holey-bytes/lang/src/son.rs
2024-10-17 22:29:09 +02:00

2896 lines
100 KiB
Rust

use {
crate::{
ctx_map::CtxEntry,
ident::Ident,
instrs,
lexer::{self, TokenKind},
parser::{
self,
idfl::{self},
Expr, ExprRef, FileId, Pos,
},
reg, task,
ty::{self},
vc::{BitSet, Vc},
Func, HashMap, Offset, OffsetIter, Reloc, Sig, SymKey, TypedReloc, Types,
},
alloc::{borrow::ToOwned, string::String, vec::Vec},
core::{
assert_matches::debug_assert_matches,
cell::RefCell,
fmt::{self, Debug, Display, Write},
format_args as fa, mem,
ops::{self},
},
hashbrown::hash_map,
regalloc2::VReg,
};
const VOID: Nid = 0;
const NEVER: Nid = 1;
const ENTRY: Nid = 2;
const MEM: Nid = 3;
type Nid = u16;
type Lookup = crate::ctx_map::CtxMap<Nid>;
impl crate::ctx_map::CtxEntry for Nid {
type Ctx = [Result<Node, Nid>];
type Key<'a> = (Kind, &'a [Nid], ty::Id);
fn key<'a>(&self, ctx: &'a Self::Ctx) -> Self::Key<'a> {
ctx[*self as usize].as_ref().unwrap().key()
}
}
struct Nodes {
values: Vec<Result<Node, Nid>>,
visited: BitSet,
free: Nid,
lookup: Lookup,
}
impl Default for Nodes {
fn default() -> Self {
Self {
values: Default::default(),
free: Nid::MAX,
lookup: Default::default(),
visited: Default::default(),
}
}
}
impl Nodes {
fn remove_low(&mut self, id: Nid) -> Node {
let value = mem::replace(&mut self.values[id as usize], Err(self.free)).unwrap();
self.free = id;
value
}
fn clear(&mut self) {
self.values.clear();
self.lookup.clear();
self.free = Nid::MAX;
}
fn new_node_nop(&mut self, ty: ty::Id, kind: Kind, inps: impl Into<Vc>) -> Nid {
let node =
Node { ralloc_backref: u16::MAX, inputs: inps.into(), kind, ty, ..Default::default() };
let mut lookup_meta = None;
if !node.is_lazy_phi() {
let (raw_entry, hash) = self.lookup.entry(node.key(), &self.values);
let entry = match raw_entry {
hash_map::RawEntryMut::Occupied(o) => return o.get_key_value().0.value,
hash_map::RawEntryMut::Vacant(v) => v,
};
lookup_meta = Some((entry, hash));
}
if self.free == Nid::MAX {
self.free = self.values.len() as _;
self.values.push(Err(Nid::MAX));
}
let free = self.free;
for &d in node.inputs.as_slice() {
debug_assert_ne!(d, free);
self.values[d as usize].as_mut().unwrap_or_else(|_| panic!("{d}")).outputs.push(free);
}
self.free = mem::replace(&mut self.values[free as usize], Ok(node)).unwrap_err();
if let Some((entry, hash)) = lookup_meta {
entry.insert(crate::ctx_map::Key { value: free, hash }, ());
}
free
}
fn remove_node_lookup(&mut self, target: Nid) {
if !self[target].is_lazy_phi() {
self.lookup.remove(&target, &self.values).unwrap();
}
}
fn new_node_low(&mut self, ty: ty::Id, kind: Kind, inps: impl Into<Vc>) -> (Nid, bool) {
let id = self.new_node_nop(ty, kind, inps);
if let Some(opt) = self.peephole(id) {
debug_assert_ne!(opt, id);
self.lock(opt);
self.remove(id);
self.unlock(opt);
(opt, true)
} else {
(id, false)
}
}
fn new_node(&mut self, ty: ty::Id, kind: Kind, inps: impl Into<Vc>) -> Nid {
self.new_node_low(ty, kind, inps).0
}
fn new_node_lit(&mut self, ty: ty::Id, kind: Kind, inps: impl Into<Vc>) -> Value {
Value::new(self.new_node_low(ty, kind, inps).0).ty(ty)
}
fn lock(&mut self, target: Nid) {
self[target].lock_rc += 1;
}
#[track_caller]
fn unlock(&mut self, target: Nid) {
self[target].lock_rc -= 1;
}
fn remove(&mut self, target: Nid) -> bool {
if !self[target].is_dangling() {
return false;
}
for i in 0..self[target].inputs.len() {
let inp = self[target].inputs[i];
let index = self[inp].outputs.iter().position(|&p| p == target).unwrap();
self[inp].outputs.swap_remove(index);
self.remove(inp);
}
self.remove_node_lookup(target);
self.remove_low(target);
true
}
fn peephole(&mut self, target: Nid) -> Option<Nid> {
use {Kind as K, TokenKind as T};
match self[target].kind {
K::BinOp { op } => {
let &[ctrl, mut lhs, mut rhs] = self[target].inputs.as_slice() else {
unreachable!()
};
let ty = self[target].ty;
if let (&K::CInt { value: a }, &K::CInt { value: b }) =
(&self[lhs].kind, &self[rhs].kind)
{
return Some(
self.new_node(ty, K::CInt { value: op.apply_binop(a, b) }, [ctrl]),
);
}
if lhs == rhs {
match op {
T::Sub => return Some(self.new_node(ty, K::CInt { value: 0 }, [ctrl])),
T::Add => {
let rhs = self.new_node_nop(ty, K::CInt { value: 2 }, [ctrl]);
return Some(
self.new_node(ty, K::BinOp { op: T::Mul }, [ctrl, lhs, rhs]),
);
}
_ => {}
}
}
// this is more general the pushing constants to left to help deduplicate expressions more
let mut changed = false;
if op.is_comutative() && self[lhs].key() < self[rhs].key() {
core::mem::swap(&mut lhs, &mut rhs);
changed = true;
}
if let K::CInt { value } = self[lhs].kind
&& op == T::Sub
{
let lhs = self.new_node_nop(ty, K::CInt { value: -value }, [ctrl]);
return Some(self.new_node(ty, K::BinOp { op: T::Add }, [ctrl, rhs, lhs]));
}
if let K::CInt { value } = self[rhs].kind {
match (op, value) {
(T::Add | T::Sub | T::Shl, 0) | (T::Mul | T::Div, 1) => return Some(lhs),
(T::Mul, 0) => return Some(rhs),
_ => {}
}
}
if op.is_comutative() && self[lhs].kind == (K::BinOp { op }) {
let &[_, a, b] = self[lhs].inputs.as_slice() else { unreachable!() };
if let K::CInt { value: av } = self[b].kind
&& let K::CInt { value: bv } = self[rhs].kind
{
// (a op #b) op #c => a op (#b op #c)
let new_rhs =
self.new_node_nop(ty, K::CInt { value: op.apply_binop(av, bv) }, [
ctrl,
]);
return Some(self.new_node(ty, K::BinOp { op }, [ctrl, a, new_rhs]));
}
if self.is_const(b) {
// (a op #b) op c => (a op c) op #b
let new_lhs = self.new_node(ty, K::BinOp { op }, [ctrl, a, rhs]);
return Some(self.new_node(ty, K::BinOp { op }, [ctrl, new_lhs, b]));
}
}
if op == T::Add
&& self[lhs].kind == (K::BinOp { op: T::Mul })
&& self[lhs].inputs[1] == rhs
&& let K::CInt { value } = self[self[lhs].inputs[2]].kind
{
// a * #n + a => a * (#n + 1)
let new_rhs = self.new_node_nop(ty, K::CInt { value: value + 1 }, [ctrl]);
return Some(self.new_node(ty, K::BinOp { op: T::Mul }, [ctrl, rhs, new_rhs]));
}
if op == T::Sub && self[lhs].kind == (K::BinOp { op }) {
// (a - b) - c => a - (b + c)
let &[_, a, b] = self[lhs].inputs.as_slice() else { unreachable!() };
let c = rhs;
let new_rhs = self.new_node(ty, K::BinOp { op: T::Add }, [ctrl, b, c]);
return Some(self.new_node(ty, K::BinOp { op }, [ctrl, a, new_rhs]));
}
if changed {
return Some(self.new_node(ty, self[target].kind, [ctrl, lhs, rhs]));
}
}
K::UnOp { op } => {
let &[ctrl, oper] = self[target].inputs.as_slice() else { unreachable!() };
let ty = self[target].ty;
if let K::CInt { value } = self[oper].kind {
return Some(
self.new_node(ty, K::CInt { value: op.apply_unop(value) }, [ctrl]),
);
}
}
K::If => {
let cond = self[target].inputs[1];
if let K::CInt { value } = self[cond].kind {
let ty = if value == 0 {
ty::Id::LEFT_UNREACHABLE
} else {
ty::Id::RIGHT_UNREACHABLE
};
return Some(self.new_node_nop(ty, K::If, [self[target].inputs[0], cond]));
}
}
K::Phi => {
if self[target].inputs[1] == self[target].inputs[2] {
return Some(self[target].inputs[1]);
}
}
_ => {}
}
None
}
fn is_const(&self, id: Nid) -> bool {
matches!(self[id].kind, Kind::CInt { .. })
}
fn replace(&mut self, target: Nid, with: Nid) {
let mut back_press = 0;
for i in 0..self[target].outputs.len() {
let out = self[target].outputs[i - back_press];
let index = self[out].inputs.iter().position(|&p| p == target).unwrap();
self.lock(target);
let prev_len = self[target].outputs.len();
self.modify_input(out, index, with);
back_press += (self[target].outputs.len() != prev_len) as usize;
self.unlock(target);
}
self.remove(target);
}
fn modify_input(&mut self, target: Nid, inp_index: usize, with: Nid) -> Nid {
self.remove_node_lookup(target);
debug_assert_ne!(self[target].inputs[inp_index], with);
let prev = self[target].inputs[inp_index];
self[target].inputs[inp_index] = with;
let (entry, hash) = self.lookup.entry(target.key(&self.values), &self.values);
match entry {
hash_map::RawEntryMut::Occupied(other) => {
let rpl = other.get_key_value().0.value;
self[target].inputs[inp_index] = prev;
self.replace(target, rpl);
rpl
}
hash_map::RawEntryMut::Vacant(slot) => {
slot.insert(crate::ctx_map::Key { value: target, hash }, ());
let index = self[prev].outputs.iter().position(|&o| o == target).unwrap();
self[prev].outputs.swap_remove(index);
self[with].outputs.push(target);
self.remove(prev);
target
}
}
}
#[track_caller]
fn unlock_remove(&mut self, id: Nid) -> bool {
self[id].lock_rc -= 1;
self.remove(id)
}
fn iter(&self) -> impl DoubleEndedIterator<Item = (Nid, &Node)> {
self.values.iter().enumerate().filter_map(|(i, s)| Some((i as _, s.as_ref().ok()?)))
