = tal.ty.expand() { tal.ty = self.tys.ptrs[ty as usize].base; tal.loc = tal.loc.into_derefed(); } match tal.ty.expand() { ty::Kind::Struct(idx) => { let Some((offset, ty)) = self.tys.offset_of(idx, field) else { self.report(target.pos(), format_args!("field not found: {field:?}")); }; Some(Value { ty, loc: tal.loc.offset(offset) }) } ty::Kind::Builtin(ty::TYPE) => { self.ci.free_loc(tal.loc); self.pop_local_snap(checkpoint); match ty::Kind::from_ty(self.ty(target)) { ty::Kind::Module(idx) => { match self.find_or_declare(target.pos(), idx, Err(field), "") { ty::Kind::Global(idx) => self.handle_global(idx), e => Some(Value::ty(e.compress())), } } ty::Kind::Global(idx) => self.handle_global(idx), e => unimplemented!("{e:?}"), } } smh => self.report( target.pos(), format_args!("the field operation is not supported: {smh:?}"), ), } } E::UnOp { op: T::Band, val, pos } => { let mut val = self.expr(val)?; let Loc::Rt { derefed: drfd @ true, reg, stack, offset } = &mut val.loc else { self.report( pos, format_args!( "cant take pointer of {} ({:?})", self.ty_display(val.ty), val.loc ), ); }; *drfd = false; let offset = std::mem::take(offset) as _; if reg.is_ref() { let new_reg = self.ci.regs.allocate(); self.stack_offset(new_reg.get(), reg.get(), stack.as_ref(), offset); *reg = new_reg; } else { self.stack_offset(reg.get(), reg.get(), stack.as_ref(), offset); } // FIXME: we might be able to track this but it will be pain std::mem::forget(stack.take()); Some(Value { ty: self.tys.make_ptr(val.ty), loc: val.loc }) } E::UnOp { op: T::Mul, val, pos } => { let val = self.expr(val)?; match val.ty.expand() { ty::Kind::Ptr(ty) => Some(Value { ty: self.tys.ptrs[ty as usize].base, loc: Loc::reg(self.loc_to_reg(val.loc, self.tys.size_of(val.ty))) .into_derefed(), }), _ => self.report( pos, format_args!("expected pointer, got {}", self.ty_display(val.ty)), ), } } E::BinOp { left, op: T::Decl, right } if self.has_ct(left) => { let slot_base = self.ct.vm.read_reg(reg::STACK_PTR).0; let (cnt, ty) = self.eval_const_low(right, None); if self.assign_ct_pattern(left, ty, cnt as _) { self.ct.vm.write_reg(reg::STACK_PTR, slot_base); } Some(Value::void()) } E::BinOp { left, op: T::Decl, right } => { let value = self.expr(right)?; self.assign_pattern(left, value) } E::Call { func: fast, args, .. } => { log::trc!("call {fast}"); let func_ty = self.ty(fast); let ty::Kind::Func(mut func) = func_ty.expand() else { self.report(fast.pos(), "can't call this, maybe in the future"); }; // TODO: this will be usefull but not now let scope = self.ci.vars.len(); //let mut snap = self.output.snap(); //snap.sub(&self.ci.snap); //let prev_stack_rel = self.ci.stack_relocs.len(); //let prev_ret_rel = self.ci.ret_relocs.len(); let sig = self.compute_signature(&mut func, expr.pos(), args)?; //self.ci.ret_relocs.truncate(prev_ret_rel); //self.ci.stack_relocs.truncate(prev_stack_rel); //snap.add(&self.ci.snap); //self.output.trunc(&snap); self.ci.vars.truncate(scope); let fuc = self.tys.funcs[func as usize]; let ast = self.files[fuc.file as usize].clone(); let E::BinOp { right: &E::Closure { args: cargs, .. }, .. } = fuc.expr.get(&ast).unwrap() else { unreachable!(); }; let mut parama = self.tys.parama(sig.ret); let mut values = Vec::with_capacity(args.len()); let mut sig_args = sig.args.range(); let mut should_momize = !args.is_empty() && sig.ret == ty::Id::from(ty::TYPE); self.assert_arg_count(expr.pos(), args.len(), cargs.len(), "function call"); for (i, (arg, carg)) in args.iter().zip(cargs).enumerate() { let ty = self.tys.args[sig_args.next().unwrap()]; let sym = parser::find_symbol(&ast.symbols, carg.id); if sym.flags & idfl::COMPTIME != 0 { sig_args.next().unwrap(); continue; } // TODO: pass the arg as dest let varg = self.expr_ctx(arg, Ctx::default().with_ty(ty))?; _ = self.assert_ty(arg.pos(), varg.ty, ty, format_args!("argument({i})")); self.pass_arg(&varg, &mut parama); values.push(varg.loc); should_momize = false; } for value in values { self.ci.free_loc(value); } let loc = self.alloc_ret(sig.ret, ctx, false); if should_momize { self.output.write_trap(trap::Trap::MomizedCall(trap::MomizedCall { func })); } let rel = Reloc::new(self.local_offset(), 3, 4); self.output.relocs.push(OutReloc { from: self.ci.id, to: ty::Kind::Func(func), rel, }); self.output.emit(jal(RET_ADDR, ZERO, 0)); self.make_func_reachable(func); if should_momize { self.output.emit(tx()); } self.load_ret(sig.ret, &loc); return Some(Value { ty: sig.ret, loc }); } E::Ident { id, .. } if ident::is_null(id) => Some(Value::ty(id.into())), E::Ident { id, .. } if let Some((var_index, var)) = self.ci.vars.iter_mut().enumerate().find(|(_, v)| v.id == id) => { var.uses_left -= 1; let loc = match var.uses_left == 0 && !self.ci.loops.last().is_some_and(|l| l.var_count > var_index as u32) { true => std::mem::take(&mut var.value.loc), false => var.value.loc.as_ref(), }; Some(Value { ty: self.ci.vars[var_index].value.ty, loc }) } E::Ident { id, name, .. } => match self .tys .syms .get(&SymKey { ident: id, file: self.ci.file }) .copied() .map(ty::Kind::from_ty) .unwrap_or_else(|| self.find_or_declare(ident::pos(id), self.ci.file, Ok(id), name)) { ty::Kind::Global(id) => self.handle_global(id), tk => Some(Value::ty(tk.compress())), }, E::Return { pos, val, .. } => { let ty = if let Some(val) = val { let size = self.ci.ret.map_or(17, |ty| self.tys.size_of(ty)); let loc = match size { _ if self.ci.inline_ret_loc != Loc::default() => { Some(self.ci.inline_ret_loc.as_ref()) } 0 => None, 1..=16 => Some(Loc::reg(1)), _ => Some(Loc::reg(self.ci.ret_reg.as_ref()).into_derefed()), }; self.expr_ctx(val, Ctx { ty: self.ci.ret, loc })?.ty } else { ty::VOID.into() }; match self.ci.ret { None => self.ci.ret = Some(ty), Some(ret) => _ = self.assert_ty(pos, ty, ret, "return type"), } self.ci.ret_relocs.push(Reloc::new(self.local_offset(), 1, 4)); self.output.emit(jmp(0)); None } E::Block { stmts, .. } => { for stmt in stmts { self.expr(stmt)?; } Some(Value::void()) } E::Number { value, pos, .. } => Some(Value { ty: { let ty = ctx.ty.map(ty::Id::strip_pointer).unwrap_or(ty::INT.into()); if !ty.is_integer() && !ty.is_pointer() { self.report( pos, format_args!