#![feature( iter_array_chunks, assert_matches, let_chains, if_let_guard, macro_metavar_expr, anonymous_lifetime_in_impl_trait, core_intrinsics, never_type, unwrap_infallible, slice_partition_dedup, portable_simd, iter_collect_into, ptr_metadata, slice_ptr_get, slice_take, map_try_insert, extract_if, ptr_internals, iter_intersperse, str_from_raw_parts, ptr_sub_ptr, slice_from_ptr_range, iter_next_chunk, pointer_is_aligned_to, maybe_uninit_fill )] #![feature(array_chunks)] #![warn(clippy::dbg_macro)] #![expect(internal_features)] #![no_std] #[cfg(feature = "std")] pub use fs::*; pub use utils::Ent; use { self::{ parser::{ExprRef, Pos}, ty::{ArrayLen, Builtin, Module}, utils::EntVec, }, alloc::{string::String, vec::Vec}, core::{cell::Cell, ops::Range}, hashbrown::hash_map, }; #[macro_use] extern crate alloc; #[cfg(any(feature = "std", test))] extern crate std; #[cfg(test)] const README: &str = include_str!("../README.md"); #[macro_export] macro_rules! run_tests { ($runner:path: $($name:ident;)*) => {$( #[test] fn $name() { $crate::run_test(core::any::type_name_of_val(&$name), stringify!($name), $crate::README, $runner); } )*}; } pub mod fmt; #[cfg(any(feature = "std", test))] pub mod fs; pub mod fuzz; pub mod lexer; pub mod parser; pub mod son; mod utils; mod debug { pub fn panicking() -> bool { #[cfg(feature = "std")] { std::thread::panicking() } #[cfg(not(feature = "std"))] { false } } #[cfg(all(debug_assertions, feature = "std"))] pub type Trace = std::rc::Rc; #[cfg(not(all(debug_assertions, feature = "std")))] pub type Trace = (); pub fn trace() -> Trace { #[cfg(all(debug_assertions, feature = "std"))] { std::rc::Rc::new(std::backtrace::Backtrace::capture()) } #[cfg(not(all(debug_assertions, feature = "std")))] {} } } pub mod reg { pub const STACK_PTR: Reg = 254; pub const ZERO: Reg = 0; pub const RET: Reg = 1; pub const RET_ADDR: Reg = 31; pub type Reg = u8; } mod ctx_map { use core::hash::BuildHasher; pub type Hash = u64; pub type HashBuilder = core::hash::BuildHasherDefault; #[derive(Default)] pub struct IdentityHasher(u64); impl core::hash::Hasher for IdentityHasher { fn finish(&self) -> u64 { self.0 } fn write(&mut self, _: &[u8]) { unimplemented!() } fn write_u64(&mut self, i: u64) { self.0 = i; } } #[derive(Clone)] pub struct Key { pub value: T, pub hash: Hash, } impl core::hash::Hash for Key { fn hash(&self, state: &mut H) { state.write_u64(self.hash); } } pub trait CtxEntry { type Ctx: ?Sized; type Key<'a>: Eq + core::hash::Hash; fn key<'a>(&self, ctx: &'a Self::Ctx) -> Self::Key<'a>; } #[derive(Clone)] pub struct CtxMap { inner: hashbrown::HashMap, (), HashBuilder>, } impl Default for CtxMap { fn default() -> Self { Self { inner: Default::default() } } } impl CtxMap { pub fn entry<'a, 'b>( &'a mut self, key: T::Key<'b>, ctx: &'b T::Ctx, ) -> (hashbrown::hash_map::RawEntryMut<'a, Key, (), HashBuilder>, Hash) { let hash = crate::FnvBuildHasher::default().hash_one(&key); (self.inner.raw_entry_mut().from_hash(hash, |k| k.value.key(ctx) == key), hash) } pub fn get<'a>(&self, key: T::Key<'a>, ctx: &'a T::Ctx) -> Option<&T> { let hash = crate::FnvBuildHasher::default().hash_one(&key); self.inner .raw_entry() .from_hash(hash, |k| k.value.key(ctx) == key) .map(|(k, _)| &k.value) } pub fn clear(&mut self) { self.inner.clear(); } pub fn remove(&mut self, value: &T, ctx: &T::Ctx) -> Option { let (entry, _) = self.entry(value.key(ctx), ctx); match entry { hashbrown::hash_map::RawEntryMut::Occupied(o) => Some(o.remove_entry().0.value), hashbrown::hash_map::RawEntryMut::Vacant(_) => None, } } pub fn insert<'a>(&mut self, key: T::Key<'a>, value: T, ctx: &'a T::Ctx) { let (entry, hash) = self.entry(key, ctx); match entry { hashbrown::hash_map::RawEntryMut::Occupied(_) => unreachable!