}
#[allow(clippy::format_in_format_args)]
fn basic_blocks_instr(&mut self, out: &mut String, node: Nid) -> core::fmt::Result {
if self[node].kind != Kind::Loop && self[node].kind != Kind::Region {
write!(out, " {node:>2}-c{:>2}: ", self[node].ralloc_backref)?;
}
match self[node].kind {
Kind::Start => unreachable!(),
Kind::End => unreachable!(),
Kind::If => write!(out, " if: "),
Kind::Region | Kind::Loop => writeln!(out, " goto: {node}"),
Kind::Return => write!(out, " ret: "),
Kind::CInt { value } => write!(out, "cint: #{value:<4}"),
Kind::Phi => write!(out, " phi: "),
Kind::Arg { index } => write!(out, " arg: {index:<5}"),
Kind::BinOp { op } | Kind::UnOp { op } => {
write!(out, "{:>4}: ", op.name())
}
Kind::Call { func } => {
write!(out, "call: {func} {} ", self[node].depth)
}
Kind::Entry => write!(out, "ctrl: {:<5}", "entry"),
Kind::Then => write!(out, "ctrl: {:<5}", "then"),
Kind::Else => write!(out, "ctrl: {:<5}", "else"),
Kind::Stck => write!(out, "stck: "),
Kind::Load { offset } => write!(out, "load: {offset:<5}"),
Kind::Stre { offset } => write!(out, "stre: {offset:<5}"),
_ => unreachable!(),
}?;
if self[node].kind != Kind::Loop && self[node].kind != Kind::Region {
writeln!(
out,
" {:<14} {}",
format!("{:?}", self[node].inputs),
format!("{:?}", self[node].outputs)
)?;
}
Ok(())
}
fn basic_blocks_low(&mut self, out: &mut String, mut node: Nid) -> core::fmt::Result {
let iter = |nodes: &Nodes, node| nodes[node].outputs.clone().into_iter().rev();
while self.visited.set(node) {
match self[node].kind {
Kind::Start => {
writeln!(out, "start: {}", self[node].depth)?;
let mut cfg_index = Nid::MAX;
for o in iter(self, node) {
self.basic_blocks_instr(out, o)?;
if self[o].kind.is_cfg() {
cfg_index = o;
}
}
node = cfg_index;
}
Kind::End => break,
Kind::If => {
self.basic_blocks_low(out, self[node].outputs[0])?;
node = self[node].outputs[1];
}
Kind::Region => {
writeln!(
out,
"region{node}: {} {} {:?}",
self[node].depth, self[node].loop_depth, self[node].inputs
)?;
let mut cfg_index = Nid::MAX;
for o in iter(self, node) {
self.basic_blocks_instr(out, o)?;
if self.is_cfg(o) {
cfg_index = o;
}
}
node = cfg_index;
}
Kind::Loop => {
writeln!(
out,
"loop{node}: {} {} {:?}",
self[node].depth, self[node].loop_depth, self[node].outputs
)?;
let mut cfg_index = Nid::MAX;
for o in iter(self, node) {
self.basic_blocks_instr(out, o)?;
if self.is_cfg(o) {
cfg_index = o;
}
}
node = cfg_index;
}
Kind::Return => {
node = self[node].outputs[0];
}
Kind::Then | Kind::Else | Kind::Entry => {
writeln!(
out,
"b{node}: {} {} {:?}",
self[node].depth, self[node].loop_depth, self[node].outputs
)?;
let mut cfg_index = Nid::MAX;
for o in iter(self, node) {
self.basic_blocks_instr(out, o)?;
if self.is_cfg(o) {
cfg_index = o;
}
}
node = cfg_index;
}
Kind::Call { .. } => {
let mut cfg_index = Nid::MAX;
let mut print_ret = true;
for o in iter(self, node) {
if self[o].inputs[0] == node
&& (self[node].outputs[0] != o || core::mem::take(&mut print_ret))
{
self.basic_blocks_instr(out, o)?;
}
if self.is_cfg(o) {
cfg_index = o;
}
}
node = cfg_index;
}
_ => unreachable!(),
}
}
Ok(())
}
fn basic_blocks(&mut self) {
let mut out = String::new();
self.visited.clear(self.values.len());
self.basic_blocks_low(&mut out, VOID).unwrap();
log::info!("{out}");
}
fn is_cfg(&self, o: Nid) -> bool {
self[o].kind.is_cfg()
}
fn check_final_integrity(&self) {
//let mut failed = false;
for (_, node) in self.iter() {
debug_assert_eq!(node.lock_rc, 0, "{:?}", node.kind);
// if !matches!(node.kind, Kind::Return | Kind::End) && node.outputs.is_empty() {
// log::err!("outputs are empry {i} {:?}", node.kind);
// failed = true;
// }
// let mut allowed_cfgs = 1 + (node.kind == Kind::If) as usize;
// for &o in node.outputs.iter() {
// if self.is_cfg(i) {
// if allowed_cfgs == 0 && self.is_cfg(o) {
// log::err!(
// "multiple cfg outputs detected: {:?} -> {:?}",
// node.kind,
// self[o].kind
// );
// failed = true;
// } else {
// allowed_cfgs += self.is_cfg(o) as usize;
// }
// }
// let other = match &self.values[o as usize] {
// Ok(other) => other,
// Err(_) => {
// log::err!("the edge points to dropped node: {i} {:?} {o}", node.kind,);
// failed = true;
// continue;
// }
// };
// let occurs = self[o].inputs.iter().filter(|&&el| el == i).count();
// let self_occurs = self[i].outputs.iter().filter(|&&el| el == o).count();
// if occurs != self_occurs {
// log::err!(
// "the edge is not bidirectional: {i} {:?} {self_occurs} {o} {:?} {occurs}",
// node.kind,
// other.kind
// );
// failed = true;
// }
// }
}
//if failed {
// panic!()
//}
}
#[expect(dead_code)]
fn climb_expr(&mut self, from: Nid, mut for_each: impl FnMut(Nid, &Node) -> bool) -> bool {
fn climb_impl(
nodes: &mut Nodes,
from: Nid,
for_each: &mut impl FnMut(Nid, &Node) -> bool,
) -> bool {
for i in 0..nodes[from].inputs.len() {
let n = nodes[from].inputs[i];
if n != Nid::MAX
&& nodes.visited.set(n)
&& !nodes.is_cfg(n)
&& (for_each(n, &nodes[n]) || climb_impl(nodes, n, for_each))
{
return true;
}
}
false
}
self.visited.clear(self.values.len());
climb_impl(self, from, &mut for_each)
}
#[expect(dead_code)]
fn late_peephole(&mut self, target: Nid) -> Nid {
if let Some(id) = self.peephole(target) {
self.replace(target, id);
return id;
}
target
}
fn load_loop_value(&mut self, index: usize, value: &mut Value, loops: &mut [Loop]) {
if value.id != 0 {
debug_assert!(!value.var);
return;
}
let [loob, loops @ ..] = loops else { unreachable!() };
let lvalue = &mut loob.scope[index].value;
self.load_loop_value(index, lvalue, loops);
if !self[lvalue.id].is_lazy_phi() {
self.unlock(value.id);
let inps = [loob.node, lvalue.id, VOID];
self.unlock(lvalue.id);
lvalue.id = self.new_node_nop(lvalue.ty, Kind::Phi, inps);
self[lvalue.id].lock_rc += 2;
} else {
self.lock(lvalue.id);
self.unlock(value.id);
}
*value = *lvalue;
}
fn check_dominance(&mut self, nd: Nid, min: Nid, check_outputs: bool) {
let node = self[nd].clone();
for &i in node.inputs.iter() {
let dom = idom(self, i);
debug_assert!(
self.dominates(dom, min),
"{dom} {min} {node:?} {:?}",
self.basic_blocks()
);
}
if check_outputs {
for &o in node.outputs.iter() {
let dom = use_block(nd, o, self);
debug_assert!(
self.dominates(min, dom),
"{min} {dom} {node:?} {:?}",
self.basic_blocks()
);
}
}
}
fn dominates(&mut self, dominator: Nid, mut dominated: Nid) -> bool {
loop {
if dominator == dominated {
break true;
}
if idepth(self, dominator) > idepth(self, dominated) {
break false;
}
dominated = idom(self, dominated);
}
}
#[expect(dead_code)]
fn iter_mut(&mut self) -> impl Iterator<Item = &mut Node> {
self.values.iter_mut().flat_map(Result::as_mut)
}
}
impl ops::Index<Nid> for Nodes {
type Output = Node;
fn index(&self, index: Nid) -> &Self::Output {
self.values[index as usize].as_ref().unwrap()
}
}
impl ops::IndexMut<Nid> for Nodes {
fn index_mut(&mut self, index: Nid) -> &mut Self::Output {
self.values[index as usize].as_mut().unwrap()
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, Default)]
#[repr(u8)]
pub enum Kind {
#[default]
Start,
// [ctrl]
Entry,
Mem,
// [terms...]