( "this integer was inferred to be '{}' \ which does not make sense", self.ty_display(ty) ), ); } ty }, loc: Loc::ct(value as u64), }), E::If { cond, then, mut else_, .. } => { #[allow(clippy::type_complexity)] fn cond_op( op: TokenKind, signed: bool, ) -> Option<(fn(u8, u8, i16) -> (usize, [u8; instrs::MAX_SIZE]), bool)> { Some(( match op { TokenKind::Le if signed => instrs::jgts, TokenKind::Le => instrs::jgtu, TokenKind::Lt if signed => instrs::jlts, TokenKind::Lt => instrs::jltu, TokenKind::Eq => instrs::jne, TokenKind::Ne => instrs::jeq, _ => return None, }, matches!(op, TokenKind::Lt | TokenKind::Gt), )) } let mut then = Some(then); let jump_offset; if let &E::BinOp { left, op, right } = cond && let ty = self.infer_type(left) && let Some((op, swapped)) = cond_op(op, ty.is_signed()) { let left = self.expr_ctx(left, Ctx::default())?; let right = self.expr_ctx(right, Ctx::default())?; let lsize = self.tys.size_of(left.ty); let rsize = self.tys.size_of(right.ty); let left_reg = self.loc_to_reg(&left.loc, lsize); let right_reg = self.loc_to_reg(&right.loc, rsize); jump_offset = self.local_offset(); self.output.emit(op(left_reg.get(), right_reg.get(), 0)); self.ci.free_loc(left.loc); self.ci.free_loc(right.loc); self.ci.regs.free(left_reg); self.ci.regs.free(right_reg); if swapped { std::mem::swap(&mut then, &mut else_); } } else { let cond = self.expr_ctx(cond, Ctx::default().with_ty(ty::BOOL))?; let reg = self.loc_to_reg(&cond.loc, 1); jump_offset = self.local_offset(); self.output.emit(jeq(reg.get(), 0, 0)); self.ci.free_loc(cond.loc); self.ci.regs.free(reg); } let then_unreachable = if let Some(then) = then { self.expr(then).is_none() } else { false }; let mut else_unreachable = false; let mut jump = self.local_offset() as i64 - jump_offset as i64; if let Some(else_) = else_ { let else_jump_offset = self.local_offset(); if !then_unreachable { self.output.emit(jmp(0)); jump = self.local_offset() as i64 - jump_offset as i64; } else_unreachable = self.expr(else_).is_none(); if !then_unreachable { let jump = self.local_offset() as i64 - else_jump_offset as i64; write_reloc(self.local_code(), else_jump_offset as usize + 1, jump, 4); } } write_reloc(self.local_code(), jump_offset as usize + 3, jump, 2); (!then_unreachable || !else_unreachable).then_some(Value::void()) } E::Loop { body, .. } => 'a: { let loop_start = self.local_offset(); self.ci.loops.push(Loop { var_count: self.ci.vars.len() as _, offset: loop_start, reloc_base: self.ci.loop_relocs.len() as u32, }); let body_unreachable = self.expr(body).is_none(); if !body_unreachable { let loop_end = self.local_offset(); self.output.emit(jmp(loop_start as i32 - loop_end as i32)); } let loop_end = self.output.code.len() as u32; let loopa = self.ci.loops.pop().unwrap(); let is_unreachable = loopa.reloc_base == self.ci.loop_relocs.len() as u32; for reloc in self.ci.loop_relocs.drain(loopa.reloc_base as usize..) { let off = reloc.apply_jump(&mut self.output.code, loop_end, self.ci.snap.code as _); debug_assert!(off > 0); } let mut vars = std::mem::take(&mut self.ci.vars); for var in vars.drain(loopa.var_count as usize..) { self.ci.free_loc(var.value.loc); } self.ci.vars = vars; if is_unreachable { break 'a None; } Some(Value::void()) } E::Break { .. } => { self.ci.loop_relocs.push(Reloc::new(self.local_offset(), 1, 4)); self.output.emit(jmp(0)); None } E::Continue { .. } => { let loop_ = self.ci.loops.last().unwrap(); let offset = self.local_offset(); self.output.emit(jmp(loop_.offset as i32 - offset as i32)); None } E::BinOp { left, op: op @ (T::And | T::Or), right } => { let lhs = self.expr_ctx(left, Ctx::default().with_ty(ty::BOOL))?; let lhs = self.loc_to_reg(lhs.loc, 1); let jump_offset = self.output.code.len() + 3; let op = if op == T::And { jeq } else { jne }; self.output.emit(op(lhs.get(), 0, 0)); if let Some(rhs) = self.expr_ctx(right, Ctx::default().with_ty(ty::BOOL)) { let rhs = self.loc_to_reg(rhs.loc, 1); self.output.emit(cp(lhs.get(), rhs.get())); } let jump = self.output.code.len() as i64 - jump_offset as i64; write_reloc(&mut self.output.code, jump_offset, jump, 2); Some(Value { ty: ty::BOOL.into(), loc: Loc::reg(lhs) }) } E::BinOp { left, op, right } if op != T::Decl => 'ops: { let left = self.expr_ctx(left, Ctx { ty: ctx.ty.filter(|_| op.is_homogenous()), ..Default::default() })?; if op == T::Assign { let value = self.expr_ctx(right, Ctx::from(left)).unwrap(); self.ci.free_loc(value.loc); return Some(Value::void()); } if let ty::Kind::Struct(_) = left.ty.expand() { let right = self.expr_ctx(right, Ctx::default().with_ty(left.ty))?; _ = self.assert_ty(expr.pos(), right.ty, left.ty, "right struct operand"); return self.struct_op(op, left.ty, ctx, left.loc, right.loc); } let lsize = self.tys.size_of(left.ty); let lhs = self.loc_to_reg(left.loc, lsize); let right = self.expr_ctx(right, Ctx::default().with_ty(left.ty))?; let rsize = self.tys.size_of(right.ty); let ty = self.assert_ty(expr.pos(), right.ty, left.ty, "right sclalar operand"); let size = self.tys.size_of(ty); let signed = ty.is_signed(); if let Loc::Ct { value: CtValue(mut imm), derefed } = right.loc && let Some(oper) = Self::imm_math_op(op, signed, size) { if derefed { let mut dst = [0u8; 8]; dst[..size as usize].copy_from_slice(unsafe { std::slice::from_raw_parts(imm as _, rsize as usize) }); imm = u64::from_ne_bytes(dst); } if matches!(op, T::Add | T::Sub) && let ty::Kind::Ptr(ty) = ty::Kind::from_ty(ty) { let size = self.tys.size_of(self.tys.ptrs[ty as usize].base); imm *= size as u64; } self.output.emit(oper(lhs.get(), lhs.get(), imm)); break 'ops Some(Value::new(ty, lhs)); } let rhs = self.loc_to_reg(right.loc, rsize); if matches!(op, T::Add | T::Sub) { let min_size = lsize.min(rsize); if ty.is_signed() && min_size < size { let operand = if lsize < rsize { lhs.get() } else { rhs.get() }; let op = [sxt8, sxt16, sxt32][min_size.ilog2() as usize]; self.output.emit(op(operand, operand)); } if left.ty.is_pointer() ^ right.ty.is_pointer() { let (offset, ty) = if left.ty.is_pointer() { (rhs.get(), left.ty) } else { (lhs.get(), right.ty) }; let ty::Kind::Ptr(ty) = ty.expand() else { unreachable!() }; let size = self.tys.size_of(self.tys.ptrs[ty as usize].base); self.output.emit(muli64(offset, offset, size as _)); } } if let Some(op) = Self::math_op(op, signed, size) { self.output.emit(op(lhs.get(), lhs.get(), rhs.get())); self.ci.regs.free(rhs); break 'ops Some(Value::new(ty, lhs)); } 'cmp: { let against = match op { T::Le | T::Gt => 1, T::Ne | T::Eq => 0, T::Ge | T::Lt => (-1i64) as _, _ => break 'cmp, }; let op_fn = if signed { cmps } else { cmpu }; self.output.emit(op_fn(lhs.get(), lhs.get(), rhs.get())); self.output.emit(cmpui(lhs.get(), lhs.get(), against)); if matches!