(), hashbrown::hash_map::RawEntryMut::Vacant(v) => { _ = v.insert(Key { hash, value }, ()) } } } pub fn get_or_insert<'a>( &mut self, key: T::Key<'a>, ctx: &'a mut T::Ctx, with: impl FnOnce(&'a mut T::Ctx) -> T, ) -> &mut T { let (entry, hash) = self.entry(key, unsafe { &mut *(&mut *ctx as *mut _) }); match entry { hashbrown::hash_map::RawEntryMut::Occupied(o) => &mut o.into_key_value().0.value, hashbrown::hash_map::RawEntryMut::Vacant(v) => { &mut v.insert(Key { hash, value: with(ctx) }, ()).0.value } } } } } #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Default, Debug)] pub struct Ident(u32); impl Ident { pub const INVALID: Self = Self(u32::MAX); const LEN_BITS: u32 = 6; pub fn len(self) -> u32 { self.0 & ((1 << Self::LEN_BITS) - 1) } pub fn is_empty(self) -> bool { self.len() == 0 } pub fn is_null(self) -> bool { (self.0 >> Self::LEN_BITS) == 0 } pub fn pos(self) -> u32 { (self.0 >> Self::LEN_BITS).saturating_sub(1) } pub fn new(pos: u32, len: u32) -> Option { (len < (1 << Self::LEN_BITS)).then_some(((pos + 1) << Self::LEN_BITS) | len).map(Self) } pub fn range(self) -> core::ops::Range { let (len, pos) = (self.len() as usize, self.pos() as usize); pos..pos + len } fn builtin(builtin: Builtin) -> Ident { Self(builtin.index() as _) } } pub mod ty { use { crate::{ lexer::TokenKind, parser::{self, Pos}, utils::Ent, Ident, Size, Types, }, core::{num::NonZeroU32, ops::Range}, }; pub type ArrayLen = u32; impl Func { pub const ECA: Func = Func(u32::MAX); pub const MAIN: Func = Func(u32::MIN); } #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, Default, PartialOrd, Ord)] pub struct Tuple(pub u32); impl Tuple { const LEN_BITS: u32 = 5; const LEN_MASK: usize = Self::MAX_LEN - 1; const MAX_LEN: usize = 1 << Self::LEN_BITS; pub fn new(pos: usize, len: usize) -> Option { if len >= Self::MAX_LEN { return None; } Some(Self((pos << Self::LEN_BITS | len) as u32)) } pub fn range(self) -> Range { let start = self.0 as usize >> Self::LEN_BITS; start..start + self.len() } pub fn len(self) -> usize { self.0 as usize & Self::LEN_MASK } pub fn is_empty(self) -> bool { self.len() == 0 } pub fn empty() -> Self { Self(0) } pub fn args(self) -> ArgIter { ArgIter(self.range()) } } pub struct ArgIter(Range); pub enum Arg { Type(Id), Value(Id), } impl ArgIter { pub(crate) fn next(&mut self, tys: &Types) -> Option { let ty = tys.ins.args[self.0.next()?]; if ty == Id::TYPE { return Some(Arg::Type(tys.ins.args[self.0.next().unwrap()])); } Some(Arg::Value(ty)) } pub(crate) fn next_value(&mut self, tys: &Types) -> Option { loop { match self.next(tys)? { Arg::Type(_) => continue, Arg::Value(id) => break Some(id), } } } } #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug, Hash)] pub struct Id(NonZeroU32); impl From for i64 { fn from(value: Id) -> Self { value.0.get() as _ } } impl crate::ctx_map::CtxEntry for Id { type Ctx = crate::TypeIns; type Key<'a> = crate::SymKey<'a>; fn key<'a>(&self, ctx: &'a Self::Ctx) -> Self::Key<'a> { match self.expand() { Kind::Struct(s) => { let st = &ctx.structs[s]; debug_assert_ne!(st.pos, Pos::MAX); crate::SymKey::Struct(st.file, st.pos, st.captures) } Kind::Enum(e) => { let en = &ctx.enums[e]; debug_assert_ne!(en.pos, Pos::MAX); crate::SymKey::Enum(en.file, en.pos) } Kind::Ptr(p) => crate::SymKey::Pointer(&ctx.ptrs[p]), Kind::Opt(p) => crate::SymKey::Optional(&ctx.opts[p]), Kind::Func(f) => { let fc = &ctx.funcs[f]; if let Some(base) = fc.base { // TODO: merge base and sig crate::SymKey::FuncInst(base, fc.sig.unwrap().args) } else { crate::SymKey::Decl(fc.file, fc.name) } } Kind::Global(g) => { let gb = &ctx.globals[g]; crate::SymKey::Decl(gb.file, gb.name) } Kind::Slice(s) => crate::SymKey::Array(&ctx.slices[s]), Kind::Module(_) | Kind::Builtin(_) => { crate::SymKey::Decl(Module::default(), Ident::INVALID) } Kind::Const(c) => crate::SymKey::Constant(&ctx.consts[c]), } } } impl Default for Id { fn default() -> Self { Self(unsafe { NonZeroU32::new_unchecked(UNDECLARED) }) } } impl Id { pub const DINT: Self = Self::UINT; pub fn bin_ret(self, op: TokenKind) -> Id { if op.is_compatison() { Self::BOOL } else { self } } pub fn is_float(self) -> bool { matches!(self.repr(), F32 | F64) || self.is_never() } pub fn is_signed(self) -> bool { matches!(self.repr(), I8..