End,
// [ctrl, cond]
If,
Then,
Else,
// [lhs, rhs]
Region,
// [entry, back]
Loop,
// [ctrl, ?value]
Return,
// [ctrl]
CInt {
value: i64,
},
// [ctrl, lhs, rhs]
Phi,
Arg {
index: u32,
},
// [ctrl, oper]
UnOp {
op: lexer::TokenKind,
},
// [ctrl, lhs, rhs]
BinOp {
op: lexer::TokenKind,
},
// [ctrl, ...args]
Call {
func: ty::Func,
},
// [ctrl]
Stck,
// [ctrl, memory]
Load {
offset: Offset,
},
// [ctrl, value, memory]
Stre {
offset: Offset,
},
}
impl Kind {
fn is_pinned(&self) -> bool {
self.is_cfg() || matches!(self, Self::Phi | Self::Mem)
}
fn is_cfg(&self) -> bool {
matches!(
self,
Self::Start
| Self::End
| Self::Return
| Self::Entry
| Self::Then
| Self::Else
| Self::Arg { .. }
| Self::Call { .. }
| Self::If
| Self::Region
| Self::Loop
)
}
fn ends_basic_block(&self) -> bool {
matches!(self, Self::Return | Self::If | Self::End)
}
}
impl fmt::Display for Kind {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
match self {
Kind::CInt { value } => write!(f, "#{value}"),
Kind::Entry => write!(f, "ctrl[entry]"),
Kind::Then => write!(f, "ctrl[then]"),
Kind::Else => write!(f, "ctrl[else]"),
Kind::BinOp { op } => write!(f, "{op}"),
Kind::Call { func, .. } => write!(f, "call {func}"),
slf => write!(f, "{slf:?}"),
}
}
}
#[derive(Debug, Default, Clone)]
//#[repr(align(64))]
pub struct Node {
kind: Kind,
inputs: Vc,
outputs: Vc,
ty: ty::Id,
offset: Offset,
ralloc_backref: RallocBRef,
depth: IDomDepth,
lock_rc: LockRc,
loop_depth: LoopDepth,
}
impl Node {
fn is_dangling(&self) -> bool {
self.outputs.len() + self.lock_rc as usize == 0
}
fn key(&self) -> (Kind, &[Nid], ty::Id) {
(self.kind, &self.inputs, self.ty)
}
fn is_lazy_phi(&self) -> bool {
self.kind == Kind::Phi && self.inputs[2] == 0
}
}
type RallocBRef = u16;
type LoopDepth = u16;
type LockRc = u16;
type IDomDepth = u16;
struct Loop {
node: Nid,
ctrl: [Nid; 2],
ctrl_scope: [Vec<Variable>; 2],
scope: Vec<Variable>,
}
#[derive(Clone, Copy)]
struct Variable {
id: Ident,
value: Value,
}
#[derive(Default)]
struct ItemCtx {
file: FileId,
#[expect(dead_code)]
id: ty::Id,
ret: Option<ty::Id>,
task_base: usize,
nodes: Nodes,
ctrl: Nid,
call_count: u16,
filled: Vec<Nid>,
loops: Vec<Loop>,
vars: Vec<Variable>,
store: Option<Nid>,
loads: Vec<Nid>,
clobbered: Vec<Nid>,
ret_relocs: Vec<Reloc>,
relocs: Vec<TypedReloc>,
jump_relocs: Vec<(Nid, Reloc)>,
code: Vec<u8>,
}
impl ItemCtx {
fn emit(&mut self, instr: (usize, [u8; instrs::MAX_SIZE])) {
crate::emit(&mut self.code, instr);
}
}
fn write_reloc(doce: &mut [u8], offset: usize, value: i64, size: u16) {
let value = value.to_ne_bytes();
doce[offset..offset + size as usize].copy_from_slice(&value[..size as usize]);
}
struct FTask {
file: FileId,
id: ty::Func,
}
#[derive(Default, Debug)]
struct Ctx {
ty: Option<ty::Id>,
}
impl Ctx {
pub fn with_ty(self, ty: impl Into<ty::Id>) -> Self {
Self { ty: Some(ty.into()) }
}
}
#[derive(Default)]
struct Pool {
cis: Vec<ItemCtx>,
}
struct Regalloc {
env: regalloc2::MachineEnv,
ctx: regalloc2::Ctx,
}
impl Default for Regalloc {
fn default() -> Self {
Self {
env: regalloc2::MachineEnv {
preferred_regs_by_class: [
(1..13).map(|i| regalloc2::PReg::new(i, regalloc2::RegClass::Int)).collect(),
vec![],
vec![],
],
non_preferred_regs_by_class: [
(13..64).map(|i| regalloc2::PReg::new(i, regalloc2::RegClass::Int)).collect(),
vec![],
vec![],
],
scratch_by_class: Default::default(),
fixed_stack_slots: Default::default(),
},
ctx: Default::default(),
}
}
}
#[derive(Default, Clone, Copy)]
struct Value {
ty: ty::Id,
off: Offset,
var: bool,
ptr: bool,
id: Nid,
}
impl Value {
const NEVER: Option<Value> =
Some(Self { ty: ty::Id::NEVER, off: 0, var: false, ptr: false, id: NEVER });
const VOID: Value = Self { ty: ty::Id::VOID, off: 0, var: false, ptr: false, id: VOID };
pub fn new(id: Nid) -> Self {
Self { id, ..Default::default() }
}
pub fn var(id: usize) -> Self {
Self { id: u16::MAX - (id as Nid), var: true, ..Default::default() }
}
pub fn ptr(id: Nid) -> Self {
Self { id, ptr: true, ..Default::default() }
}
#[inline(always)]
pub fn ty(self, ty: impl Into<ty::Id>) -> Self {
Self { ty: ty.into(), ..self }
}
#[inline(always)]
pub fn off(self, off: Offset) -> Self {
Self { off, ..self }
}
}
#[derive(Default)]
pub struct Codegen {
pub files: Vec<parser::Ast>,
tasks: Vec<Option<FTask>>,
tys: Types,
ci: ItemCtx,
pool: Pool,
ralloc: Regalloc,
errors: RefCell<String>,
}
impl Codegen {
fn graphviz_low(&self, out: &mut String) -> core::fmt::Result {
use core::fmt::Write;
for (i, node) in self.ci.nodes.iter() {
let color = if self.ci.nodes.is_cfg(i) { "yellow" } else { "white" };
writeln!(
out,
"node{i}[label=\"{} {}\" color={color}]",
node.kind,
self.ty_display(node.ty)
)?;
for (j, &o) in node.outputs.iter().enumerate() {
let color = if self.ci.nodes.is_cfg(i) && self.ci.nodes.is_cfg(o) {
"red"
} else {
"lightgray"
};
let index = self.ci.nodes[o].inputs.iter().position(|&inp| i == inp).unwrap();
let style =
if index == 0 && !self.ci.nodes.is_cfg(o) { "style=dotted" } else { "" };
writeln!(
out,
"node{o} -> node{i}[color={color} taillabel={index} headlabel={j} {style}]",
)?;
}
}
Ok(())
}
#[allow(dead_code)]
fn graphviz(&self) {
let out = &mut String::new();
_ = self.graphviz_low(out);
log::info!("{out}");
}
fn store_mem(&mut self, region: Nid, offset: Offset, value: Nid) -> Nid {
let mut vc = Vc::from([VOID, value, region]);
if let Some(str) = self.ci.store {
self.ci.nodes.unlock(str);
vc.push(str);
}
for load in self.ci.loads.drain(..) {
if load == value {
self.ci.nodes.unlock(load);
continue;
}
if !self.ci.nodes.unlock_remove(load) {
vc.push(load);
}
}
let store = self.ci.nodes.new_node(self.tof(value), Kind::Stre { offset }, vc);
self.ci.nodes.lock(store);
self.ci.store = Some(store);
store
}
fn load_mem(&mut self, region: Nid, offset: Offset, ty: ty::Id) -> Nid {
let mut vc = Vc::from([VOID, region]);
if let Some(str) = self.ci.store {
vc.push(str);
}
let load = self.ci.nodes.new_node(ty, Kind::Load { offset }, vc);
self.ci.nodes.lock(load);
self.ci.loads.push(load);
load
}
pub fn generate(&mut self) {
self.find_or_declare(0, 0, None, "main");
self.make_func_reachable(0);
self.complete_call_graph();
}
fn make_func_reachable(&mut self, func: ty::Func) {
let fuc = &mut self.tys.ins.funcs[func as usize];
if fuc.offset == u32::MAX {
fuc.offset = task::id(self.tasks.len() as _);
self.tasks.push(Some(FTask { file: fuc.file, id: func }));
}
}
fn raw_expr(&mut self, expr: &Expr) -> Option<Value> {
self.raw_expr_ctx(expr, Ctx::default())
}
fn raw_expr_ctx(&mut self, expr: &Expr, ctx: Ctx) -> Option<Value> {
let msg = "i know nothing about this name, gal, which is vired \
because we parsed succesfully";
// ordered by complexity of the expression
match *expr {
Expr::Comment { .. } => Some(Value::VOID),
Expr::Ident { pos, id, .. } => {
let Some(index) = self.ci.vars.iter().position(|v| v.id == id) else {
self.report(pos, msg);
return Value::NEVER;
};
log::info!("{}", self.ty_display(self.ci.nodes[self.ci.vars[index].value.id].ty));
self.ci.nodes.load_loop_value(
index,
&mut self.ci.vars[index].value,
&mut self.ci.loops,
);
debug_assert_ne!(self.ci.vars[index].value.ty, ty::Id::VOID);
Some(Value::var(index).ty(self.ci.vars[index].value.ty))
}
Expr::Number { value, .. } => Some(self.ci.nodes.new_node_lit(
ctx.ty.filter(|ty| ty.is_integer() || ty.is_pointer()).unwrap_or(ty::Id::INT),
Kind::CInt { value },
[VOID],
)),
Expr::Return { pos, val } => {
let value = if let Some(val) = val {
self.expr_ctx(val, Ctx { ty: self.ci.ret })?
} else {
Value { ty: ty::Id::VOID, ..Default::default() }
};
let mut inps = Vc::from([self.ci.ctrl, value.id]);
for &m in self.ci.store.iter() {
inps.push(m);
}
self.ci.ctrl = self.ci.nodes.new_node(ty::Id::VOID, Kind::Return, inps);
self.ci.nodes[NEVER].inputs.push(self.ci.ctrl);
self.ci.nodes[self.ci.ctrl].outputs.push(NEVER);
let expected = *self.ci.ret.get_or_insert(value.ty);
_ = self.assert_ty(pos, value.ty, expected, true, "return value");
None
}
Expr::Field { target, name, pos } => {
let mut vtarget = self.raw_expr(target)?;
self.strip_var(&mut vtarget);
let tty = vtarget.ty;
let ty::Kind::Struct(s) = self.tys.base_of(tty).unwrap_or(tty).expand() else {
self.report(
pos,
fa!(
"the '{}' is not a struct, or pointer to one, \
but accessing fields is only possible on structs",
self.ty_display(tty)
),
);
return Value::NEVER;
};
let Some((offset, ty)) = OffsetIter::offset_of(&self.tys, s, name) else {
let field_list = self
.tys
.struct_fields(s)
.iter()
.map(|f| self.tys.names.ident_str(f.name))
.intersperse("', '")
.collect::<String>();
self.report(
pos,
fa!(
"the '{}' does not have this field, \
but it does have '{field_list}'",
self.ty_display(tty)
),
);
return Value::NEVER;
};
Some(Value::ptr(vtarget.id).off(offset).ty(ty))
}
Expr::UnOp { op: TokenKind::Band, val, .. } => {
let ctx = Ctx { ty: ctx.ty.and_then(|ty| self.tys.base_of(ty)) };