(op, T::Eq | T::Lt | T::Gt) { self.output.emit(not(lhs.get(), lhs.get())); } self.ci.regs.free(rhs); break 'ops Some(Value::new(ty::BOOL, lhs)); } unimplemented!("{:#?}", op) } E::Comment { .. } => Some(Value::void()), ref ast => self.report_unhandled_ast(ast, "expression"), }?; if let Some(ty) = ctx.ty { _ = self.assert_ty(expr.pos(), value.ty, ty, format_args!("'{expr}'")); } Some(match ctx.loc { Some(dest) => { self.store_typed(value.loc, dest, value.ty); Value { ty: value.ty, loc: Loc::ct(0) } } None => value, }) } fn compute_signature(&mut self, func: &mut ty::Func, pos: Pos, args: &[Expr]) -> Option { let fuc = self.tys.funcs[*func as usize]; let fast = self.files[fuc.file as usize].clone(); let Expr::BinOp { right: &Expr::Closure { args: cargs, ret, .. }, .. } = fuc.expr.get(&fast).unwrap() else { unreachable!(); }; Some(if let Some(sig) = fuc.sig { sig } else { let arg_base = self.tys.args.len(); for (arg, carg) in args.iter().zip(cargs) { let ty = self.ty(&carg.ty); self.tys.args.push(ty); let sym = parser::find_symbol(&fast.symbols, carg.id); let loc = if sym.flags & idfl::COMPTIME == 0 { // FIXME: could fuck us Loc::default() } else { debug_assert_eq!( ty, ty::TYPE.into(), "TODO: we dont support anything except type generics" ); let arg = self.expr_ctx(arg, Ctx::default().with_ty(ty))?; self.tys.args.push(arg.loc.to_ty().unwrap()); arg.loc }; self.ci.vars.push(Variable { id: carg.id, value: Value { ty, loc }, uses_left: idfl::count(sym.flags) as u32, }); } let args = self.pack_args(pos, arg_base); let ret = self.ty(ret); let sym = SymKey { file: !args.repr(), ident: ty::Kind::Func(*func).compress().repr() }; let ct = || { let func_id = self.tys.funcs.len(); self.tys.funcs.push(Func { file: fuc.file, offset: u32::MAX, size: 0, runtime: false, sig: Some(Sig { args, ret }), expr: fuc.expr, }); ty::Kind::Func(func_id as _).compress() }; *func = self.tys.syms.entry(sym).or_insert_with(ct).expand().inner(); Sig { args, ret } }) } fn has_ct(&self, expr: &Expr) -> bool { expr.has_ct(&self.cfile().symbols) } fn infer_type(&mut self, expr: &Expr) -> ty::Id { let mut snap = self.output.snap(); snap._sub(&self.ci.snap); let mut ci = ItemCtx { file: self.ci.file, id: self.ci.id, ret: self.ci.ret, task_base: self.ci.task_base, snap: self.ci.snap, loops: self.ci.loops.clone(), vars: self .ci .vars .iter() .map(|v| Variable { id: v.id, value: Value { ty: v.value.ty, loc: v.value.loc.as_ref() }, uses_left: v.uses_left, }) .collect(), ..Default::default() }; ci.regs.init(); std::mem::swap(&mut self.ci, &mut ci); let value = self.expr(expr).unwrap(); self.ci.free_loc(value.loc); std::mem::swap(&mut self.ci, &mut ci); snap._add(&self.ci.snap); self.output.trunc(&snap); value.ty } fn eval_const(&mut self, expr: &Expr, ty: impl Into) -> u64 { self.eval_const_low(expr, Some(ty.into())).0 } fn eval_const_low(&mut self, expr: &Expr, mut ty: Option) -> (u64, ty::Id) { let mut ci = ItemCtx { file: self.ci.file, id: ty::Kind::Builtin(u32::MAX), ret: ty, ..self.pool.cis.pop().unwrap_or_default() }; ci.vars.append(&mut self.ci.vars); let loc = self.ct_eval(ci, |s, prev| { s.output.emit_prelude(); if s.ci.ret.map_or(true, |r| s.tys.size_of(r) > 16) { let reg = s.ci.regs.allocate(); s.output.emit(instrs::cp(reg.get(), 1)); s.ci.ret_reg = reg; }; let ctx = Ctx { loc: None, ty: s.ci.ret }; if s.expr_ctx(&Expr::Return { pos: 0, val: Some(expr) }, ctx).is_some() { s.report(expr.pos(), "we fucked up"); }; ty = s.ci.ret; let stash = s.complete_call_graph(); s.push_stash(stash); prev.vars.append(&mut s.ci.vars); s.ci.finalize(&mut s.output); s.output.emit(tx()); Ok(1) }); match loc { Ok(i) | Err(i) => { (self.ct.vm.read_reg(i).cast::(), ty.expect("you have died (in brahmaputra)")) } } } fn assign_ct_pattern(&mut self, pat: &Expr, ty: ty::Id, offset: *mut u8) -> bool { let size = self.tys.size_of(ty); match *pat { Expr::Ident { id, .. } if find_symbol(&self.cfile().symbols, id).flags & idfl::REFERENCED == 0 && size <= 8 => { let loc = Loc::ct(load_value(offset, size)); self.ci.vars.push(Variable { id, value: Value { ty, loc }, uses_left: u32::MAX }); true } Expr::Ident { id, .. } => { let var = Variable { id, value: Value { ty, loc: Loc::ct_ptr(offset as _) }, uses_left: u32::MAX, }; self.ci.vars.push(var); false } ref pat => self.report_unhandled_ast(pat, "comptime pattern"), } } fn assign_pattern(&mut self, pat: &Expr, right: Value) -> Option { match *pat { Expr::Ident { id, .. } => { let mut loc = self.make_loc_owned(right.loc, right.ty); let sym = parser::find_symbol(&self.cfile().symbols, id).flags; if sym & idfl::REFERENCED != 0 { loc = self.spill(loc, self.tys.size_of(right.ty)); } self.ci.vars.push(Variable { id, value: Value { ty: right.ty, loc }, uses_left: idfl::count(sym) as u32, }); } Expr::Ctor { pos, fields, .. } => { let ty::Kind::Struct(idx) = right.ty.expand() else { self.report(pos, "can't use struct destruct on non struct value (TODO: shold work with modules)"); }; for &CtorField { pos, name, ref value } in fields { let Some((offset, ty)) = self.tys.offset_of(idx, name) else { self.report(pos, format_args!("field not found: {name:?}")); }; let loc = self.ci.dup_loc(&right.loc).offset(offset); self.assign_pattern(value, Value::new(ty, loc)); } self.ci.free_loc(right.loc); } ref pat => self.report_unhandled_ast(pat, "pattern"), }; Some(Value::void()) } fn prepare_struct_ctor( &mut self, pos: Pos, ctx: Ctx, ty: Option<&Expr>, field_len: usize, ) -> (ty::Id, Loc) { let Some(mut ty) = ty.map(|ty| self.ty(ty)).or(ctx.ty) else { self.report(pos, "expected type, (it cannot be inferred)"); }; match ty.expand() { ty::Kind::Struct(stru) => { let field_count = self.tys.structs[stru as usize].fields.len(); if field_count != field_len { self.report( pos, format_args!("expected {field_count} fields, got {field_len}"), ); } } ty::Kind::Slice(arr) => { let arr = &self.tys.arrays[arr as usize]; if arr.len == ArrayLen::MAX { ty = self.tys.make_array(arr.ty, field_len as _); } else if arr.len != field_len as u32 { self.report( pos, format_args!