=INT) || self.is_never() } pub fn is_unsigned(self) -> bool { matches!(self.repr(), U8..=UINT) || self.is_never() } pub fn is_integer(self) -> bool { matches!(self.repr(), U8..=INT) || self.is_never() } pub fn is_never(self) -> bool { self == Self::NEVER } pub fn strip_pointer(self) -> Self { match self.expand() { Kind::Ptr(_) => Id::UINT, _ => self, } } pub fn is_pointer(self) -> bool { matches!(self.expand(), Kind::Ptr(_)) || self.is_never() } pub fn is_optional(self) -> bool { matches!(self.expand(), Kind::Opt(_)) || self.is_never() } pub fn try_upcast(self, ob: Self) -> Option { self.try_upcast_low(ob, false) } pub fn try_upcast_low(self, ob: Self, coerce_pointer: bool) -> Option { let (oa, ob) = (Self(self.0.min(ob.0)), Self(self.0.max(ob.0))); let (a, b) = (oa.strip_pointer(), ob.strip_pointer()); Some(match () { _ if oa == Id::NEVER => ob, _ if ob == Id::NEVER => oa, _ if oa == ob => oa, _ if ob.is_optional() => ob, _ if oa.is_pointer() && ob.is_pointer() => return None, _ if a.is_signed() && b.is_signed() || a.is_unsigned() && b.is_unsigned() => ob, _ if a.is_unsigned() && b.is_signed() && a.repr() - U8 < b.repr() - I8 => ob, _ if a.is_unsigned() && b.is_signed() && a.repr() - U8 > b.repr() - I8 => oa, _ if oa.is_integer() && ob.is_pointer() && coerce_pointer => ob, _ => return None, }) } pub fn expand(self) -> Kind { Kind::from_ty(self) } pub const fn repr(self) -> u32 { self.0.get() } pub(crate) fn simple_size(&self) -> Option { Some(match self.expand() { Kind::Ptr(_) => 8, Kind::Builtin(Builtin(VOID)) => 0, Kind::Builtin(Builtin(NEVER)) => 0, Kind::Builtin(Builtin(INT | UINT | F64)) => 8, Kind::Builtin(Builtin(I32 | U32 | TYPE | F32)) => 4, Kind::Builtin(Builtin(I16 | U16)) => 2, Kind::Builtin(Builtin(I8 | U8 | BOOL)) => 1, _ => return None, }) } pub(crate) fn extend(self) -> Self { if self.is_signed() { Self::INT } else if self.is_pointer() { self } else { Self::UINT } } pub(crate) fn loc(&self, tys: &Types) -> Loc { match self.expand() { Kind::Opt(o) if let ty = tys.ins.opts[o].base && ty.loc(tys) == Loc::Reg && (ty.is_pointer() || tys.size_of(ty) < 8) => { Loc::Reg } Kind::Ptr(_) | Kind::Enum(_) | Kind::Builtin(_) => Loc::Reg, Kind::Struct(_) if tys.size_of(*self) == 0 => Loc::Reg, Kind::Struct(_) | Kind::Slice(_) | Kind::Opt(_) => Loc::Stack, Kind::Func(_) | Kind::Global(_) | Kind::Module(_) | Kind::Const(_) => { unreachable!() } } } pub(crate) fn has_pointers(&self, tys: &Types) -> bool { match self.expand() { Kind::Struct(s) => tys.struct_fields(s).iter().any(|f| f.ty.has_pointers(tys)), Kind::Ptr(_) => true, Kind::Slice(s) => tys.ins.slices[s].len == ArrayLen::MAX, _ => false, } } } #[derive(PartialEq, Eq, Clone, Copy)] pub enum Loc { Reg, Stack, } impl From for Id { fn from(id: u64) -> Self { Self(unsafe { NonZeroU32::new_unchecked(id as _) }) } } const fn array_to_lower_case(array: [u8; N]) -> [u8; N] { let mut result = [0; N]; let mut i = 0; while i < N { result[i] = array[i].to_ascii_lowercase(); i += 1; } result } // const string to lower case macro_rules! builtin_type { ($($name:ident;)*) => { $(const $name: u32 = ${index(0)} + 1;)* mod __lc_names { use super::*; $(pub const $name: &str = unsafe { const LCL: &[u8] = unsafe { &array_to_lower_case( *(stringify!($name).as_ptr() as *const [u8; stringify!($name).len()]) ) }; core::str::from_utf8_unchecked(LCL) };)* } impl Builtin { $(pub const $name: Self = Builtin($name);)* } impl Id { $(pub const $name: Self = Kind::Builtin(Builtin($name)).compress();)* } impl Kind { $(pub const $name: Self = Kind::Builtin(Builtin($name));)* } pub fn from_str(name: &str) -> Option { match name { $(__lc_names::$name => Some(Builtin($name)),)* _ => None, } } pub fn to_str(ty: Builtin) -> &'static str { match ty.0 { $($name => __lc_names::$name,)* v => unreachable!