let mut val = self.raw_expr_ctx(val, ctx)?;
self.strip_var(&mut val);
if val.ptr {
val.ptr = false;
val.ty = self.tys.make_ptr(val.ty);
if val.off != 0 {
let off = self.ci.nodes.new_node_nop(
ty::Id::INT,
Kind::CInt { value: val.off as i64 },
[VOID],
);
let inps = [VOID, val.id, off];
val.id =
self.ci.nodes.new_node(val.ty, Kind::UnOp { op: TokenKind::Add }, inps)
}
return Some(val);
}
let stack = self.ci.nodes.new_node_nop(val.ty, Kind::Stck, [VOID, MEM]);
self.store_mem(stack, 0, val.id);
Some(Value::new(stack).ty(self.tys.make_ptr(val.ty)))
}
Expr::UnOp { op: TokenKind::Mul, val, pos } => {
let ctx = Ctx { ty: ctx.ty.map(|ty| self.tys.make_ptr(ty)) };
let mut val = self.expr_ctx(val, ctx)?;
let Some(base) = self.tys.base_of(val.ty) else {
self.report(
pos,
fa!("the '{}' can not be dereferneced", self.ty_display(val.ty)),
);
return Value::NEVER;
};
val.ptr = true;
val.ty = base;
Some(val)
}
Expr::UnOp { pos, op: op @ TokenKind::Sub, val } => {
let val = self.expr_ctx(val, ctx)?;
if !val.ty.is_integer() {
self.report(pos, fa!("cant negate '{}'", self.ty_display(val.ty)));
}
Some(self.ci.nodes.new_node_lit(val.ty, Kind::UnOp { op }, [VOID, val.id]))
}
Expr::BinOp { left: &Expr::Ident { id, .. }, op: TokenKind::Decl, right } => {
let value = self.expr(right)?;
self.ci.nodes.lock(value.id);
self.ci.vars.push(Variable { id, value });
Some(Value::VOID)
}
Expr::BinOp { left, op: TokenKind::Assign, right } => {
let dest = self.raw_expr(left)?;
let value = self.expr(right)?;
_ = self.assert_ty(left.pos(), value.ty, dest.ty, true, "assignment dest");
if dest.var {
self.ci.nodes.lock(value.id);
let var = &mut self.ci.vars[(u16::MAX - dest.id) as usize];
let prev = core::mem::replace(&mut var.value, value);
self.ci.nodes.unlock_remove(prev.id);
} else if dest.ptr {
self.store_mem(dest.id, dest.off, value.id);
} else {
self.report(left.pos(), "cannot assign to this expression");
}
Some(Value::VOID)
}
//Expr::BinOp {
// left: &Expr::UnOp { pos, op: TokenKind::Mul, val },
// op: TokenKind::Assign,
// right,
//} => {
// //let ctx = Ctx { ty: ctx.ty.map(|ty| self.tys.make_ptr(ty)) };
// //let val = self.expr_ctx(val, ctx)?;
// //let base = self.get_load_type(val).unwrap_or_else(|| {
// // self.report(
// // pos,
// // fa!("the '{}' can not be dereferneced", self.ty_display(self.tof(val))),
// // );
// // ty::Id::NEVER
// //});
// //let value = self.expr_ctx(right, Ctx::default().with_ty(base))?;
// //_ = self.assert_ty(right.pos(), self.tof(value), base, true, "stored value");
// //self.store_mem(val, 0, value);
// //Some(Value::VOID)
// todo!()
//}
Expr::BinOp { left, op, right } if op != TokenKind::Assign => {
let lhs = self.expr_ctx(left, ctx)?;
self.ci.nodes.lock(lhs.id);
let rhs = self.expr_ctx(right, Ctx::default().with_ty(lhs.ty));
self.ci.nodes.unlock(lhs.id);
let rhs = rhs?;
let ty = self.assert_ty(left.pos(), rhs.ty, lhs.ty, false, "right operand");
let inps = [VOID, lhs.id, rhs.id];
Some(self.ci.nodes.new_node_lit(ty::bin_ret(ty, op), Kind::BinOp { op }, inps))
}
Expr::Directive { name: "sizeof", args: [ty], .. } => {
let ty = self.ty(ty);
Some(self.ci.nodes.new_node_lit(
ty::Id::INT,
Kind::CInt { value: self.tys.size_of(ty) as _ },
[VOID],
))
}
Expr::Call { func: &Expr::Ident { pos, id, .. }, args, .. } => {
self.ci.call_count += 1;
let cfile = self.cfile().clone();
let func = self.find_or_declare(pos, self.ci.file, Some(id), cfile.ident_str(id));
let ty::Kind::Func(func) = func else {
self.report(
pos,
fa!("compiler cant (yet) call '{}'", self.ty_display(func.compress())),
);
return Value::NEVER;
};
self.make_func_reachable(func);
let fuc = &self.tys.ins.funcs[func as usize];
let sig = fuc.sig.expect("TODO: generic functions");
let ast = self.files[fuc.file as usize].clone();
let Expr::BinOp { right: &Expr::Closure { args: cargs, .. }, .. } =
fuc.expr.get(&ast).unwrap()
else {
unreachable!()
};
self.assert_report(
args.len() == cargs.len(),
pos,
fa!(
"expected {} function argumenr{}, got {}",
cargs.len(),
if cargs.len() == 1 { "" } else { "s" },
args.len()
),
);
let mut inps = Vc::from([self.ci.ctrl]);
for ((arg, carg), tyx) in args.iter().zip(cargs).zip(sig.args.range()) {
let ty = self.tys.ins.args[tyx];
if self.tys.size_of(ty) == 0 {
continue;
}
let value = self.expr_ctx(arg, Ctx::default().with_ty(ty))?;
_ = self.assert_ty(
arg.pos(),
value.ty,
ty,
true,
fa!("argument {}", carg.name),
);
inps.push(value.id);
}
if let Some(str) = self.ci.store {
inps.push(str);
}
for load in self.ci.loads.drain(..) {
if !self.ci.nodes.unlock_remove(load) {
inps.push(load);
}
}
self.store_mem(VOID, 0, VOID);
for load in self.ci.loads.drain(..) {
if !self.ci.nodes.unlock_remove(load) {
inps.push(load);
}
}
self.ci.ctrl = self.ci.nodes.new_node(sig.ret, Kind::Call { func }, inps);
for c in self.ci.clobbered.drain(..) {
self.ci.nodes[self.ci.ctrl].inputs.push(c);
self.ci.nodes[c].outputs.push(self.ci.ctrl);
}
Some(Value::new(self.ci.ctrl).ty(sig.ret))
}
Expr::Ctor { pos, ty, fields, .. } => {
let Some(sty) = ty.map(|ty| self.ty(ty)).or(ctx.ty) else {
self.report(
pos,
"the type of struct cannot be inferred from context, \
use an explicit type instead: <type>.{ ... }",
);
return Value::NEVER;
};
let ty::Kind::Struct(s) = sty.expand() else {
let inferred = if ty.is_some() { "" } else { "inferred " };
self.report(
pos,
fa!(
"the {inferred}type of the constructor is `{}`, \
but thats not a struct",
self.ty_display(sty)
),
);
return Value::NEVER;
};
// TODO: dont allocate
let mut offs = OffsetIter::new(s, &self.tys)
.into_iter(&self.tys)
.map(|(f, o)| (f.ty, o))
.collect::<Vec<_>>();
let mem = self.ci.nodes.new_node(sty, Kind::Stck, [VOID, MEM]);
for field in fields {
let Some(index) = self.tys.find_struct_field(s, field.name) else {
self.report(
field.pos,
fa!("struct '{}' does not have this field", self.ty_display(sty)),
);
continue;
};
let (ty, offset) =
core::mem::replace(&mut offs[index], (ty::Id::UNDECLARED, field.pos));
if ty == ty::Id::UNDECLARED {
self.report(field.pos, "the struct field is already initialized");
self.report(offset, "previous initialization is here");
continue;
}
let value = self.expr_ctx(&field.value, Ctx::default().with_ty(ty))?;
self.store_mem(mem, offset, value.id);
}
let field_list = self
.tys
.struct_fields(s)
.iter()
.zip(offs)
.filter(|&(_, (ty, _))| ty != ty::Id::UNDECLARED)
.map(|(f, _)| self.tys.names.ident_str(f.name))
.intersperse(", ")
.collect::<String>();
if !field_list.is_empty() {
self.report(pos, fa!("the struct initializer is missing {field_list}"));
}
Some(Value::ptr(mem).ty(sty))
}
Expr::Block { stmts, .. } => {
let base = self.ci.vars.len();
let mut ret = Some(Value::VOID);
for stmt in stmts {
ret = ret.and(self.expr(stmt));
if let Some(id) = ret {
_ = self.assert_ty(stmt.pos(), id.ty, ty::Id::VOID, true, "statement");
} else {
break;
}
}
self.ci.nodes.lock(self.ci.ctrl);
for var in self.ci.vars.drain(base..) {
self.ci.nodes.unlock_remove(var.value.id);
}
self.ci.nodes.unlock(self.ci.ctrl);
ret
}
Expr::Loop { body, .. } => {
self.ci.ctrl = self.ci.nodes.new_node(ty::Id::VOID, Kind::Loop, [self.ci.ctrl; 2]);
self.ci.loops.push(Loop {
node: self.ci.ctrl,
ctrl: [Nid::MAX; 2],
ctrl_scope: core::array::from_fn(|_| vec![]),
scope: self.ci.vars.clone(),
});
for var in &mut self.ci.vars {
var.value = Value::VOID;
}
self.ci.nodes[VOID].lock_rc += self.ci.vars.len() as LockRc;
self.expr(body);
let Loop { node, ctrl: [mut con, bre], ctrl_scope: [mut cons, mut bres], scope } =
self.ci.loops.pop().unwrap();
if con != Nid::MAX {
con = self.ci.nodes.new_node(ty::Id::VOID, Kind::Region, [con, self.ci.ctrl]);
Self::merge_scopes(
&mut self.ci.nodes,
&mut self.ci.loops,
con,
&mut self.ci.vars,
&mut cons,
true,
);
self.ci.ctrl = con;
}
self.ci.nodes.modify_input(node, 1, self.ci.ctrl);
let idx = self.ci.nodes[node]
.outputs
.iter()
.position(|&n| self.ci.nodes.is_cfg(n))
.unwrap();
self.ci.nodes[node].outputs.swap(idx, 0);
if bre == Nid::MAX {
self.ci.ctrl = NEVER;
return None;
}
self.ci.ctrl = bre;
self.ci.nodes.lock(self.ci.ctrl);
core::mem::swap(&mut self.ci.vars, &mut bres);
for ((dest_var, mut scope_var), loop_var) in
self.ci.vars.iter_mut().zip(scope).zip(bres)
{
self.ci.nodes.unlock(loop_var.value.id);
if loop_var.value.id != VOID {
self.ci.nodes.unlock(scope_var.value.id);
if loop_var.value.id != scope_var.value.id {
scope_var.value.id = self.ci.nodes.modify_input(
scope_var.value.id,
2,
loop_var.value.id,
);
self.ci.nodes.lock(scope_var.value.id);
} else {
if dest_var.value.id == scope_var.value.id {
self.ci.nodes.unlock(dest_var.value.id);
dest_var.value.id = VOID;
self.ci.nodes.lock(dest_var.value.id);
}
let phi = &self.ci.nodes[scope_var.value.id];
debug_assert_eq!(phi.kind, Kind::Phi);
debug_assert_eq!(phi.inputs[2], VOID);
debug_assert_eq!(phi.ty, scope_var.value.ty);