( "literal has {} elements, but explicit array type has {} elements", arr.len, field_len ), ); } } _ => self.report(pos, "expected expression to evaluate to struct (or array maybe)"), } let size = self.tys.size_of(ty); let loc = ctx.loc.unwrap_or_else(|| Loc::stack(self.ci.stack.allocate(size))); (ty, loc) } fn struct_op( &mut self, op: TokenKind, ty: ty::Id, ctx: Ctx, left: Loc, mut right: Loc, ) -> Option { if let ty::Kind::Struct(stuct) = ty.expand() { let loc = ctx .loc .or_else(|| right.take_owned()) .unwrap_or_else(|| Loc::stack(self.ci.stack.allocate(self.tys.size_of(ty)))); let mut offset = 0; for &Field { ty, .. } in self.tys.structs[stuct as usize].fields.clone().iter() { offset = Types::align_up(offset, self.tys.align_of(ty)); let size = self.tys.size_of(ty); let ctx = Ctx::from(Value { ty, loc: loc.as_ref().offset(offset) }); let left = left.as_ref().offset(offset); let right = right.as_ref().offset(offset); let value = self.struct_op(op, ty, ctx, left, right)?; self.ci.free_loc(value.loc); offset += size; } self.ci.free_loc(left); self.ci.free_loc(right); return Some(Value { ty, loc }); } let size = self.tys.size_of(ty); let signed = ty.is_signed(); let lhs = self.loc_to_reg(left, size); if let Loc::Ct { value, derefed: false } = right && let Some(op) = Self::imm_math_op(op, signed, size) { self.output.emit(op(lhs.get(), lhs.get(), value.0)); return Some(if let Some(value) = ctx.into_value() { self.store_typed(Loc::reg(lhs.as_ref()), value.loc, value.ty); Value::void() } else { Value { ty, loc: Loc::reg(lhs) } }); } let rhs = self.loc_to_reg(right, size); if let Some(op) = Self::math_op(op, signed, size) { self.output.emit(op(lhs.get(), lhs.get(), rhs.get())); self.ci.regs.free(rhs); return if let Some(value) = ctx.into_value() { self.store_typed(Loc::reg(lhs), value.loc, value.ty); Some(Value::void()) } else { Some(Value { ty, loc: Loc::reg(lhs) }) }; } unimplemented!("{:#?}", op) } #[allow(clippy::type_complexity)] fn math_op( op: TokenKind, signed: bool, size: u32, ) -> Option (usize, [u8; instrs::MAX_SIZE])> { use TokenKind as T; macro_rules! div { ($($op:ident),*) => {[$(|a, b, c| $op(a, ZERO, b, c)),*]}; } macro_rules! rem { ($($op:ident),*) => {[$(|a, b, c| $op(ZERO, a, b, c)),*]}; } let ops = match op { T::Add => [add8, add16, add32, add64], T::Sub => [sub8, sub16, sub32, sub64], T::Mul => [mul8, mul16, mul32, mul64], T::Div if signed => div!(dirs8, dirs16, dirs32, dirs64), T::Div => div!(diru8, diru16, diru32, diru64), T::Mod if signed => rem!(dirs8, dirs16, dirs32, dirs64), T::Mod => rem!(diru8, diru16, diru32, diru64), T::Band => return Some(and), T::Bor => return Some(or), T::Xor => return Some(xor), T::Shl => [slu8, slu16, slu32, slu64], T::Shr if signed => [srs8, srs16, srs32, srs64], T::Shr => [sru8, sru16, sru32, sru64], _ => return None, }; Some(ops[size.ilog2() as usize]) } #[allow(clippy::type_complexity)] fn imm_math_op( op: TokenKind, signed: bool, size: u32, ) -> Option (usize, [u8; instrs::MAX_SIZE])> { use TokenKind as T; macro_rules! def_op { ($name:ident |$a:ident, $b:ident, $c:ident| $($tt:tt)*) => { macro_rules! $name { ($$($$op:ident),*) => { [$$( |$a, $b, $c: u64| $$op($($tt)*), )*] } } }; } def_op!(basic_op | a, b, c | a, b, c as _); def_op!(sub_op | a, b, c | b, a, c.wrapping_neg() as _); let ops = match op { T::Add => basic_op!(addi8, addi16, addi32, addi64), T::Sub => sub_op!(addi8, addi16, addi32, addi64), T::Mul => basic_op!(muli8, muli16, muli32, muli64), T::Band => return Some(andi), T::Bor => return Some(ori), T::Xor => return Some(xori), T::Shr if signed => basic_op!(srui8, srui16, srui32, srui64), T::Shr => basic_op!(srui8, srui16, srui32, srui64), T::Shl => basic_op!(slui8, slui16, slui32, slui64), _ => return None, }; Some(ops[size.ilog2() as usize]) } fn handle_global(&mut self, id: ty::Global) -> Option { let ptr = self.ci.regs.allocate(); let rel = Reloc::new(self.local_offset(), 3, 4); let global = &mut self.tys.globals[id as usize]; self.output.relocs.push(OutReloc { from: self.ci.id, to: ty::Kind::Global(id), rel }); self.output.emit(instrs::lra(ptr.get(), 0, 0)); global.runtime |= !self.ct.active(); Some(Value { ty: global.ty, loc: Loc::reg(ptr).into_derefed() }) } fn spill(&mut self, loc: Loc, size: Size) -> Loc { if loc.is_ref() || !loc.is_stack() { let stack = Loc::stack(self.ci.stack.allocate(size)); self.store_sized(loc, &stack, size); stack } else { loc } } fn make_loc_owned(&mut self, loc: Loc, ty: ty::Id) -> Loc { let size = self.tys.size_of(ty); match size { 0 => Loc::default(), 1..=8 => Loc::reg(self.loc_to_reg(loc, size)), _ if loc.is_ref() => { let new_loc = Loc::stack(self.ci.stack.allocate(size)); self.store_sized(loc, &new_loc, size); new_loc } _ => loc, } } #[must_use] fn complete_call_graph(&mut self) -> Output { let stash = self.pop_stash(); self.complete_call_graph_low(); self.ci.snap = self.output.snap(); stash } fn complete_call_graph_low(&mut self) { while self.ci.task_base < self.tasks.len() && let Some(task_slot) = self.tasks.pop() { let Some(task) = task_slot else { continue }; self.handle_task(task); } //println!("{}", std::backtrace::Backtrace::capture()); let base = self.output.code.len() as u32; let prev_data_len = self.output.string_data.len(); self.output.code.append(&mut self.output.string_data); // we drain these when linking for srel in self.output.strings.iter_mut().filter(|s| !s.shifted) { debug_assert!( srel.range.end <= prev_data_len as u32, "{} <= {}", srel.range.end, prev_data_len as u32 ); debug_assert!(srel.range.start <= srel.range.end); srel.range.start += base; srel.range.end += base; srel.shifted = true; } } fn handle_task(&mut self, FTask { file, id }: FTask) { let func = self.tys.funcs[id as usize]; debug_assert!(func.file == file); let sig = func.sig.unwrap(); let ast = self.files[file as usize].clone(); let expr = func.expr.get(&ast).unwrap(); let ct_stack_base = self.ct.vm.read_reg(reg::STACK_PTR).0; let repl = ItemCtx { file, id: ty::Kind::Func(id), ret: Some(sig.ret), ..self.pool.cis.pop().unwrap_or_default() }; let prev_ci = std::mem::replace(&mut self.ci, repl); self.ci.regs.init(); self.ci.snap = self.output.snap(); let Expr::BinOp { left: Expr::Ident { .. }, op: TokenKind::Decl, right: &Expr::Closure { body, args, .. }, } = expr else { unreachable!