("invalid type: {}", v), } } }; } builtin_type! { UNDECLARED; LEFT_UNREACHABLE; RIGHT_UNREACHABLE; NEVER; VOID; TYPE; BOOL; U8; U16; U32; UINT; I8; I16; I32; INT; F32; F64; } macro_rules! type_kind { ($(#[$meta:meta])* $vis:vis enum $name:ident {$( $variant:ident, )*}) => { crate::utils::decl_ent! { $(pub struct $variant(u32);)* } $(#[$meta])* $vis enum $name { $($variant($variant),)* } impl $name { const FLAG_BITS: u32 = (${count($variant)} as u32).next_power_of_two().ilog2(); const FLAG_OFFSET: u32 = core::mem::size_of::() as u32 * 8 - Self::FLAG_BITS; const INDEX_MASK: u32 = (1 << (32 - Self::FLAG_BITS)) - 1; $vis fn from_ty(ty: Id) -> Self { let (flag, index) = (ty.repr() >> Self::FLAG_OFFSET, ty.repr() & Self::INDEX_MASK); match flag { $(${index(0)} => Self::$variant($variant(index)),)* i => unreachable!("{i}"), } } $vis const fn compress(self) -> Id { let (index, flag) = match self { $(Self::$variant(index) => (index.0, ${index(0)}),)* }; Id(unsafe { NonZeroU32::new_unchecked((flag << Self::FLAG_OFFSET) | index) }) } } $( impl From<$variant> for $name { fn from(value: $variant) -> Self { Self::$variant(value) } } impl From<$variant> for i64 { fn from(value: $variant) -> Self { Id::from(value).into() } } impl From<$variant> for Id { fn from(value: $variant) -> Self { $name::$variant(value).compress() } } )* }; } type_kind! { #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub enum Kind { Builtin, Struct, Enum, Ptr, Slice, Opt, Func, Global, Module, Const, } } impl Module { pub const MAIN: Self = Self(0); } impl Default for Module { fn default() -> Self { Self(u32::MAX) } } impl TryFrom for Builtin { type Error = (); fn try_from(value: Ident) -> Result { if value.is_null() { Ok(Self(value.len())) } else { Err(()) } } } impl Default for Kind { fn default() -> Self { Id::UNDECLARED.expand() } } pub struct Display<'a> { tys: &'a super::Types, files: &'a [parser::Ast], ty: Id, } impl<'a> Display<'a> { pub fn new(tys: &'a super::Types, files: &'a [parser::Ast], ty: Id) -> Self { Self { tys, files, ty } } pub fn rety(&self, ty: Id) -> Self { Self::new(self.tys, self.files, ty) } } impl core::fmt::Display for Display<'_> { fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { use Kind as TK; match TK::from_ty(self.ty) { TK::Module(idx) => { f.write_str("@use(\"")?; self.files[idx.index()].path.fmt(f)?; f.write_str(")[")?; idx.fmt(f)?; f.write_str("]") } TK::Builtin(ty) => f.write_str(to_str(ty)), TK::Opt(ty) => { f.write_str("?")?; self.rety(self.tys.ins.opts[ty].base).fmt(f) } TK::Ptr(ty) => { f.write_str("^")?; self.rety(self.tys.ins.ptrs[ty].base).fmt(f) } TK::Struct(idx) => { let record = &self.tys.ins.structs[idx]; if record.name.is_null() { f.write_str("[")?; idx.fmt(f)?; f.write_str("]{")?; for (i, &super::StructField { name, ty }) in self.tys.struct_fields(idx).iter().enumerate() { if i != 0 { f.write_str(", ")?; } f.write_str(self.tys.names.ident_str(name))?; f.write_str(": ")?; self.rety(ty).fmt(f)?; } f.write_str("}") } else { let file = &self.files[record.file.index()]; f.write_str(file.ident_str(record.name)) } } TK::Enum(idx) => { let enm = &self.tys.ins.enums[idx]; debug_assert!(!enm.name.is_null()); let file = &self.files[enm.file.index()]; f.write_str(file.ident_str(enm.name)) } TK::Func(idx) => { f.write_str("fn")?; idx.fmt(f) } TK::Global(idx) => { let global = &self.tys.ins.globals[idx]; let file = &self.files[global.file.index()]; f.write_str(file.ident_str(global.name))?; f.write_str(" (global)") } TK::Slice(idx) => { let array = self.tys.ins.slices[idx]; f.write_str("[")?; self.rety(array.elem).fmt(f)?; if array.len != ArrayLen::MAX { f.write_str("; ")?; array.len.fmt(f)?; } f.write_str("]") } TK::Const(idx) => { let cnst = &self.tys.ins.consts[idx]; let file = &self.files[cnst.file.index()]; f.write_str(file.ident_str(cnst.name))?; f.write_str(" (const)") } } } } } type Offset = u32; type Size = u32; #[derive(PartialEq, Eq, Hash, Clone, Copy)] pub enum SymKey<'a> { Pointer(&'a Ptr), Optional(&'a Opt), Struct(Module, Pos, ty::Tuple), Enum(Module, Pos), FuncInst(ty::Func, ty::Tuple), Decl(Module, Ident), Array(&'a Array), Constant(&'a Const), } #[derive(Clone, Copy)] pub struct Sig { args: ty::Tuple, ret: ty::Id, } #[derive(Default, Clone, Copy)] struct Func { file: Module, name: Ident, base: Option, expr: ExprRef, sig: Option, is_inline: bool, returns_type: bool, comp_state: [CompState; 2], } #[derive(Default, PartialEq, Eq, Clone, Copy)] enum CompState { #[default] Dead, Queued(usize), Compiled, } #[derive(Clone, Copy)] struct TypedReloc { target: ty::Id, reloc: Reloc, } #[derive(Clone, Default)] struct Global { file: Module, name: Ident, ty: ty::Id, data: Vec, } #[derive(PartialEq, Eq, Hash)] pub struct Const { ast: ExprRef, name: Ident, file: Module, } // TODO: make into bit struct (width: u2, sub_offset: u3, offset: u27) #[derive(Clone, Copy, Debug)] struct Reloc { offset: Offset, sub_offset: u8, width: u8, } impl Reloc { fn new(offset: usize, sub_offset: u8, width: u8) -> Self { Self { offset: offset as u32, sub_offset, width } } fn apply_jump(mut self, code: &mut [u8], to: u32, from: u32) -> i64 { self.offset += from; let offset = to as i64 - self.offset as i64; self.write_offset(code, offset); offset } fn write_offset(&self, code: &mut [u8], offset: i64) { let bytes = offset.to_ne_bytes(); let slice = &mut code[self.offset as usize + self.sub_offset as usize..]; slice[..self.width as usize].copy_from_slice(&bytes[..self.width as usize]); } } struct EnumField { name: Ident, } #[derive(Default)] struct Enum { name: Ident, pos: Pos, file: Module, field_start: u32, } struct StructField { name: Ident, ty: ty::Id, } #[derive(Default)] struct Struct { name: Ident, pos: Pos, file: Module, size: Cell, align: Cell, captures: ty::Tuple, explicit_alignment: Option, field_start: u32, } #[derive(PartialEq, Eq, Hash, Clone, Copy)] pub struct Opt { base: ty::Id, } #[derive(PartialEq, Eq, Hash, Clone, Copy)] pub struct Ptr { base: ty::Id, } #[derive(Clone, Copy, PartialEq, Eq, Hash)] pub struct Array { elem: ty::Id, len: ArrayLen, } impl Array { fn len(&self) -> Option { (self.len != ArrayLen::MAX).then_some(self.len as usize) } } #[derive(Clone, Copy)] enum PLoc { Reg(u8, u16), WideReg(u8, u16), Ref(u8, u32), } struct ParamAlloc(Range); impl ParamAlloc { pub fn next(&mut self, ty: ty::Id, tys: &Types) -> Option { Some(match tys.size_of(ty) { 0 => return None, size @ 1..=8 => PLoc::Reg(self.0.next().unwrap(), size as _), size @ 9..=16 => PLoc::WideReg(self.0.next_chunk::<2>().unwrap()[0], size as _), size @ 17.. => PLoc::Ref(self.0.next().unwrap(), size), }) } } impl ctx_map::CtxEntry for Ident { type Ctx = str; type Key<'a> = &'a str; fn key<'a>(&self, ctx: &'a Self::Ctx) -> Self::Key<'a> { unsafe { ctx.get_unchecked(self.range()) } } } #[derive(Default)] struct IdentInterner { lookup: ctx_map::CtxMap, strings: String, } impl IdentInterner { fn intern(&mut self, ident: &str) -> Ident { let (entry, hash) = self.lookup.entry(ident, &self.strings); match entry { hash_map::RawEntryMut::Occupied(o) => o.get_key_value().0.value, hash_map::RawEntryMut::Vacant(v) => { let id = Ident::new(self.strings.len() as _, ident.len() as _).unwrap(); self.strings.push_str(ident); v.insert(ctx_map::Key { hash, value: id }, ()); id } } } fn ident_str(&self, ident: Ident) -> &str { &self.strings[ident.range()] } fn project(&self, ident: &str) -> Option { self.lookup.get(ident, &self.strings).copied() } fn clear(&mut self) { self.lookup.clear(); self.strings.clear() } } #[derive(Default)] struct TypesTmp { struct_fields: Vec, enum_fields: Vec, args: Vec, } #[derive(Default)] pub struct TypeIns { args: Vec, struct_fields: Vec, enum_fields: Vec, funcs: EntVec, globals: EntVec, consts: EntVec, structs: EntVec, enums: EntVec, ptrs: EntVec, opts: EntVec, slices: EntVec, } struct FTask { file: Module, id: ty::Func, ct: bool, } struct StringRef(ty::Global); impl ctx_map::CtxEntry for StringRef { type Ctx = EntVec; type Key<'a> = &'a [u8]; fn key<'a>(&self, ctx: &'a Self::Ctx) -> Self::Key<'a> { &ctx[self.0].data } } #[derive(Default)] pub struct Types { syms: ctx_map::CtxMap, names: IdentInterner, strings: ctx_map::CtxMap, ins: TypeIns, tmp: TypesTmp, tasks: Vec>, } impl Types { pub fn case(&self, ty: ty::Id) -> fn(&str) -> Result<(), &'static str> { match ty.expand() { ty::Kind::NEVER => |_| Ok(()), ty::Kind::Enum(_) | ty::Kind::Struct(_) | ty::Kind::Builtin(_) | ty::Kind::Ptr(_) | ty::Kind::Slice(_) | ty::Kind::Opt(_) => utils::is_pascal_case, ty::Kind::Func(f) if self.ins.funcs[f].returns_type => utils::is_pascal_case, ty::Kind::Func(_) | ty::Kind::Global(_) | ty::Kind::Module(_) => utils::is_snake_case, ty::Kind::Const(_) => utils::is_screaming_case, } } fn pack_args(&mut self, arg_base: usize) -> Option { let base = self.ins.args.len(); self.ins.args.extend(self.tmp.args.drain(arg_base..)); let needle = &self.ins.args[base..]; if needle.is_empty() { return Some(ty::Tuple::empty()); } let len = needle.len(); // FIXME: maybe later when this becomes a bottleneck we use more // efficient search (SIMD?, indexing?) let sp = self.ins.args.windows(needle.len()).position(|val| val == needle).unwrap(); self.ins.args.truncate((sp + needle.len()).max(base)); ty::Tuple::new(sp, len) } fn struct_fields(&self, strct: ty::Struct) -> &[StructField] { &self.ins.struct_fields[self.struct_field_range(strct)] } fn struct_field_range(&self, strct: ty::Struct) -> Range { let start = self.ins.structs[strct].field_start as usize; let end = self .ins .structs .next(strct) .map_or(self.ins.struct_fields.len(), |s| s.field_start as usize); start..end } fn enum_fields(&self, enm: ty::Enum) -> &[EnumField] { &self.ins.enum_fields[self.enum_field_range(enm)] } fn enum_field_range(&self, enm: ty::Enum) -> Range { let start = self.ins.enums[enm].field_start as usize; let end = self.ins.enums.next(enm).map_or(self.ins.enum_fields.len(), |s| s.field_start as usize); start..end } fn parama(&self, ret: impl Into) -> (Option, ParamAlloc) { let mut iter = ParamAlloc(1..12); let ret = iter.next(ret.into(), self); iter.0.start += ret.is_none() as u8; (ret, iter) } fn make_opt(&mut self, base: ty::Id) -> ty::Id { self.make_generic_ty(Opt { base }, |ins| &mut ins.opts, |e| SymKey::Optional(e)) } fn make_ptr(&mut self, base: ty::Id) -> ty::Id { self.make_generic_ty(Ptr { base }, |ins| &mut ins.ptrs, |e| SymKey::Pointer(e)) } fn make_array(&mut self, elem: ty::Id, len: ArrayLen) -> ty::Id { self.make_generic_ty(Array { elem, len }, |ins| &mut ins.slices, |e| SymKey::Array(e)) } fn make_generic_ty, T: Copy>( &mut self, ty: T, get_col: fn(&mut TypeIns) -> &mut EntVec, key: fn(&T) -> SymKey, ) -> ty::Id { *self.syms.get_or_insert(key(&{ ty }), &mut self.ins, |ins| get_col(ins).push(ty).into()) } fn size_of(&self, ty: ty::Id) -> Size { match ty.expand() { ty::Kind::Slice(arr) => { let arr = &self.ins.slices[arr]; match arr.len { 0 => 0, ArrayLen::MAX => 16, len => self.size_of(arr.elem) * len, } } ty::Kind::Struct(stru) => { if self.ins.structs[stru].size.get() != 0 { return self.ins.structs[stru].size.get(); } let mut oiter = OffsetIter::new(stru, self); while oiter.next(self).is_some() {} self.ins.structs[stru].size.set(oiter.offset); oiter.offset } ty::Kind::Enum(enm) => (self.enum_field_range(enm).len().ilog2() + 7) / 8, ty::Kind::Opt(opt) => { let base = self.ins.opts[opt].base; if self.nieche_of(base).is_some() { self.size_of(base) } else { self.size_of(base) + self.align_of(base) } } _ if let Some(size) = ty.simple_size() => size, ty => unimplemented!("size_of: {:?}", ty), } } fn align_of(&self, ty: ty::Id) -> Size { match ty.expand() { ty::Kind::Struct(stru) => { if self.ins.structs[stru].align.get() != 0 { return self.ins.structs[stru].align.get() as _; } let align = self.ins.structs[stru].explicit_alignment.map_or_else( || { self.struct_fields(stru) .iter() .map(|&StructField { ty, .. }| self.align_of(ty)) .max() .unwrap_or(1) }, |a| a as _, ); self.ins.structs[stru].align.set(align.try_into().unwrap()); align } ty::Kind::Slice(arr) => { let arr = &self.ins.slices[arr]; match arr.len { ArrayLen::MAX => 8, _ => self.align_of(arr.elem), } } _ => self.size_of(ty).max(1), } } fn base_of(&self, ty: ty::Id) -> Option { match