let prev = phi.inputs[1];
self.ci.nodes.replace(scope_var.value.id, prev);
scope_var.value.id = prev;
self.ci.nodes.lock(prev);
}
}
if dest_var.value.id == VOID {
self.ci.nodes.unlock(dest_var.value.id);
dest_var.value = scope_var.value;
self.ci.nodes.lock(dest_var.value.id);
}
debug_assert!(
self.ci.nodes[dest_var.value.id].kind != Kind::Phi
|| self.ci.nodes[dest_var.value.id].inputs[2] != 0
);
self.ci.nodes.unlock_remove(scope_var.value.id);
}
self.ci.nodes.unlock(self.ci.ctrl);
Some(Value::VOID)
}
Expr::Break { pos } => self.jump_to(pos, 1),
Expr::Continue { pos } => self.jump_to(pos, 0),
Expr::If { cond, then, else_, .. } => {
let cond = self.expr_ctx(cond, Ctx::default().with_ty(ty::BOOL))?;
let if_node =
self.ci.nodes.new_node(ty::Id::VOID, Kind::If, [self.ci.ctrl, cond.id]);
'b: {
let branch = match self.tof(if_node).expand().inner() {
ty::LEFT_UNREACHABLE => else_,
ty::RIGHT_UNREACHABLE => Some(then),
_ => break 'b,
};
self.ci.nodes.lock(self.ci.ctrl);
self.ci.nodes.remove(if_node);
self.ci.nodes.unlock(self.ci.ctrl);
if let Some(branch) = branch {
return self.expr(branch);
} else {
return Some(Value::VOID);
}
}
let mut else_scope = self.ci.vars.clone();
for &el in &self.ci.vars {
self.ci.nodes.lock(el.value.id);
}
self.ci.ctrl = self.ci.nodes.new_node(ty::Id::VOID, Kind::Then, [if_node]);
let lcntrl = self.expr(then).map_or(Nid::MAX, |_| self.ci.ctrl);
let mut then_scope = core::mem::replace(&mut self.ci.vars, else_scope);
self.ci.ctrl = self.ci.nodes.new_node(ty::Id::VOID, Kind::Else, [if_node]);
let rcntrl = if let Some(else_) = else_ {
self.expr(else_).map_or(Nid::MAX, |_| self.ci.ctrl)
} else {
self.ci.ctrl
};
if lcntrl == Nid::MAX && rcntrl == Nid::MAX {
for then_var in then_scope {
self.ci.nodes.unlock_remove(then_var.value.id);
}
return None;
} else if lcntrl == Nid::MAX {
for then_var in then_scope {
self.ci.nodes.unlock_remove(then_var.value.id);
}
return Some(Value::VOID);
} else if rcntrl == Nid::MAX {
for else_var in &self.ci.vars {
self.ci.nodes.unlock_remove(else_var.value.id);
}
self.ci.vars = then_scope;
self.ci.ctrl = lcntrl;
return Some(Value::VOID);
}
self.ci.ctrl = self.ci.nodes.new_node(ty::Id::VOID, Kind::Region, [lcntrl, rcntrl]);
else_scope = core::mem::take(&mut self.ci.vars);
Self::merge_scopes(
&mut self.ci.nodes,
&mut self.ci.loops,
self.ci.ctrl,
&mut else_scope,
&mut then_scope,
true,
);
self.ci.vars = else_scope;
Some(Value::VOID)
}
ref e => {
self.report_unhandled_ast(e, "bruh");
Value::NEVER
}
}
}
fn expr_ctx(&mut self, expr: &Expr, ctx: Ctx) -> Option<Value> {
let mut n = self.raw_expr_ctx(expr, ctx)?;
self.strip_var(&mut n);
if core::mem::take(&mut n.ptr) {
n.id = self.load_mem(n.id, n.off, n.ty);
}
Some(n)
}
fn strip_var(&mut self, n: &mut Value) {
if core::mem::take(&mut n.var) {
let id = (u16::MAX - n.id) as usize;
self.ci.nodes.load_loop_value(id, &mut self.ci.vars[id].value, &mut self.ci.loops);
*n = self.ci.vars[id].value;
}
}
fn expr(&mut self, expr: &Expr) -> Option<Value> {
self.expr_ctx(expr, Default::default())
}
fn jump_to(&mut self, pos: Pos, id: usize) -> Option<Value> {
let Some(mut loob) = self.ci.loops.last_mut() else {
self.report(pos, "break outside a loop");
return None;
};
if loob.ctrl[id] == Nid::MAX {
loob.ctrl[id] = self.ci.ctrl;
loob.ctrl_scope[id] = self.ci.vars[..loob.scope.len()].to_owned();
for v in &loob.ctrl_scope[id] {
self.ci.nodes.lock(v.value.id)
}
} else {
let reg =
self.ci.nodes.new_node(ty::Id::VOID, Kind::Region, [self.ci.ctrl, loob.ctrl[id]]);
let mut scope = core::mem::take(&mut loob.ctrl_scope[id]);
Self::merge_scopes(
&mut self.ci.nodes,
&mut self.ci.loops,
reg,
&mut scope,
&mut self.ci.vars,
false,
);
loob = self.ci.loops.last_mut().unwrap();
loob.ctrl_scope[id] = scope;
loob.ctrl[id] = reg;
}
self.ci.ctrl = NEVER;
None
}
fn merge_scopes(
nodes: &mut Nodes,
loops: &mut [Loop],
ctrl: Nid,
to: &mut [Variable],
from: &mut [Variable],
drop_from: bool,
) {
for (i, (else_var, then_var)) in to.iter_mut().zip(from).enumerate() {
if else_var.value.id != then_var.value.id {
nodes.load_loop_value(i, &mut then_var.value, loops);
nodes.load_loop_value(i, &mut else_var.value, loops);
if else_var.value.id != then_var.value.id {
let ty = nodes[else_var.value.id].ty;
debug_assert_eq!(ty, nodes[then_var.value.id].ty, "TODO: typecheck properly");
let inps = [ctrl, then_var.value.id, else_var.value.id];
nodes.unlock(else_var.value.id);
else_var.value.id = nodes.new_node(ty, Kind::Phi, inps);
nodes.lock(else_var.value.id);
}
}
if drop_from {
nodes.unlock_remove(then_var.value.id);
}
}
}
#[inline(always)]
fn tof(&self, id: Nid) -> ty::Id {
self.ci.nodes[id].ty
}
fn complete_call_graph(&mut self) {
while self.ci.task_base < self.tasks.len()
&& let Some(task_slot) = self.tasks.pop()
{
let Some(task) = task_slot else { continue };
self.emit_func(task);
}
}
fn emit_func(&mut self, FTask { file, id }: FTask) {
let func = &mut self.tys.ins.funcs[id as usize];
func.offset = u32::MAX - 1;
debug_assert!(func.file == file);
let sig = func.sig.unwrap();
let ast = self.files[file as usize].clone();
let expr = func.expr.get(&ast).unwrap();
let repl = ItemCtx {
file,
id: ty::Kind::Func(id).compress(),
ret: Some(sig.ret),
..self.pool.cis.pop().unwrap_or_default()
};
let prev_ci = core::mem::replace(&mut self.ci, repl);
let start = self.ci.nodes.new_node(ty::Id::VOID, Kind::Start, []);
debug_assert_eq!(start, VOID);
let end = self.ci.nodes.new_node(ty::Id::NEVER, Kind::End, []);
debug_assert_eq!(end, NEVER);
self.ci.nodes.lock(end);
self.ci.ctrl = self.ci.nodes.new_node(ty::Id::VOID, Kind::Entry, [VOID]);
debug_assert_eq!(self.ci.ctrl, ENTRY);
let mem = self.ci.nodes.new_node(ty::Id::VOID, Kind::Mem, [VOID]);
debug_assert_eq!(mem, MEM);
self.ci.nodes.lock(mem);
let Expr::BinOp {
left: Expr::Ident { .. },
op: TokenKind::Decl,
right: &Expr::Closure { body, args, .. },
} = expr
else {
unreachable!("{}", self.ast_display(expr))
};
let mut sig_args = sig.args.range();
for (arg, index) in args.iter().zip(0u32..) {
let ty = self.tys.ins.args[sig_args.next().unwrap()];
let value = self.ci.nodes.new_node(ty, Kind::Arg { index }, [VOID]);
self.ci.nodes.lock(value);
let sym = parser::find_symbol(&ast.symbols, arg.id);
assert!(sym.flags & idfl::COMPTIME == 0, "TODO");
self.ci.vars.push(Variable { id: arg.id, value: Value::new(value).ty(ty) });
}
let orig_vars = self.ci.vars.clone();
if self.expr(body).is_some() {
self.report(body.pos(), "expected all paths in the fucntion to return");
}
self.ci.nodes.unlock(end);
if let Some(mem) = self.ci.store.take() {
self.ci.nodes.unlock_remove(mem);
}
for load in self.ci.loads.drain(..) {
self.ci.nodes.unlock_remove(load);
}
self.ci.nodes.unlock(mem);
for var in self.ci.vars.drain(..) {
self.ci.nodes.unlock(var.value.id);
}
if self.errors.borrow().is_empty() {
self.graphviz();
self.gcm();
#[cfg(debug_assertions)]
{
self.ci.nodes.check_final_integrity();
}
'_open_function: {
self.ci.emit(instrs::addi64(reg::STACK_PTR, reg::STACK_PTR, 0));
self.ci.emit(instrs::st(reg::RET_ADDR, reg::STACK_PTR, 0, 0));
}
//self.ci.nodes.basic_blocks();
self.graphviz();
let mut stack_size = 0;
'_compute_stack: {
let mems = core::mem::take(&mut self.ci.nodes[MEM].outputs);
for &stck in mems.iter() {
stack_size += self.tys.size_of(self.ci.nodes[stck].ty);
self.ci.nodes[stck].offset = stack_size;
}
for &stck in mems.iter() {
self.ci.nodes[stck].offset = stack_size - self.ci.nodes[stck].offset;
}
self.ci.nodes[mem].outputs = mems;
}
self.ci.vars = orig_vars;
self.ci.nodes.visited.clear(self.ci.nodes.values.len());
let saved = self.emit_body(sig);
self.ci.vars.clear();
if let Some(last_ret) = self.ci.ret_relocs.last()
&& last_ret.offset as usize == self.ci.code.len() - 5
{
self.ci.code.truncate(self.ci.code.len() - 5);
self.ci.ret_relocs.pop();
}
// FIXME: maybe do this incrementally
for (nd, rel) in self.ci.jump_relocs.drain(..) {
let offset = self.ci.nodes[nd].offset;
rel.apply_jump(&mut self.ci.code, offset, 0);
}
let end = self.ci.code.len();
for ret_rel in self.ci.ret_relocs.drain(..) {
ret_rel.apply_jump(&mut self.ci.code, end as _, 0);
}
let mut stripped_prelude_size = 0;
'_close_function: {
let pushed =
(saved as i64 + (core::mem::take(&mut self.ci.call_count) != 0) as i64) * 8;
let stack = stack_size as i64;
match (pushed, stack) {
(0, 0) => {
stripped_prelude_size =
instrs::addi64(0, 0, 0).0 + instrs::st(0, 0, 0, 0).0;
self.ci.code.drain(0..stripped_prelude_size);
break '_close_function;
}
(0, stack) => {
write_reloc(&mut self.ci.code, 3, -stack, 8);
stripped_prelude_size = instrs::addi64(0, 0, 0).0;
let end = stripped_prelude_size + instrs::st(0, 0, 0, 0).0;
self.ci.code.drain(stripped_prelude_size..end);
self.ci.emit(instrs::addi64(reg::STACK_PTR, reg::STACK_PTR, stack as _));
break '_close_function;
}
_ => {}
}
write_reloc(&mut self.ci.code, 3, -(pushed + stack), 8);