("{expr}") }; self.output.emit_prelude(); let mut parama = self.tys.parama(sig.ret); let mut sig_args = sig.args.range(); for arg in args.iter() { let ty = self.tys.args[sig_args.next().unwrap()]; let sym = parser::find_symbol(&ast.symbols, arg.id).flags; let loc = match sym & idfl::COMPTIME != 0 { true => Loc::ty(self.tys.args[sig_args.next().unwrap()]), false => self.load_arg(sym, ty, &mut parama), }; self.ci.vars.push(Variable { id: arg.id, value: Value { ty, loc }, uses_left: idfl::count(sym) as u32, }); } if self.tys.size_of(sig.ret) > 16 { let reg = self.ci.regs.allocate(); self.output.emit(instrs::cp(reg.get(), 1)); self.ci.ret_reg = reg; } else { self.ci.ret_reg = reg::Id::RET; } if self.expr(body).is_some() { self.report(body.pos(), "expected all paths in the fucntion to return"); } for vars in self.ci.vars.drain(..).collect::>() { self.ci.free_loc(vars.value.loc); } self.ci.finalize(&mut self.output); self.output.emit(jala(ZERO, RET_ADDR, 0)); self.ci.regs.free(std::mem::take(&mut self.ci.ret_reg)); self.tys.funcs[id as usize].offset = self.ci.snap.code as Offset; self.tys.funcs[id as usize].size = self.local_offset(); self.pool.cis.push(std::mem::replace(&mut self.ci, prev_ci)); self.ct.vm.write_reg(reg::STACK_PTR, ct_stack_base); } fn load_arg(&mut self, flags: parser::IdentFlags, ty: ty::Id, parama: &mut ParamAlloc) -> Loc { let size = self.tys.size_of(ty) as Size; if size == 0 { return Loc::default(); } let (src, dst) = match size { 0 => (Loc::default(), Loc::default()), ..=8 if flags & idfl::REFERENCED == 0 => { (Loc::reg(parama.next()), Loc::reg(self.ci.regs.allocate())) } 1..=8 => (Loc::reg(parama.next()), Loc::stack(self.ci.stack.allocate(size))), 9..=16 => (Loc::reg(parama.next_wide()), Loc::stack(self.ci.stack.allocate(size))), _ if flags & (idfl::MUTABLE | idfl::REFERENCED) == 0 => { let ptr = parama.next(); let reg = self.ci.regs.allocate(); self.output.emit(instrs::cp(reg.get(), ptr)); return Loc::reg(reg).into_derefed(); } _ => (Loc::reg(parama.next()).into_derefed(), Loc::stack(self.ci.stack.allocate(size))), }; self.store_sized(src, &dst, size); dst } fn eca(&mut self, trap: trap::Trap, ret: impl Into) -> Value { self.output.write_trap(trap); Value { ty: ret.into(), loc: Loc::reg(1) } } fn alloc_ret(&mut self, ret: ty::Id, ctx: Ctx, custom_ret_reg: bool) -> Loc { let size = self.tys.size_of(ret); if size == 0 { debug_assert!(ctx.loc.is_none(), "{}", self.ty_display(ret)); return Loc::default(); } if ctx.loc.is_some() && size < 16 { return ctx.loc.unwrap(); } match size { 0 => Loc::default(), 1..=8 if custom_ret_reg => Loc::reg(self.ci.regs.allocate()), 1..=8 => Loc::reg(1), 9..=16 => Loc::stack(self.ci.stack.allocate(size)), 17.. => { let loc = ctx.loc.unwrap_or_else(|| Loc::stack(self.ci.stack.allocate(size))); let Loc::Rt { reg, stack, offset, .. } = &loc else { todo!("old man with the beard looks at the sky scared"); }; self.stack_offset(1, reg.get(), stack.as_ref(), *offset); loc } } } fn loc_to_reg(&mut self, loc: impl Into, size: Size) -> reg::Id { match loc.into() { LocCow::Owned(Loc::Rt { derefed: false, mut reg, offset, stack }) => { debug_assert!(stack.is_none(), "TODO"); assert_eq!(offset, 0, "TODO"); if reg.is_ref() { let new_reg = self.ci.regs.allocate(); debug_assert_ne!(reg.get(), 0); self.output.emit(cp(new_reg.get(), reg.get())); reg = new_reg; } reg } LocCow::Ref(&Loc::Rt { derefed: false, ref reg, offset, ref stack }) => { debug_assert!(stack.is_none(), "TODO"); assert_eq!(offset, 0, "TODO"); reg.as_ref() } loc => { let reg = self.ci.regs.allocate(); self.store_sized(loc, Loc::reg(reg.as_ref()), size); reg } } } fn load_ret(&mut self, ty: ty::Id, loc: &Loc) { let size = self.tys.size_of(ty); if let 1..=16 = size { self.store_sized(Loc::reg(1), loc, size); } } fn pass_arg(&mut self, value: &Value, parama: &mut ParamAlloc) { self.pass_arg_low(&value.loc, self.tys.size_of(value.ty), parama) } fn pass_arg_low(&mut self, loc: &Loc, size: Size, parama: &mut ParamAlloc) { if size > 16 { let Loc::Rt { reg, stack, offset, .. } = loc else { unreachable!() }; self.stack_offset(parama.next(), reg.get(), stack.as_ref(), *offset as _); return; } let dst = match size { 0 => return, 9..=16 => Loc::reg(parama.next_wide()), _ => Loc::reg(parama.next()), }; self.store_sized(loc, dst, size); } fn store_typed(&mut self, src: impl Into, dst: impl Into, ty: ty::Id) { self.store_sized(src, dst, self.tys.size_of(ty) as _) } fn store_sized(&mut self, src: impl Into, dst: impl Into, size: Size) { self.store_sized_low(src.into(), dst.into(), size); } fn store_sized_low(&mut self, src: LocCow, dst: LocCow, size: Size) { macro_rules! lpat { ($der:literal, $reg:ident, $off:pat, $sta:pat) => { &Loc::Rt { derefed: $der, reg: ref $reg, offset: $off, stack: $sta } }; } if size == 0 { return; } src.as_ref().assert_valid(); dst.as_ref().assert_valid(); match (src.as_ref(), dst.as_ref()) { (&Loc::Ct { value, derefed }, lpat!(true, reg, off, ref sta)) => { let ct = self.ci.regs.allocate(); self.output.emit(li64(ct.get(), ensure_loaded(value, derefed, size))); let off = self.opt_stack_reloc(sta.as_ref(), off, 3); self.output.emit(st(ct.get(), reg.get(), off, size as _)); self.ci.regs.free(ct); } (&Loc::Ct { value, derefed }, lpat!(false, reg, 0, None)) => { self.output.emit(li64(reg.get(), ensure_loaded(value, derefed, size))) } (&Loc::Ct { value, derefed }, lpat!(false, reg, 8, None)) if reg.get() == 1 && size == 8 => { self.output.emit(li64(reg.get() + 1, ensure_loaded(value, derefed, size))); } (&Loc::Ct { value, derefed }, lpat!(false, reg, off, None)) if reg.get() == 1 => { let freg = reg.get() + (off / 8) as u8; let mask = !(((1u64 << (8 * size)) - 1) << (8 * (off % 8))); self.output.emit(andi(freg, freg, mask)); let value = ensure_loaded(value, derefed, size) << (8 * (off % 8)); self.output.emit(ori(freg, freg, value)); } (lpat!(true, src, soff, ref ssta), lpat!(true, dst, doff, ref dsta)) => { // TODO: some oportuinies to ellit more optimal code let src_off = self.ci.regs.allocate(); let dst_off = self.ci.regs.allocate(); self.stack_offset(src_off.get(), src.get(), ssta.as_ref(), soff); self.stack_offset(dst_off.get(), dst.get(), dsta.as_ref(), doff); self.output.emit(bmc(src_off.get(), dst_off.get(), size as _)); self.ci.regs.free(src_off); self.ci.regs.free(dst_off); } (lpat!(false, src, 0, None), lpat!