ty.expand() { ty::Kind::Ptr(p) => Some(self.ins.ptrs[p].base), _ => None, } } fn inner_of(&self, ty: ty::Id) -> Option { match ty.expand() { ty::Kind::Opt(o) => Some(self.ins.opts[o].base), _ => None, } } fn opt_layout(&self, inner_ty: ty::Id) -> OptLayout { match self.nieche_of(inner_ty) { Some((_, flag_offset, flag_ty)) => { OptLayout { flag_ty, flag_offset, payload_offset: 0 } } None => OptLayout { flag_ty: ty::Id::BOOL, flag_offset: 0, payload_offset: self.align_of(inner_ty), }, } } fn nieche_of(&self, ty: ty::Id) -> Option<(bool, Offset, ty::Id)> { match ty.expand() { ty::Kind::Ptr(_) => Some((false, 0, ty::Id::UINT)), // TODO: cache this ty::Kind::Struct(s) => OffsetIter::new(s, self).into_iter(self).find_map(|(f, off)| { self.nieche_of(f.ty).map(|(uninit, o, ty)| (uninit, o + off, ty)) }), _ => None, } } fn find_struct_field(&self, s: ty::Struct, name: &str) -> Option { let name = self.names.project(name)?; self.struct_fields(s).iter().position(|f| f.name == name) } fn clear(&mut self) { self.syms.clear(); self.names.clear(); self.strings.clear(); self.ins.funcs.clear(); self.ins.args.clear(); self.ins.globals.clear(); self.ins.structs.clear(); self.ins.struct_fields.clear(); self.ins.ptrs.clear(); self.ins.slices.clear(); debug_assert_eq!(self.tmp.struct_fields.len(), 0); debug_assert_eq!(self.tmp.args.len(), 0); debug_assert_eq!(self.tasks.len(), 0); } } struct OptLayout { flag_ty: ty::Id, flag_offset: Offset, payload_offset: Offset, } struct OffsetIter { strct: ty::Struct, offset: Offset, fields: Range, } impl OffsetIter { fn new(strct: ty::Struct, tys: &Types) -> Self { Self { strct, offset: 0, fields: tys.struct_field_range(strct) } } fn offset_of(tys: &Types, idx: ty::Struct, field: &str) -> Option<(Offset, ty::Id)> { let field_id = tys.names.project(field)?; OffsetIter::new(idx, tys) .into_iter(tys) .find(|(f, _)| f.name == field_id) .map(|(f, off)| (off, f.ty)) } fn next<'a>(&mut self, tys: &'a Types) -> Option<(&'a StructField, Offset)> { let stru = &tys.ins.structs[self.strct]; let field = &tys.ins.struct_fields[self.fields.next()?]; let align = stru.explicit_alignment.map_or_else(|| tys.align_of(field.ty), |a| a as u32); self.offset = (self.offset + align - 1) & !(align - 1); let off = self.offset; self.offset += tys.size_of(field.ty); Some((field, off)) } fn next_ty(&mut self, tys: &Types) -> Option<(ty::Id, Offset)> { let (field, off) = self.next(tys)?; Some((field.ty, off)) } fn into_iter(mut self, tys: &Types) -> impl Iterator { core::iter::from_fn(move || self.next(tys)) } } #[cfg(test)] pub fn run_test( name: &'static str, ident: &'static str, input: &'static str, test: fn(&'static str, &'static str, &mut String), ) { use std::{io::Write, path::PathBuf, string::ToString}; let filter = std::env::var("PT_FILTER").unwrap_or_default(); if !filter.is_empty() && !name.contains(&filter) { return; } let mut output = String::new(); { struct DumpOut<'a>(&'a mut String); impl Drop for DumpOut<'_> { fn drop(&mut self) { if std::thread::panicking() { std::println!("{}", self.0); } } } let dump = DumpOut(&mut output); test(ident, input, dump.0); } let mut root = PathBuf::from( std::env::var("PT_TEST_ROOT") .unwrap_or(concat!(env!("CARGO_MANIFEST_DIR"), "/tests").to_string()), ); root.push(name.replace("::", "_").replace(concat!(env!("CARGO_PKG_NAME"), "_"), "")); root.set_extension("txt"); let expected = std::fs::read_to_string(&root).unwrap_or_default(); if output == expected { return; } if std::env::var("PT_UPDATE").is_ok() { std::fs::write(&root, output).unwrap(); return; } if !root.exists() { std::fs::create_dir_all(root.parent().unwrap()).unwrap(); std::fs::write(&root, vec![]).unwrap(); } let mut proc = std::process::Command::new("diff") .arg("-u") .arg("--color") .arg(&root) .arg("-") .stdin(std::process::Stdio::piped()) .stdout(std::process::Stdio::inherit()) .spawn() .unwrap(); proc.stdin.as_mut().unwrap().write_all(output.as_bytes()).unwrap(); proc.wait().unwrap(); panic!