write_reloc(&mut self.ci.code, 3 + 8 + 3, stack, 8);
write_reloc(&mut self.ci.code, 3 + 8 + 3 + 8, pushed, 2);
self.ci.emit(instrs::ld(reg::RET_ADDR, reg::STACK_PTR, stack as _, pushed as _));
self.ci.emit(instrs::addi64(reg::STACK_PTR, reg::STACK_PTR, (pushed + stack) as _));
}
self.ci.relocs.iter_mut().for_each(|r| r.reloc.offset -= stripped_prelude_size as u32);
self.ci.emit(instrs::jala(reg::ZERO, reg::RET_ADDR, 0));
}
self.tys.ins.funcs[id as usize].code.append(&mut self.ci.code);
self.tys.ins.funcs[id as usize].relocs.append(&mut self.ci.relocs);
self.ci.nodes.clear();
self.ci.filled.clear();
self.pool.cis.push(core::mem::replace(&mut self.ci, prev_ci));
}
fn emit_body(&mut self, sig: Sig) -> usize {
let mut nodes = core::mem::take(&mut self.ci.nodes);
let func = Function::new(&mut nodes, &self.tys, sig);
log::info!("{:?}", func);
if self.ci.call_count != 0 {
core::mem::swap(
&mut self.ralloc.env.preferred_regs_by_class,
&mut self.ralloc.env.non_preferred_regs_by_class,
);
};
let options = regalloc2::RegallocOptions {
verbose_log: false,
validate_ssa: false,
algorithm: regalloc2::Algorithm::Ion,
};
regalloc2::run_with_ctx(&func, &self.ralloc.env, &options, &mut self.ralloc.ctx)
.unwrap_or_else(|err| panic!("{err}"));
if self.ci.call_count != 0 {
core::mem::swap(
&mut self.ralloc.env.preferred_regs_by_class,
&mut self.ralloc.env.non_preferred_regs_by_class,
);
};
let mut saved_regs = HashMap::<u8, u8>::default();
let mut atr = |allc: regalloc2::Allocation| {
debug_assert!(allc.is_reg());
let hvenc = regalloc2::PReg::from_index(allc.index()).hw_enc() as u8;
if hvenc <= 12 {
return hvenc;
}
let would_insert = saved_regs.len() as u8 + reg::RET_ADDR + 1;
*saved_regs.entry(hvenc).or_insert(would_insert)
};
for (i, block) in func.blocks.iter().enumerate() {
let blk = regalloc2::Block(i as _);
func.nodes[block.nid].offset = self.ci.code.len() as _;
for instr_or_edit in self.ralloc.ctx.output.block_insts_and_edits(&func, blk) {
let inst = match instr_or_edit {
regalloc2::InstOrEdit::Inst(inst) => inst,
regalloc2::InstOrEdit::Edit(&regalloc2::Edit::Move { from, to }) => {
self.ci.emit(instrs::cp(atr(to), atr(from)));
continue;
}
};
let nid = func.instrs[inst.index()].nid;
if nid == NEVER {
continue;
};
let allocs = self.ralloc.ctx.output.inst_allocs(inst);
let node = &func.nodes[nid];
match node.kind {
Kind::If => {
let &[_, cond] = node.inputs.as_slice() else { unreachable!() };
if let Kind::BinOp { op } = func.nodes[cond].kind
&& let Some((op, swapped)) = op.cond_op(node.ty.is_signed())
{
let rel = Reloc::new(self.ci.code.len(), 3, 2);
self.ci.jump_relocs.push((node.outputs[!swapped as usize], rel));
let &[lhs, rhs] = allocs else { unreachable!() };
self.ci.emit(op(atr(lhs), atr(rhs), 0));
} else {
todo!()
}
}
Kind::Loop | Kind::Region => {
if node.ralloc_backref as usize != i + 1 {
let rel = Reloc::new(self.ci.code.len(), 1, 4);
self.ci.jump_relocs.push((nid, rel));
self.ci.emit(instrs::jmp(0));
}
}
Kind::Return => {
if i != func.blocks.len() - 1 {
let rel = Reloc::new(self.ci.code.len(), 1, 4);
self.ci.ret_relocs.push(rel);
self.ci.emit(instrs::jmp(0));
}
}
Kind::CInt { value } => {
self.ci.emit(instrs::li64(atr(allocs[0]), value as _));
}
Kind::UnOp { op } => {
let op = op.unop().expect("TODO: unary operator not supported");
let &[dst, oper] = allocs else { unreachable!() };
self.ci.emit(op(atr(dst), atr(oper)));
}
Kind::BinOp { op } => {
let &[.., rhs] = node.inputs.as_slice() else { unreachable!() };
if let Kind::CInt { value } = func.nodes[rhs].kind
&& let Some(op) =
op.imm_binop(node.ty.is_signed(), func.tys.size_of(node.ty))
{
let &[dst, lhs] = allocs else { unreachable!() };
self.ci.emit(op(atr(dst), atr(lhs), value as _));
} else if let Some(op) =
op.binop(node.ty.is_signed(), func.tys.size_of(node.ty))
{
let &[dst, lhs, rhs] = allocs else { unreachable!() };
self.ci.emit(op(atr(dst), atr(lhs), atr(rhs)));
} else if op.cond_op(node.ty.is_signed()).is_some() {
} else {
todo!()
}
}
Kind::Call { func } => {
self.ci.relocs.push(TypedReloc {
target: ty::Kind::Func(func).compress(),
reloc: Reloc::new(self.ci.code.len(), 3, 4),
});
self.ci.emit(instrs::jal(reg::RET_ADDR, reg::ZERO, 0));
}
Kind::Stck => {
let base = reg::STACK_PTR;
let offset = func.nodes[nid].offset;
self.ci.emit(instrs::addi64(atr(allocs[0]), base, offset as _));
}
Kind::Load { offset } => {
let region = node.inputs[1];
let size = self.tys.size_of(node.ty);
if size <= 8 {
let (base, offset) = match func.nodes[region].kind {
Kind::Stck => (reg::STACK_PTR, func.nodes[region].offset + offset),
_ => (atr(allocs[1]), func.nodes[region].offset + offset),
};
self.ci.emit(instrs::ld(atr(allocs[0]), base, offset as _, size as _));
}
}
Kind::Stre { offset } => {
let region = node.inputs[2];
if region != VOID {
let size = u16::try_from(self.tys.size_of(node.ty)).expect("TODO");
let nd = &func.nodes[region];
let (base, offset, src) = match nd.kind {
Kind::Stck => (reg::STACK_PTR, nd.offset + offset, allocs[0]),
_ => (atr(allocs[0]), offset, allocs[1]),
};
if size > 8 {
self.ci.emit(instrs::bmc(base, atr(src), size));
} else {
self.ci.emit(instrs::st(atr(src), base, offset as _, size));
}
}
}
_ => unreachable!(),
}
}
}
self.ci.nodes = nodes;
saved_regs.len()
}
fn ty(&mut self, expr: &Expr) -> ty::Id {
if let Some(ty) = self.tys.ty(self.ci.file, expr, &self.files) {
return ty;
}
self.report_unhandled_ast(expr, "type");
ty::Id::NEVER
}
fn find_or_declare(
&mut self,
pos: Pos,
file: FileId,
name: Option<Ident>,
lit_name: &str,
) -> ty::Kind {
log::trace!("find_or_declare: {lit_name} {file}");
if let Some(ty) = self.tys.find_type(file, name.ok_or(lit_name), &self.files) {
return ty.expand();
}
let f = self.files[file as usize].clone();
let Some((expr, ident)) = f.find_decl(name.ok_or(lit_name)) else {
match name.ok_or(lit_name) {
Ok(name) => {
let name = self.cfile().ident_str(name);
self.report(pos, fa!("idk indentifier: {name}"))
}
Err("main") => self.report(
pos,
fa!(
"missing main function in '{}', compiler can't \
emmit libraries since such concept is not defined",
f.path
),
),
Err(name) => self.report(pos, fa!("idk indentifier: {name}")),
}
return ty::Kind::Builtin(ty::NEVER);
};
let key = SymKey::Decl(file, ident);
if let Some(existing) = self.tys.syms.get(key, &self.tys.ins) {
if let ty::Kind::Func(id) = existing.expand()
&& let func = &mut self.tys.ins.funcs[id as usize]
&& let Err(idx) = task::unpack(func.offset)
&& idx < self.tasks.len()
{
func.offset = task::id(self.tasks.len());
let task = self.tasks[idx].take();
self.tasks.push(task);
}
return existing.expand();
}
let prev_file = core::mem::replace(&mut self.ci.file, file);
let sym = match expr {
Expr::BinOp {
left: &Expr::Ident { id, .. },
op: TokenKind::Decl,
right: &Expr::Closure { pos, args, ret, .. },
} => {
let func = Func {
file,
name: id,
sig: '_b: {
let arg_base = self.tys.tmp.args.len();
for arg in args {
let sym = parser::find_symbol(&f.symbols, arg.id);
assert!(sym.flags & idfl::COMPTIME == 0, "TODO");
let ty = self.ty(&arg.ty);
self.tys.tmp.args.push(ty);
}
let Some(args) = self.tys.pack_args(arg_base) else {
self.fatal_report(
pos,
"you cant be serious, using more the 31 arguments in a function",
);
};
let ret = self.ty(ret);
Some(Sig { args, ret })
},
expr: {
let refr = ExprRef::new(expr);
debug_assert!(refr.get(&f).is_some());
refr
},
..Default::default()
};
let id = self.tys.ins.funcs.len() as _;
self.tys.ins.funcs.push(func);
ty::Kind::Func(id)
}
Expr::BinOp {
left: Expr::Ident { .. },
op: TokenKind::Decl,
right: right @ Expr::Struct { .. },
} => self.ty(right).expand(),
e => unimplemented!("{e:#?}"),
};
self.ci.file = prev_file;
self.tys.syms.insert(key, sym.compress(), &self.tys.ins);
sym
}
fn ty_display(&self, ty: ty::Id) -> ty::Display {
ty::Display::new(&self.tys, &self.files, ty)
}
fn ast_display<'a>(&'a self, ast: &'a Expr<'a>) -> parser::Display<'a> {
parser::Display::new(&self.cfile().file, ast)
}
#[must_use]
#[track_caller]
fn assert_ty(
&self,
pos: Pos,
ty: ty::Id,
expected: ty::Id,
preserve_expected: bool,
hint: impl fmt::Display,
) -> ty::Id {
if let Some(res) = ty.try_upcast(expected, ty::TyCheck::BinOp)
&& (!preserve_expected || res == expected)
{
res
} else {
let ty = self.ty_display(ty);
let expected = self.ty_display(expected);
self.report(pos, fa!("expected {hint} to be of type {expected}, got {ty}"));
ty::Id::NEVER
}
}
#[track_caller]
fn assert_report(&self, cond: bool, pos: Pos, msg: impl core::fmt::Display) {
if !cond {
self.report(pos, msg);
}
}
#[track_caller]
fn report(&self, pos: Pos, msg: impl core::fmt::Display) {
let mut buf = self.errors.borrow_mut();
writeln!(buf, "{}", self.cfile().report(pos, msg)).unwrap();
}
#[track_caller]
fn report_unhandled_ast(&self, ast: &Expr, hint: &str) {
log::debug!("{ast:#?}");
self.fatal_report(
ast.pos(),