(false, dst, 0, None)) => { if src != dst { debug_assert_ne!(src.get(), 0); self.output.emit(cp(dst.get(), src.get())); } } (lpat!(true, src, soff, ref ssta), lpat!(false, dst, 0, None)) => { if size < 8 { self.output.emit(cp(dst.get(), 0)); } let off = self.opt_stack_reloc(ssta.as_ref(), soff, 3); self.output.emit(ld(dst.get(), src.get(), off, size as _)); } (lpat!(false, src, 0, None), lpat!(true, dst, doff, ref dsta)) => { let off = self.opt_stack_reloc(dsta.as_ref(), doff, 3); self.output.emit(st(src.get(), dst.get(), off, size as _)) } (a, b) => unreachable!("{a:?} {b:?}"), } self.ci.free_loc(src); self.ci.free_loc(dst); } fn stack_offset(&mut self, dst: u8, op: u8, stack: Option<&stack::Id>, off: Offset) { let Some(stack) = stack else { self.output.emit_addi(dst, op, off as _); return; }; let off = self.stack_reloc(stack, off, 3); self.output.emit(addi64(dst, op, off)); } fn opt_stack_reloc(&mut self, stack: Option<&stack::Id>, off: Offset, sub_offset: u8) -> u64 { stack.map(|s| self.stack_reloc(s, off, sub_offset)).unwrap_or(off as _) } fn stack_reloc(&mut self, stack: &stack::Id, off: Offset, sub_offset: u8) -> u64 { let offset = self.local_offset(); self.ci.stack_relocs.push(Reloc::new(offset, sub_offset, 8)); Reloc::pack_srel(stack, off) } fn link(&mut self) { let ct_hint = self.ct.active().then_some(self.ci.snap.code as u32); for reloc in &self.output.relocs { if !self.tys.is_runtime_item(reloc.from) && !self.ct.active() { continue; } let Some(to_offset) = self.tys.offset_of_item(reloc.to, ct_hint) else { continue; }; let from_offset = self.tys.offset_of_item(reloc.from, ct_hint).unwrap(); reloc.rel.apply_jump(&mut self.output.code, to_offset, from_offset); } //self.compress_strings(); for reloc in self.output.strings.iter().filter(|s| s.shifted) { let Some(from_offset) = self.tys.offset_of_item(reloc.from, ct_hint) else { continue }; reloc.reloc.apply_jump(&mut self.output.code, reloc.range.start, from_offset); } } //fn compress_strings(&mut self) { // // FIXME: we can go faster // self.output // .strings // .sort_by(|a, b| self.string_data[b.range()].cmp(&self.string_data[a.range()])); // let mut cursor = 0; // let mut anchor = 0; // for i in 1..self.output.strings.len() { // let [a, b] = self.output.strings.get_many_mut([anchor, i]).unwrap(); // if self.string_data[a.range()].ends_with(&self.string_data[b.range()]) { // b.range.end = a.range.end; // b.range.start = a.range.end - (b.range.end - b.range.start); // } else { // self.string_data.copy_within(a.range(), cursor); // cursor += a.range.len(); // anchor = i; // } // } // if !self.output.strings.is_empty() { // let a = &self.output.strings[anchor]; // self.string_data.copy_within(a.range(), cursor); // cursor += a.range.len(); // } // self.string_data.truncate(cursor) //} // TODO: sometimes its better to do this in bulk fn ty(&mut self, expr: &Expr) -> ty::Id { ty::Id::from(self.eval_const(expr, ty::TYPE)) } fn read_trap(addr: u64) -> Option<&'static trap::Trap> { // TODO: make this debug only if unsafe { *(addr as *const u8) } != 255 { return None; } Some(unsafe { &*((addr + 1) as *const trap::Trap) }) } fn handle_ecall(&mut self) { let trap = Self::read_trap(self.ct.vm.pc.get()).unwrap(); self.ct.vm.pc = self.ct.vm.pc.wrapping_add(trap.size() + 1); let mut extra_jump = 0; let mut local_pc = (self.ct.vm.pc.get() as usize - self.output.code.as_ptr() as usize) .checked_sub(self.ci.snap.code); match *trap { trap::Trap::MakeStruct(trap::MakeStruct { file, struct_expr }) => { let cfile = self.files[file as usize].clone(); let &Expr::Struct { fields, captured, .. } = struct_expr.get(&cfile).unwrap() else { unreachable!() }; let prev_len = self.ci.vars.len(); let mut values = self.ct.vm.read_reg(2).0 as *const u8; for &id in captured { let ty: ty::Id = unsafe { std::ptr::read_unaligned(values.cast()) }; unsafe { values = values.add(4) }; let size = self.tys.size_of(ty) as usize; let mut imm = [0u8; 8]; assert!(size <= imm.len(), "TODO"); unsafe { std::ptr::copy_nonoverlapping(values, imm.as_mut_ptr(), size) }; self.ci.vars.push(Variable { id, value: Value::new(ty, Loc::ct(u64::from_ne_bytes(imm))), uses_left: u32::MAX, }); } let stru = ty::Kind::Struct(self.build_struct(fields)).compress(); self.ci.vars.truncate(prev_len); self.ct.vm.write_reg(1, stru.repr() as u64); } trap::Trap::MomizedCall(trap::MomizedCall { func }) => { let sym = SymKey { file: u32::MAX, ident: ty::Kind::Func(func).compress().repr() }; if let Some(&ty) = self.tys.syms.get(&sym) { self.ct.vm.write_reg(1, ty.repr()); extra_jump = jal(0, 0, 0).0 + tx().0; } else { local_pc = None; self.run_vm(); self.tys.syms.insert(sym, self.ct.vm.read_reg(1).0.into()); } } } if let Some(lpc) = local_pc { let offset = lpc + self.ci.snap.code + self.output.code.as_ptr() as usize; self.ct.vm.pc = hbvm::mem::Address::new(offset as _); } self.ct.vm.pc += extra_jump; } fn find_or_declare( &mut self, pos: Pos, file: FileId, name: Result, lit_name: &str, ) -> ty::Kind { log::trc!("find_or_declare: {lit_name} {file}"); let f = self.files[file as usize].clone(); let Some((expr, ident)) = f.find_decl(name) else { match name { Ok(_) => self.report(pos, format_args!("undefined indentifier: {lit_name}")), Err("main") => self.report(pos, format_args!("missing main function: {f}")), Err(name) => self.report(pos, format_args!("undefined indentifier: {name}")), } }; if let Some(existing) = self.tys.syms.get(&SymKey { file, ident }) { if let ty::Kind::Func(id) = existing.expand() && let func = &mut self.tys.funcs[id as usize] && func.offset != u32::MAX && let Err(idx) = task::unpack(func.offset) { func.offset = task::id(self.tasks.len()); let task = self.tasks[idx].take(); self.tasks.push(task); } return existing.expand(); } let prev_file = std::mem::replace(&mut self.ci.file, file); let sym = match expr { Expr::BinOp { left: &Expr::Ident { .. }, op: TokenKind::Decl, right: &Expr::Closure { pos, args, ret, .. }, } => { let func = Func { file, sig: 'b: { let arg_base = self.tys.args.len(); for arg in args { let sym = find_symbol(&self.files[file as usize].symbols, arg.id); if sym.flags & idfl::COMPTIME != 0 { self.tys.args.truncate(arg_base); break 'b None; } let ty = self.ty(&arg.ty); self.tys.args.push(ty); } let args = self.pack_args(pos, arg_base); let ret = self.ty(ret); Some(Sig { args, ret }) }, expr: { let refr = ExprRef::new(expr); debug_assert!