holey-bytes/hblang/src/son.rs

3593 lines
118 KiB
Rust

#![allow(dead_code)]
use {
crate::{
ident::{self, Ident},
instrs,
lexer::{self, TokenKind},
log,
parser::{
self,
idfl::{self},
Expr, ExprRef, FileId, Pos,
},
HashMap,
},
core::fmt,
std::{
cell::RefCell,
collections::{hash_map, BTreeMap},
fmt::{Display, Write},
hash::{Hash as _, Hasher},
mem,
ops::{self, Range},
rc::Rc,
},
};
macro_rules! node_color {
($self:expr, $value:expr) => {
$self.ci.colors[$self.ci.nodes[$value].color as usize - 1]
};
}
macro_rules! node_loc {
($self:expr, $value:expr) => {
$self.ci.colors[$self.ci.nodes[$value].color as usize - 1].loc
};
}
struct Drom(&'static str);
impl Drop for Drom {
fn drop(&mut self) {
log::inf!("{}", self.0);
}
}
#[derive(Default)]
struct BitSet {
data: Vec<usize>,
}
impl BitSet {
const ELEM_SIZE: usize = std::mem::size_of::<usize>() * 8;
pub fn clear(&mut self, bit_size: usize) {
let new_len = (bit_size + Self::ELEM_SIZE - 1) / Self::ELEM_SIZE;
self.data.clear();
self.data.resize(new_len, 0);
}
#[track_caller]
pub fn set(&mut self, idx: usize) -> bool {
let data_idx = idx / Self::ELEM_SIZE;
let sub_idx = idx % Self::ELEM_SIZE;
let prev = self.data[data_idx] & (1 << sub_idx);
self.data[data_idx] |= 1 << sub_idx;
prev == 0
}
fn unset(&mut self, idx: usize) {
let data_idx = idx / Self::ELEM_SIZE;
let sub_idx = idx % Self::ELEM_SIZE;
self.data[data_idx] &= !(1 << sub_idx);
}
}
type Nid = u32;
mod reg {
pub const STACK_PTR: Reg = 254;
pub const ZERO: Reg = 0;
pub const RET: Reg = 1;
pub const RET_ADDR: Reg = 31;
pub type Reg = u8;
#[derive(Default)]
struct AllocMeta {
rc: u16,
depth: u16,
#[cfg(debug_assertions)]
allocated_at: Option<std::backtrace::Backtrace>,
}
struct Metas([AllocMeta; 256]);
impl Default for Metas {
fn default() -> Self {
Metas(std::array::from_fn(|_| AllocMeta::default()))
}
}
#[derive(Default)]
pub struct Alloc {
meta: Metas,
free: Vec<Reg>,
max_used: Reg,
}
impl Alloc {
pub fn init(&mut self) {
self.free.clear();
self.free.extend((32..=253).rev());
self.max_used = RET_ADDR;
}
pub fn allocate(&mut self, depth: u16) -> Reg {
let reg = self.free.pop().expect("TODO: we need to spill");
self.max_used = self.max_used.max(reg);
self.meta.0[reg as usize] = AllocMeta {
depth,
rc: 1,
#[cfg(debug_assertions)]
allocated_at: Some(std::backtrace::Backtrace::capture()),
};
reg
}
pub fn dup(&mut self, reg: Reg) {
self.meta.0[reg as usize].rc += 1;
}
pub fn free(&mut self, reg: Reg) {
if self.meta.0[reg as usize].rc == 1 {
self.free.push(reg);
self.meta.0[reg as usize] = Default::default();
} else {
self.meta.0[reg as usize].rc -= 1;
}
}
pub fn pushed_size(&self) -> usize {
((self.max_used as usize).saturating_sub(RET_ADDR as usize) + 1) * 8
}
pub fn mark_leaked(&mut self, reg: u8) {
self.meta.0[reg as usize].rc = u16::MAX;
}
}
}
mod ty {
use {
crate::{
lexer::TokenKind,
parser::{self, Expr},
son::ArrayLen,
},
std::{num::NonZeroU32, ops::Range},
};
pub type Builtin = u32;
pub type Struct = u32;
pub type Ptr = u32;
pub type Func = u32;
pub type Global = u32;
pub type Module = u32;
pub type Param = u32;
pub type Slice = u32;
#[derive(Clone, Copy)]
pub struct Tuple(pub u32);
impl Tuple {
const LEN_BITS: u32 = 5;
const LEN_MASK: usize = Self::MAX_LEN - 1;
const MAX_LEN: usize = 1 << Self::LEN_BITS;
pub fn new(pos: usize, len: usize) -> Option<Self> {
if len >= Self::MAX_LEN {
return None;
}
Some(Self((pos << Self::LEN_BITS | len) as u32))
}
pub fn view(self, slice: &[Id]) -> &[Id] {
&slice[self.0 as usize >> Self::LEN_BITS..][..self.len()]
}
pub fn range(self) -> Range<usize> {
let start = self.0 as usize >> Self::LEN_BITS;
start..start + self.len()
}
pub fn len(self) -> usize {
self.0 as usize & Self::LEN_MASK
}
pub fn is_empty(self) -> bool {
self.0 == 0
}
pub fn empty() -> Self {
Self(0)
}