fa!("compiler does not (yet) know how to handle ({hint}):\n{}", self.ast_display(ast)),
);
}
fn cfile(&self) -> &parser::Ast {
&self.files[self.ci.file as usize]
}
fn fatal_report(&self, pos: Pos, msg: impl Display) -> ! {
self.report(pos, msg);
panic!("{}", self.errors.borrow());
}
fn gcm(&mut self) {
self.ci.nodes.visited.clear(self.ci.nodes.values.len());
push_up(&mut self.ci.nodes, NEVER);
// TODO: handle infinte loops
self.ci.nodes.visited.clear(self.ci.nodes.values.len());
push_down(&mut self.ci.nodes, VOID);
}
//fn get_load_type(&self, val: Nid) -> Option<ty::Id> {
// Some(match self.ci.nodes[val].kind {
// Kind::Stre { .. } | Kind::Load { .. } | Kind::Stck | Kind::Arg { .. } => {
// self.ci.nodes[val].ty
// }
// Kind::Ptr { .. } => self.tys.base_of(self.ci.nodes[val].ty).unwrap(),
// _ => return None,
// })
//}
}
// FIXME: make this more efficient (allocated with arena)
#[derive(Debug)]
struct Block {
nid: Nid,
preds: Vec<regalloc2::Block>,
succs: Vec<regalloc2::Block>,
instrs: regalloc2::InstRange,
params: Vec<regalloc2::VReg>,
branch_blockparams: Vec<regalloc2::VReg>,
}
#[derive(Debug)]
struct Instr {
nid: Nid,
ops: Vec<regalloc2::Operand>,
}
struct Function<'a> {
sig: Sig,
nodes: &'a mut Nodes,
tys: &'a Types,
blocks: Vec<Block>,
instrs: Vec<Instr>,
}
impl Debug for Function<'_> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
for (i, block) in self.blocks.iter().enumerate() {
writeln!(f, "sb{i}{:?}-{:?}:", block.params, block.preds)?;
for inst in block.instrs.iter() {
let instr = &self.instrs[inst.index()];
writeln!(f, "{}: i{:?}:{:?}", inst.index(), self.nodes[instr.nid].kind, instr.ops)?;
}
writeln!(f, "eb{i}{:?}-{:?}:", block.branch_blockparams, block.succs)?;
}
Ok(())
}
}
impl<'a> Function<'a> {
fn new(nodes: &'a mut Nodes, tys: &'a Types, sig: Sig) -> Self {
let mut s =
Self { nodes, tys, sig, blocks: Default::default(), instrs: Default::default() };
s.nodes.visited.clear(s.nodes.values.len());
s.emit_node(VOID, VOID);
s.add_block(0);
s.blocks.pop();
s
}
fn add_block(&mut self, nid: Nid) -> RallocBRef {
if let Some(prev) = self.blocks.last_mut() {
prev.instrs = regalloc2::InstRange::new(
prev.instrs.first(),
regalloc2::Inst::new(self.instrs.len()),
);
}
self.blocks.push(Block {
nid,
preds: Default::default(),
succs: Default::default(),
instrs: regalloc2::InstRange::new(
regalloc2::Inst::new(self.instrs.len()),
regalloc2::Inst::new(self.instrs.len() + 1),
),
params: Default::default(),
branch_blockparams: Default::default(),
});
self.blocks.len() as RallocBRef - 1
}
fn add_instr(&mut self, nid: Nid, ops: Vec<regalloc2::Operand>) {
self.instrs.push(Instr { nid, ops });
}
fn urg(&mut self, nid: Nid) -> regalloc2::Operand {
regalloc2::Operand::reg_use(self.rg(nid))
}
fn def_nid(&mut self, _nid: Nid) {}
fn drg(&mut self, nid: Nid) -> regalloc2::Operand {
self.def_nid(nid);
regalloc2::Operand::reg_def(self.rg(nid))
}
fn rg(&self, nid: Nid) -> VReg {
regalloc2::VReg::new(nid as _, regalloc2::RegClass::Int)
}
fn emit_node(&mut self, nid: Nid, prev: Nid) {
if matches!(self.nodes[nid].kind, Kind::Region | Kind::Loop) {
let prev_bref = self.nodes[prev].ralloc_backref;
let node = self.nodes[nid].clone();
let idx = 1 + node.inputs.iter().position(|&i| i == prev).unwrap();
for ph in node.outputs {
if self.nodes[ph].kind != Kind::Phi {
continue;
}
let rg = self.rg(self.nodes[ph].inputs[idx]);
self.blocks[prev_bref as usize].branch_blockparams.push(rg);
}
self.add_instr(nid, vec![]);
match (self.nodes[nid].kind, self.nodes.visited.set(nid)) {
(Kind::Loop, false) => {
for i in node.inputs {
self.bridge(i, nid);
}
return;
}
(Kind::Region, true) => return,
_ => {}
}
} else if !self.nodes.visited.set(nid) {
return;
}
let node = self.nodes[nid].clone();
match node.kind {
Kind::Start => {
debug_assert_matches!(self.nodes[node.outputs[0]].kind, Kind::Entry);
self.emit_node(node.outputs[0], VOID)
}
Kind::End => {}
Kind::If => {
self.nodes[nid].ralloc_backref = self.nodes[prev].ralloc_backref;
let &[_, cond] = node.inputs.as_slice() else { unreachable!() };
let &[mut then, mut else_] = node.outputs.as_slice() else { unreachable!() };
if let Kind::BinOp { op } = self.nodes[cond].kind
&& let Some((_, swapped)) = op.cond_op(node.ty.is_signed())
{
if swapped {
core::mem::swap(&mut then, &mut else_);
}
let &[_, lhs, rhs] = self.nodes[cond].inputs.as_slice() else { unreachable!() };
let ops = vec![self.urg(lhs), self.urg(rhs)];
self.add_instr(nid, ops);
} else {
todo!()
}
self.emit_node(then, nid);
self.emit_node(else_, nid);
}
Kind::Region | Kind::Loop => {
self.nodes[nid].ralloc_backref = self.add_block(nid);
if node.kind == Kind::Region {
for i in node.inputs {
self.bridge(i, nid);
}
}
let mut block = vec![];
for ph in node.outputs.clone() {
if self.nodes[ph].kind != Kind::Phi {
continue;
}
self.def_nid(ph);
block.push(self.rg(ph));
}
self.blocks[self.nodes[nid].ralloc_backref as usize].params = block;
for o in node.outputs.into_iter().rev() {
self.emit_node(o, nid);
}
}
Kind::Return => {
let ops = if node.inputs[1] != VOID {
vec![regalloc2::Operand::reg_fixed_use(
self.rg(node.inputs[1]),
regalloc2::PReg::new(1, regalloc2::RegClass::Int),
)]
} else {
vec![]
};
self.add_instr(nid, ops);
self.emit_node(node.outputs[0], nid);
}
Kind::CInt { .. } => {
let unused = node.outputs.into_iter().all(|o| {
let ond = &self.nodes[o];
matches!(ond.kind, Kind::BinOp { op }
if op.imm_binop(ond.ty.is_signed(), 8).is_some()
&& self.nodes.is_const(ond.inputs[2])
&& op.cond_op(ond.ty.is_signed()).is_none())
});
if !unused {
let ops = vec![self.drg(nid)];
self.add_instr(nid, ops);
}
}
Kind::Entry => {
self.nodes[nid].ralloc_backref = self.add_block(nid);
let mut parama = self.tys.parama(self.sig.ret);
for (arg, ti) in
self.nodes[VOID].clone().outputs.into_iter().skip(2).zip(self.sig.args.range())
{
let ty = self.tys.ins.args[ti];
match self.tys.size_of(ty) {
0 => continue,
1..=8 => {
self.def_nid(arg);
self.add_instr(NEVER, vec![regalloc2::Operand::reg_fixed_def(
self.rg(arg),
regalloc2::PReg::new(parama.next() as _, regalloc2::RegClass::Int),
)]);
}
9..=16 => todo!(),
_ => {
self.def_nid(arg);
self.add_instr(NEVER, vec![regalloc2::Operand::reg_fixed_def(
self.rg(arg),
regalloc2::PReg::new(parama.next() as _, regalloc2::RegClass::Int),
)]);
}
}
}
for o in node.outputs.into_iter().rev() {
self.emit_node(o, nid);
}
}
Kind::Then | Kind::Else => {
self.nodes[nid].ralloc_backref = self.add_block(nid);
self.bridge(prev, nid);
for o in node.outputs.into_iter().rev() {
self.emit_node(o, nid);
}
}
Kind::BinOp { op } => {
let &[_, lhs, rhs] = node.inputs.as_slice() else { unreachable!() };
let ops = if let Kind::CInt { .. } = self.nodes[rhs].kind
&& op.imm_binop(node.ty.is_signed(), 8).is_some()
{
vec![self.drg(nid), self.urg(lhs)]
} else if op.binop(node.ty.is_signed(), 8).is_some() {
vec![self.drg(nid), self.urg(lhs), self.urg(rhs)]
} else if op.cond_op(node.ty.is_signed()).is_some() {
return;
} else {
todo!("{op}")
};
self.add_instr(nid, ops);
}
Kind::UnOp { .. } => {
let ops = vec![self.drg(nid), self.urg(node.inputs[1])];
self.add_instr(nid, ops);
}
Kind::Call { func } => {
self.nodes[nid].ralloc_backref = self.nodes[prev].ralloc_backref;
let mut ops = vec![];
let fuc = self.tys.ins.funcs[func as usize].sig.unwrap();
if self.tys.size_of(fuc.ret) != 0 {
self.def_nid(nid);
ops.push(regalloc2::Operand::reg_fixed_def(
self.rg(nid),
regalloc2::PReg::new(1, regalloc2::RegClass::Int),
));
}
let mut parama = self.tys.parama(fuc.ret);
for (&(mut i), ti) in node.inputs[1..].iter().zip(fuc.args.range()) {
let ty = self.tys.ins.args[ti];
loop {
match self.nodes[i].kind {
Kind::Stre { .. } => i = self.nodes[i].inputs[2],
Kind::Load { .. } => i = self.nodes[i].inputs[1],
_ => break,
}
}
match self.tys.size_of(ty) {
0 => continue,
1..=8 => {
ops.push(regalloc2::Operand::reg_fixed_use(
self.rg(i),
regalloc2::PReg::new(parama.next() as _, regalloc2::RegClass::Int),
));
}
9..=16 => todo!("pass in two register"),
_ => {
ops.push(regalloc2::Operand::reg_fixed_use(
self.rg(i),
regalloc2::PReg::new(parama.next() as _, regalloc2::RegClass::Int),
));
}
}
}
self.add_instr(nid, ops);
for o in node.outputs.into_iter().rev() {
if self.nodes[o].inputs[0] == nid {
self.emit_node(o, nid);
}
}
}
Kind::Stck => {
let ops = vec![self.drg(nid)];
self.add_instr(nid, ops);
}
Kind::Phi | Kind::Arg { .. } | Kind::Mem => {}
Kind::Load { .. } => {
let region = node.inputs[1];
if self.tys.size_of(node.ty) <= 8 {
let ops = match self.nodes[region].kind {
Kind::Stck => vec![self.drg(nid)],
_ => vec![self.drg(nid), self.urg(region)],
};
self.add_instr(nid, ops);
}
}
Kind::Stre { .. } => {
let region = node.inputs[2];
if region != VOID {
let ops = match self.nodes[region].kind {
_ if self.tys.size_of(node.ty) > 8 => {
vec![self.urg(region), self.urg(self.nodes[node.inputs[1]].inputs[1])]
}