(refr.get(&f).is_some()); refr }, runtime: false, offset: u32::MAX, size: 0, }; let id = self.tys.funcs.len() as _; self.tys.funcs.push(func); ty::Kind::Func(id) } Expr::BinOp { left: &Expr::Ident { .. }, op: TokenKind::Decl, right: Expr::Struct { fields, .. }, } => ty::Kind::Struct(self.build_struct(fields)), Expr::BinOp { left, op: TokenKind::Decl, right } => { let gid = self.tys.globals.len() as ty::Global; self.tys.globals.push(Global { offset: u32::MAX, ty: Default::default(), runtime: false, _file: file, _name: ident, }); let ci = ItemCtx { file, id: ty::Kind::Builtin(u32::MAX), ..self.pool.cis.pop().unwrap_or_default() }; _ = left.find_pattern_path(ident, right, |expr| { self.tys.globals[gid as usize] = self .ct_eval(ci, |s, _| Ok::<_, !>(s.generate_global(expr, file, ident))) .into_ok(); }); ty::Kind::Global(gid) } e => unimplemented!("{e:#?}"), }; self.ci.file = prev_file; self.tys.syms.insert(SymKey { ident, file }, sym.compress()); sym } fn make_func_reachable(&mut self, func: ty::Func) { let fuc = &mut self.tys.funcs[func as usize]; fuc.runtime |= !self.ct.active(); if fuc.offset == u32::MAX { fuc.offset = task::id(self.tasks.len() as _); self.tasks.push(Some(FTask { file: fuc.file, id: func })); } } fn generate_global(&mut self, expr: &Expr, file: FileId, name: Ident) -> Global { self.output.emit_prelude(); let ret = self.ci.regs.allocate(); self.output.emit(instrs::cp(ret.get(), 1)); self.ci.task_base = self.tasks.len(); let ctx = Ctx::default().with_loc(Loc::reg(ret).into_derefed()); let Some(ret) = self.expr_ctx(expr, ctx) else { self.report(expr.pos(), "expression is not reachable"); }; let stash = self.complete_call_graph(); let offset = self.ci.snap.code; self.ci.snap.code += self.tys.size_of(ret.ty) as usize; self.output.code.resize(self.ci.snap.code, 0); self.push_stash(stash); self.ci.finalize(&mut self.output); self.output.emit(tx()); let ret_loc = unsafe { self.output.code.as_mut_ptr().add(offset) }; self.ct.vm.write_reg(1, ret_loc as u64); self.ci.free_loc(ret.loc); Global { ty: ret.ty, offset: offset as _, runtime: false, _file: file, _name: name } } fn pop_stash(&mut self) -> Output { let mut stash = self.pool.outputs.pop().unwrap_or_default(); self.output.pop(&mut stash, &self.ci.snap); stash } fn push_stash(&mut self, mut stash: Output) { self.output.append(&mut stash); self.pool.outputs.push(stash); } fn ct_eval( &mut self, ci: ItemCtx, compile: impl FnOnce(&mut Self, &mut ItemCtx) -> Result, ) -> Result { log::trc!("eval"); self.ct.enter(); let stash = self.pop_stash(); let mut prev_ci = std::mem::replace(&mut self.ci, ci); self.ci.snap = self.output.snap(); debug_assert_eq!(self.ci.snap, prev_ci.snap); self.ci.task_base = self.tasks.len(); self.ci.regs.init(); let ret = compile(self, &mut prev_ci); let mut rr = std::mem::take(&mut self.ci.ret_reg); let is_on_stack = !rr.is_ref(); if !rr.is_ref() { self.output.emit(instrs::cp(1, rr.get())); let rref = rr.as_ref(); self.ci.regs.free(std::mem::replace(&mut rr, rref)); } if ret.is_ok() { if is_on_stack { let size = self.tys.size_of(self.ci.ret.expect("you have died (colaterall fuck up)")); let slot = self.ct.vm.read_reg(reg::STACK_PTR).0; self.ct.vm.write_reg(reg::STACK_PTR, slot.wrapping_add(size as _)); self.ct.vm.write_reg(1, slot); } self.link(); self.output.trunc(&Snapshot { code: self.output.code.len(), ..self.ci.snap }); let entry = &mut self.output.code[self.ci.snap.code] as *mut _ as _; let prev_pc = std::mem::replace(&mut self.ct.vm.pc, hbvm::mem::Address::new(entry)); #[cfg(test)] { let mut vc = Vec::::new(); if self.disasm(&mut vc).is_err() { panic!("{}", String::from_utf8(vc).unwrap()); } } self.run_vm(); self.ct.vm.pc = prev_pc; } self.output.trunc(&self.ci.snap); self.pool.cis.push(std::mem::replace(&mut self.ci, prev_ci)); self.ci.snap = self.output.snap(); self.push_stash(stash); self.ct.exit(); log::trc!("eval-end"); ret } pub fn disasm(&mut self, output: &mut impl std::io::Write) -> std::io::Result<()> { use crate::DisasmItem; let mut sluce = self.output.code.as_slice(); let functions = self .ct .active() .then_some(( self.ci.snap.code as u32, ( "target_fn", (self.output.code.len() - self.ci.snap.code) as u32, DisasmItem::Func, ), )) .into_iter() .chain( self.tys .funcs .iter() .enumerate() .filter(|&(i, f)| { task::unpack(f.offset).is_ok() && (f.runtime || self.ct.active()) && self.is_fully_linked(i as ty::Func) }) .map(|(_, f)| { let file = &self.files[f.file as usize]; let Expr::BinOp { left: &Expr::Ident { name, .. }, .. } = f.expr.get(file).unwrap() else { unreachable!() }; (f.offset, (name, f.size, DisasmItem::Func)) }), ) .chain( self.tys .globals .iter() .filter(|g| task::unpack(g.offset).is_ok() && (g.runtime || self.ct.active())) .map(|g| { let file = &self.files[g._file as usize]; ( g.offset, (file.ident_str(g._name), self.tys.size_of(g.ty), DisasmItem::Global), ) }), ) .chain(self.output.strings.iter().map(|s| { ( s.range.start, ( std::str::from_utf8( &self.output.code[s.range.start as usize..s.range.end as usize - 1], ) .unwrap_or("!!!!invalid string"), s.range.len() as _, DisasmItem::Global, ), ) })) .collect::>(); crate::disasm(&mut sluce, &functions, output, |bin| { if self.ct.active() && let Some(trap) = Self::read_trap(bin.as_ptr() as u64) { bin.take(..trap.size() + 1).unwrap(); } }) } fn is_fully_linked(&self, func: ty::Func) -> bool { self.output .relocs .iter() .filter(|r| r.from == ty::Kind::Func(func)) .all(|r| self.tys.offset_of_item(r.to, None).is_some()) } fn run_vm(&mut self) { loop { match self.ct.vm.run().unwrap() { hbvm::VmRunOk::End => break, hbvm::VmRunOk::Timer => unreachable!(), hbvm::VmRunOk::Ecall => self.handle_ecall(), hbvm::VmRunOk::Breakpoint => unreachable!(), } } } fn ty_display(&self, ty: ty::Id) -> ty::Display { ty::Display::new(&self.tys, &self.files, ty) } #[must_use] #[track_caller] fn assert_ty(&self, pos: Pos, ty: ty::Id, expected: ty::Id, hint: impl Display) -> ty::Id { if let Some(res) = ty.try_upcast(expected) { res } else { let ty = self.ty_display(ty); let expected = self.ty_display(expected); self.report(pos, format_args!("expected {hint} of type {expected}, got {ty}")); } } fn assert_arg_count(&self, pos: Pos, got: usize, expected: usize, hint: impl Display) { if got != expected { let s = if expected != 1 { "s" } else { "" }; self.report(pos, format_args!