("test failed"); } #[cfg(test)] fn test_parse_files( ident: &str, input: &str, ctx: &mut parser::Ctx, ) -> (Vec, Vec>) { use { self::parser::FileKind, std::{borrow::ToOwned, string::ToString}, }; fn find_block<'a>(mut input: &'a str, test_name: &str) -> &'a str { const CASE_PREFIX: &str = "#### "; const CASE_SUFFIX: &str = "\n```hb"; loop { let Some(pos) = input.find(CASE_PREFIX) else { unreachable!("test {test_name} not found"); }; input = unsafe { input.get_unchecked(pos + CASE_PREFIX.len()..) }; if !input.starts_with(test_name) { continue; } input = unsafe { input.get_unchecked(test_name.len()..) }; if !input.starts_with(CASE_SUFFIX) { continue; } input = unsafe { input.get_unchecked(CASE_SUFFIX.len()..) }; let end = input.find("```").unwrap_or(input.len()); break unsafe { input.get_unchecked(..end) }; } } let input = find_block(input, ident); let mut module_map = Vec::new(); let mut embed_map = Vec::new(); let mut last_start = 0; let mut last_module_name = "test.hb"; for (i, m) in input.match_indices("// in module: ") { if last_module_name.ends_with(".hb") { fmt::test::format(ident, input[last_start..i].trim()); module_map.push((last_module_name, &input[last_start..i])); } else { embed_map.push((last_module_name, &input[last_start..i])); } let (module_name, _) = input[i + m.len()..].split_once('\n').unwrap(); last_module_name = module_name; last_start = i + m.len() + module_name.len() + 1; } if last_module_name.ends_with(".hb") { fmt::test::format(ident, input[last_start..].trim()); module_map.push((last_module_name, &input[last_start..])); } else { embed_map.push((last_module_name, &input[last_start..])); } let mut loader = |path: &str, _: &str, kind| match kind { FileKind::Module => module_map .iter() .position(|&(name, _)| name == path) .ok_or("Module Not Found".to_string()), FileKind::Embed => embed_map .iter() .position(|&(name, _)| name == path) .ok_or("Embed Not Found".to_string()), }; ( module_map .iter() .map(|&(path, content)| parser::Ast::new(path, content.to_owned(), ctx, &mut loader)) .collect(), embed_map.iter().map(|&(_, content)| content.to_owned().into_bytes()).collect(), ) } fn endoce_string( literal: &str, str: &mut Vec, report: impl Fn(&core::str::Bytes, &str), ) -> Option<()> { let report = |bytes: &core::str::Bytes, msg: &_| { report(bytes, msg); None:: }; let decode_braces = |str: &mut Vec, bytes: &mut core::str::Bytes| { while let Some(b) = bytes.next() && b != b'}' { let c = bytes.next().or_else(|| report(bytes, "incomplete escape sequence"))?; let decode = |b: u8| { Some(match b { b'0'..=b'9' => b - b'0', b'a'..=b'f' => b - b'a' + 10, b'A'..=b'F' => b - b'A' + 10, _ => report(bytes, "expected hex digit or '}'")?, }) }; str.push(decode(b)? << 4 | decode(c)?); } Some(()) }; let mut bytes = literal.bytes(); while let Some(b) = bytes.next() { if b != b'\\' { str.push(b); continue; } let b = match bytes.next().or_else(|| report(&bytes, "incomplete escape sequence"))? { b'n' => b'\n', b'r' => b'\r', b't' => b'\t', b'\\' => b'\\', b'\'' => b'\'', b'"' => b'"', b'0' => b'\0', b'{' => { decode_braces(str, &mut bytes); continue; } _ => report(&bytes, "unknown escape sequence, expected [nrt\\\"'{0]")?, }; str.push(b); } if str.last() != Some(&0) { report(&bytes, "string literal must end with null byte (for now)"); } Some(()) } pub fn quad_sort(mut slice: &mut [T], mut cmp: impl FnMut(&T, &T) -> core::cmp::Ordering) { while let Some(it) = slice.take_first_mut() { for ot in &mut *slice { if cmp(it, ot) == core::cmp::Ordering::Greater { core::mem::swap(it, ot); } } } debug_assert!(slice.is_sorted_by(|a, b| cmp(a, b) != core::cmp::Ordering::Greater)); } type FnvBuildHasher = core::hash::BuildHasherDefault; struct FnvHasher(u64); impl core::hash::Hasher for FnvHasher { fn finish(&self) -> u64 { self.0 } fn write(&mut self, bytes: &[u8]) { self.0 = bytes.iter().fold(self.0, |hash, &byte| { let mut hash = hash; hash ^= byte as u64; hash = hash.wrapping_mul(0x100000001B3); hash }); } } impl Default for FnvHasher { fn default() -> Self { Self(0xCBF29CE484222325) } }