Kind::Stck => vec![self.urg(node.inputs[1])],
_ => vec![self.urg(region), self.urg(node.inputs[1])],
};
self.add_instr(nid, ops);
}
}
}
}
fn bridge(&mut self, pred: u16, succ: u16) {
if self.nodes[pred].ralloc_backref == u16::MAX
|| self.nodes[succ].ralloc_backref == u16::MAX
{
return;
}
self.blocks[self.nodes[pred].ralloc_backref as usize]
.succs
.push(regalloc2::Block::new(self.nodes[succ].ralloc_backref as usize));
self.blocks[self.nodes[succ].ralloc_backref as usize]
.preds
.push(regalloc2::Block::new(self.nodes[pred].ralloc_backref as usize));
}
}
impl regalloc2::Function for Function<'_> {
fn num_insts(&self) -> usize {
self.instrs.len()
}
fn num_blocks(&self) -> usize {
self.blocks.len()
}
fn entry_block(&self) -> regalloc2::Block {
regalloc2::Block(0)
}
fn block_insns(&self, block: regalloc2::Block) -> regalloc2::InstRange {
self.blocks[block.index()].instrs
}
fn block_succs(&self, block: regalloc2::Block) -> &[regalloc2::Block] {
&self.blocks[block.index()].succs
}
fn block_preds(&self, block: regalloc2::Block) -> &[regalloc2::Block] {
&self.blocks[block.index()].preds
}
fn block_params(&self, block: regalloc2::Block) -> &[regalloc2::VReg] {
&self.blocks[block.index()].params
}
fn is_ret(&self, insn: regalloc2::Inst) -> bool {
self.nodes[self.instrs[insn.index()].nid].kind == Kind::Return
}
fn is_branch(&self, insn: regalloc2::Inst) -> bool {
matches!(
self.nodes[self.instrs[insn.index()].nid].kind,
Kind::If | Kind::Then | Kind::Else | Kind::Entry | Kind::Loop | Kind::Region
)
}
fn branch_blockparams(
&self,
block: regalloc2::Block,
_insn: regalloc2::Inst,
_succ_idx: usize,
) -> &[regalloc2::VReg] {
debug_assert!(
self.blocks[block.index()].succs.len() == 1
|| self.blocks[block.index()].branch_blockparams.is_empty()
);
&self.blocks[block.index()].branch_blockparams
}
fn inst_operands(&self, insn: regalloc2::Inst) -> &[regalloc2::Operand] {
&self.instrs[insn.index()].ops
}
fn inst_clobbers(&self, insn: regalloc2::Inst) -> regalloc2::PRegSet {
if matches!(self.nodes[self.instrs[insn.index()].nid].kind, Kind::Call { .. }) {
let mut set = regalloc2::PRegSet::default();
for i in 2..13 {
set.add(regalloc2::PReg::new(i, regalloc2::RegClass::Int));
}
set
} else {
regalloc2::PRegSet::default()
}
}
fn num_vregs(&self) -> usize {
self.nodes.values.len()
}
fn spillslot_size(&self, regclass: regalloc2::RegClass) -> usize {
match regclass {
regalloc2::RegClass::Int => 1,
regalloc2::RegClass::Float => unreachable!(),
regalloc2::RegClass::Vector => unreachable!(),
}
}
}
fn loop_depth(target: Nid, nodes: &mut Nodes) -> LoopDepth {
if nodes[target].loop_depth != 0 {
return nodes[target].loop_depth;
}
nodes[target].loop_depth = match nodes[target].kind {
Kind::Entry | Kind::Then | Kind::Else | Kind::Call { .. } | Kind::Return | Kind::If => {
let dpth = loop_depth(nodes[target].inputs[0], nodes);
if nodes[target].loop_depth != 0 {
return nodes[target].loop_depth;
}
dpth
}
Kind::Region => {
let l = loop_depth(nodes[target].inputs[0], nodes);
let r = loop_depth(nodes[target].inputs[1], nodes);
debug_assert_eq!(l, r);
l
}
Kind::Loop => {
let depth = loop_depth(nodes[target].inputs[0], nodes) + 1;
nodes[target].loop_depth = depth;
let mut cursor = nodes[target].inputs[1];
while cursor != target {
nodes[cursor].loop_depth = depth;
let next = if nodes[cursor].kind == Kind::Region {
loop_depth(nodes[cursor].inputs[0], nodes);
nodes[cursor].inputs[1]
} else {
idom(nodes, cursor)
};
debug_assert_ne!(next, VOID);
if matches!(nodes[cursor].kind, Kind::Then | Kind::Else) {
let other = *nodes[next]
.outputs
.iter()
.find(|&&n| nodes[n].kind != nodes[cursor].kind)
.unwrap();
if nodes[other].loop_depth == 0 {
nodes[other].loop_depth = depth - 1;
}
}
cursor = next;
}
depth
}
Kind::Start | Kind::End => 1,
_ => unreachable!(),
};
nodes[target].loop_depth
}
fn better(nodes: &mut Nodes, is: Nid, then: Nid) -> bool {
loop_depth(is, nodes) < loop_depth(then, nodes)
|| idepth(nodes, is) > idepth(nodes, then)
|| nodes[then].kind == Kind::If
}
fn idepth(nodes: &mut Nodes, target: Nid) -> IDomDepth {
if target == VOID {
return 0;
}
if nodes[target].depth == 0 {
nodes[target].depth = match nodes[target].kind {
Kind::End | Kind::Start => unreachable!(),
Kind::Region => {
idepth(nodes, nodes[target].inputs[0]).max(idepth(nodes, nodes[target].inputs[1]))
}
_ => idepth(nodes, nodes[target].inputs[0]),
} + 1;
}
nodes[target].depth
}
fn push_up(nodes: &mut Nodes, node: Nid) {
if !nodes.visited.set(node) {
return;
}
if nodes[node].kind.is_pinned() {
for i in 0..nodes[node].inputs.len() {
let i = nodes[node].inputs[i];
push_up(nodes, i);
}
} else {
let mut max = VOID;
for i in 0..nodes[node].inputs.len() {
let i = nodes[node].inputs[i];
let is_call = matches!(nodes[i].kind, Kind::Call { .. });
if nodes.is_cfg(i) && !is_call {
continue;
}
push_up(nodes, i);
if idepth(nodes, i) > idepth(nodes, max) {
max = if is_call { i } else { idom(nodes, i) };
}
}
#[cfg(debug_assertions)]
{
nodes.check_dominance(node, max, false);
}
if max == VOID {
return;
}
let index = nodes[0].outputs.iter().position(|&p| p == node).unwrap();
nodes[0].outputs.remove(index);
nodes[node].inputs[0] = max;
debug_assert!(
!nodes[max].outputs.contains(&node) || matches!(nodes[max].kind, Kind::Call { .. }),
"{node} {:?} {max} {:?}",
nodes[node],
nodes[max]
);
nodes[max].outputs.push(node);
}
}
fn push_down(nodes: &mut Nodes, node: Nid) {
if !nodes.visited.set(node) {
return;
}
// TODO: handle memory nodes first
if nodes[node].kind.is_pinned() {
// TODO: use buffer to avoid allocation or better yet queue the location changes
for i in nodes[node].outputs.clone() {
push_down(nodes, i);
}
} else {
let mut min = None::<Nid>;
for i in 0..nodes[node].outputs.len() {
let i = nodes[node].outputs[i];
push_down(nodes, i);
let i = use_block(node, i, nodes);
min = min.map(|m| common_dom(i, m, nodes)).or(Some(i));
}
let mut min = min.unwrap();
debug_assert!(nodes.dominates(nodes[node].inputs[0], min));
let mut cursor = min;
loop {
if better(nodes, cursor, min) {
min = cursor;
}
if cursor == nodes[node].inputs[0] {
break;
}
cursor = idom(nodes, cursor);
}
if nodes[min].kind.ends_basic_block() {
min = idom(nodes, min);
}
#[cfg(debug_assertions)]
{
nodes.check_dominance(node, min, true);
}
let prev = nodes[node].inputs[0];
if min != prev {
debug_assert!(idepth(nodes, min) > idepth(nodes, prev));
let index = nodes[prev].outputs.iter().position(|&p| p == node).unwrap();
nodes[prev].outputs.remove(index);
nodes[node].inputs[0] = min;
nodes[min].outputs.push(node);
}
}
}
fn use_block(target: Nid, from: Nid, nodes: &mut Nodes) -> Nid {
if nodes[from].kind != Kind::Phi {
return idom(nodes, from);
}
let index = nodes[from].inputs.iter().position(|&n| n == target).unwrap();
nodes[nodes[from].inputs[0]].inputs[index - 1]
}
fn idom(nodes: &mut Nodes, target: Nid) -> Nid {
match nodes[target].kind {
Kind::Start => VOID,
Kind::End => unreachable!(),
Kind::Region => {
let &[lcfg, rcfg] = nodes[target].inputs.as_slice() else { unreachable!() };
common_dom(lcfg, rcfg, nodes)
}
_ => nodes[target].inputs[0],
}
}
fn common_dom(mut a: Nid, mut b: Nid, nodes: &mut Nodes) -> Nid {
while a != b {
let [ldepth, rdepth] = [idepth(nodes, a), idepth(nodes, b)];
if ldepth >= rdepth {
a = idom(nodes, a);
}
if ldepth <= rdepth {
b = idom(nodes, b);
}
}
a
}
#[cfg(test)]
mod tests {
use {
alloc::{string::String, vec::Vec},
core::fmt::Write,
};
fn generate(ident: &'static str, input: &'static str, output: &mut String) {
_ = log::set_logger(&crate::fs::Logger);
log::set_max_level(log::LevelFilter::Info);
let (files, _embeds) = crate::test_parse_files(ident, input);
let mut codegen = super::Codegen { files, ..Default::default() };
codegen.generate();
{
let errors = codegen.errors.borrow();
if !errors.is_empty() {
output.push_str(&errors);
return;
}
}
let mut out = Vec::new();
codegen.tys.assemble(&mut out);
let err = codegen.tys.disasm(&out, &codegen.files, output, |_| {});
if let Err(e) = err {
writeln!(output, "!!! asm is invalid: {e}").unwrap();
return;
}
//println!("{output}");
crate::test_run_vm(&out, output);
}
crate::run_tests! { generate:
arithmetic;
variables;
functions;
comments;
if_statements;
loops;
fb_driver;
pointers;
structs;
//different_types;
//struct_operators;
//directives;
//global_variables;
//generic_types;
//generic_functions;
//c_strings;
//struct_patterns;
//arrays;
//struct_return_from_module_function;
////comptime_pointers;
//sort_something_viredly;
hex_octal_binary_literals;
//comptime_min_reg_leak;
////structs_in_registers;
//comptime_function_from_another_file;
//inline;
//inline_test;
const_folding_with_arg;
branch_assignments;
exhaustive_loop_testing;
//idk;
//comptime_min_reg_leak;
//some_generic_code;
//integer_inference_issues;
//writing_into_string;
//request_page;
//tests_ptr_to_ptr_copy;
//wide_ret;
pointer_opts;
}
}