("{hint} expected {expected} argument{s}, got {got}")) } } fn report_log(&self, pos: Pos, msg: impl std::fmt::Display) { let str = &self.cfile().file; let (line, mut col) = lexer::line_col(str.as_bytes(), pos); println!("{}:{}:{}: {}", self.cfile().path, line, col, msg); let line = &str[str[..pos as usize].rfind('\n').map_or(0, |i| i + 1) ..str[pos as usize..].find('\n').unwrap_or(str.len()) + pos as usize]; col += line.matches('\t').count() * 3; println!("{}", line.replace("\t", " ")); println!("{}^", " ".repeat(col - 1)) } #[track_caller] fn report(&self, pos: Pos, msg: impl std::fmt::Display) -> ! { self.report_log(pos, msg); unreachable!(); } #[track_caller] fn report_unhandled_ast(&self, ast: &Expr, hint: &str) -> ! { self.report( ast.pos(), format_args!( "compiler does not (yet) know how to handle ({hint}):\n\ {ast:}\n\ info for weak people:\n\ {ast:#?}" ), ) } fn cfile(&self) -> &parser::Ast { &self.files[self.ci.file as usize] } fn local_code(&mut self) -> &mut [u8] { &mut self.output.code[self.ci.snap.code..] } fn local_offset(&self) -> u32 { (self.output.code.len() - self.ci.snap.code) as u32 } fn local_snap(&self) -> Snapshot { Snapshot { code: self.output.code.len() - self.ci.snap.code, relocs: self.output.relocs.len() - self.ci.snap.relocs, } } fn pop_local_snap(&mut self, snap: Snapshot) { self.output.code.truncate(snap.code + self.ci.snap.code); self.output.relocs.truncate(snap.relocs + self.ci.snap.relocs); } fn pack_args(&mut self, pos: Pos, arg_base: usize) -> ty::Tuple { let needle = &self.tys.args[arg_base..]; if needle.is_empty() { return ty::Tuple::empty(); } let len = needle.len(); // FIXME: maybe later when this becomes a bottleneck we use more // efficient search (SIMD?, indexing?) let sp = self.tys.args.windows(needle.len()).position(|val| val == needle).unwrap(); self.tys.args.truncate((sp + needle.len()).max(arg_base)); ty::Tuple::new(sp, len) .unwrap_or_else(|| self.report(pos, "amount of arguments not supported")) } } #[cfg(test)] mod tests { use { super::parser, crate::{codegen::LoggedMem, log, parser::FileId}, std::io, }; const README: &str = include_str!("../README.md"); fn generate(ident: &'static str, input: &'static str, output: &mut String) { fn find_block(mut input: &'static str, test_name: &'static str) -> &'static str { const CASE_PREFIX: &str = "#### "; const CASE_SUFFIX: &str = "\n```hb"; loop { let Some(pos) = input.find(CASE_PREFIX) else { unreachable!("test {test_name} not found"); }; input = unsafe { input.get_unchecked(pos + CASE_PREFIX.len()..) }; if !input.starts_with(test_name) { continue; } input = unsafe { input.get_unchecked(test_name.len()..) }; if !input.starts_with(CASE_SUFFIX) { continue; } input = unsafe { input.get_unchecked(CASE_SUFFIX.len()..) }; let end = input.find("```").unwrap_or(input.len()); break unsafe { input.get_unchecked(..end) }; } } let input = find_block(input, ident); let mut module_map = Vec::new(); let mut last_start = 0; let mut last_module_name = "test"; for (i, m) in input.match_indices("// in module: ") { parser::test::format(ident, input[last_start..i].trim()); module_map.push((last_module_name, &input[last_start..i])); let (module_name, _) = input[i + m.len()..].split_once('\n').unwrap(); last_module_name = module_name; last_start = i + m.len() + module_name.len() + 1; } parser::test::format(ident, input[last_start..].trim()); module_map.push((last_module_name, input[last_start..].trim())); let loader = |path: &str, _: &str| { module_map .iter() .position(|&(name, _)| name == path) .map(|i| i as FileId) .ok_or(io::Error::from(io::ErrorKind::NotFound)) }; let mut codegen = super::Codegen { files: module_map .iter() .map(|&(path, content)| parser::Ast::new(path, content.to_owned(), &loader)) .collect(), ..Default::default() }; codegen.generate(); let mut out = Vec::new(); codegen.dump(&mut out).unwrap(); let mut buf = Vec::::new(); let err = codegen.disasm(&mut buf); output.push_str(String::from_utf8(buf).unwrap().as_str()); if err.is_err() { return; } use std::fmt::Write; let mut stack = [0_u64; 128]; let mut vm = unsafe { hbvm::Vm::<_, 0>::new( LoggedMem::default(), hbvm::mem::Address::new(out.as_ptr() as u64), ) }; vm.write_reg(super::STACK_PTR, unsafe { stack.as_mut_ptr().add(stack.len()) } as u64); let stat = loop { match vm.run() { Ok(hbvm::VmRunOk::End) => break Ok(()), Ok(hbvm::VmRunOk::Ecall) => match vm.read_reg(2).0 { 1 => writeln!(output, "ev: Ecall").unwrap(), // compatibility with a test 69 => { let [size, align] = [vm.read_reg(3).0 as usize, vm.read_reg(4).0 as usize]; let layout = std::alloc::Layout::from_size_align(size, align).unwrap(); let ptr = unsafe { std::alloc::alloc(layout) }; vm.write_reg(1, ptr as u64); } 96 => { let [ptr, size, align] = [ vm.read_reg(3).0 as usize, vm.read_reg(4).0 as usize, vm.read_reg(5).0 as usize, ]; let layout = std::alloc::Layout::from_size_align(size, align).unwrap(); unsafe { std::alloc::dealloc(ptr as *mut u8, layout) }; } 3 => vm.write_reg(1, 42), unknown => unreachable!("unknown ecall: {unknown:?}"), }, Ok(hbvm::VmRunOk::Timer) => { writeln!(output, "timed out").unwrap(); break Ok(()); } Ok(ev) => writeln!(output, "ev: {:?}", ev).unwrap(), Err(e) => break Err(e), } }; writeln!(output, "code size: {}", out.len()).unwrap(); writeln!(output, "ret: {:?}", vm.read_reg(1).0).unwrap(); writeln!(output, "status: {:?}", stat).unwrap(); log::inf!("input lenght: {}", input.len()); } crate::run_tests! { generate: arithmetic => README; variables => README; functions => README; comments => README; if_statements => README; loops => README; //fb_driver => README; pointers => README; structs => README; different_types => README; struct_operators => README; directives => README; global_variables => README; generic_types => README; generic_functions => README; c_strings => README; idk => README; struct_patterns => README; arrays => README; struct_return_from_module_function => README; //comptime_pointers => README; sort_something_viredly => README; hex_octal_binary_literals => README; comptime_min_reg_leak => README; // structs_in_registers => README; comptime_function_from_another_file => README; inline => README; inline_test => README; some_generic_code => README; integer_inference_issues => README; writing_into_string => README; } }