pub fn repr(&self) -> u32 {
self.0
}
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug, Hash)]
pub struct Id(NonZeroU32);
impl Default for Id {
fn default() -> Self {
Self(unsafe { NonZeroU32::new_unchecked(UNDECLARED) })
}
}
impl Id {
pub const fn from_bt(bt: u32) -> Self {
Self(unsafe { NonZeroU32::new_unchecked(bt) })
}
pub fn is_signed(self) -> bool {
(I8..=INT).contains(&self.repr())
}
pub fn is_unsigned(self) -> bool {
(U8..=UINT).contains(&self.repr())
}
pub fn is_integer(self) -> bool {
(U8..=INT).contains(&self.repr())
}
pub fn strip_pointer(self) -> Self {
match self.expand() {
Kind::Ptr(_) => Kind::Builtin(UINT).compress(),
_ => self,
}
}
pub fn is_pointer(self) -> bool {
matches!(Kind::from_ty(self), Kind::Ptr(_))
}
pub fn try_upcast(self, ob: Self) -> Option<Self> {
let (oa, ob) = (Self(self.0.min(ob.0)), Self(self.0.max(ob.0)));
let (a, b) = (oa.strip_pointer(), ob.strip_pointer());
Some(match () {
_ if oa == ob => oa,
_ if oa.is_pointer() && ob.is_pointer() => return None,
_ if a.is_signed() && b.is_signed() || a.is_unsigned() && b.is_unsigned() => ob,
_ if a.is_unsigned() && b.is_signed() && a.repr() - U8 < b.repr() - I8 => ob,
_ if oa.is_integer() && ob.is_pointer() => ob,
_ => return None,
})
}
pub fn expand(self) -> Kind {
Kind::from_ty(self)
}
pub const fn repr(self) -> u32 {
self.0.get()
}
}
impl From<u64> for Id {
fn from(id: u64) -> Self {
Self(unsafe { NonZeroU32::new_unchecked(id as _) })
}
}
impl From<u32> for Id {
fn from(id: u32) -> Self {
Kind::Builtin(id).compress()
}
}
const fn array_to_lower_case<const N: usize>(array: [u8; N]) -> [u8; N] {
let mut result = [0; N];
let mut i = 0;
while i < N {
result[i] = array[i].to_ascii_lowercase();
i += 1;
}
result
}
// const string to lower case
macro_rules! builtin_type {
($($name:ident;)*) => {
$(pub const $name: Builtin = ${index(0)} + 1;)*
mod __lc_names {
use super::*;
$(pub const $name: &[u8] = &array_to_lower_case(unsafe {
*(stringify!($name).as_ptr() as *const [u8; stringify!($name).len()]) });)*
}
pub fn from_str(name: &str) -> Option<Builtin> {
match name.as_bytes() {
$(__lc_names::$name => Some($name),)*
_ => None,
}
}
pub fn to_str(ty: Builtin) -> &'static str {
match ty {
$($name => unsafe { std::str::from_utf8_unchecked(__lc_names::$name) },)*
v => unreachable!("invalid type: {}", v),
}
}
};
}
builtin_type! {
UNDECLARED;
NEVER;
VOID;
TYPE;
BOOL;
U8;
U16;
U32;
UINT;
I8;
I16;
I32;
INT;
LEFT_UNREACHABLE;
RIGHT_UNREACHABLE;
}
macro_rules! type_kind {
($(#[$meta:meta])* $vis:vis enum $name:ident {$( $variant:ident, )*}) => {
$(#[$meta])*
$vis enum $name {
$($variant($variant),)*
}
impl $name {
const FLAG_BITS: u32 = (${count($variant)} as u32).next_power_of_two().ilog2();
const FLAG_OFFSET: u32 = std::mem::size_of::<Id>() as u32 * 8 - Self::FLAG_BITS;
const INDEX_MASK: u32 = (1 << (32 - Self::FLAG_BITS)) - 1;
$vis fn from_ty(ty: Id) -> Self {
let (flag, index) = (ty.repr() >> Self::FLAG_OFFSET, ty.repr() & Self::INDEX_MASK);
match flag {
$(${index(0)} => Self::$variant(index),)*
i => unreachable!("{i}"),
}
}
$vis const fn compress(self) -> Id {
let (index, flag) = match self {
$(Self::$variant(index) => (index, ${index(0)}),)*
};
Id(unsafe { NonZeroU32::new_unchecked((flag << Self::FLAG_OFFSET) | index) })
}
$vis const fn inner(self) -> u32 {
match self {
$(Self::$variant(index) => index,)*
}
}
}
};
}
type_kind! {
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Kind {
Builtin,
Struct,
Ptr,
Func,
Global,
Module,
Slice,
}
}
impl Default for Kind {
fn default() -> Self {
Self::Builtin(UNDECLARED)
}
}
pub struct Display<'a> {
tys: &'a super::Types,
files: &'a [parser::Ast],
ty: Id,
}
impl<'a> Display<'a> {
pub(super) fn new(tys: &'a super::Types, files: &'a [parser::Ast], ty: Id) -> Self {
Self { tys, files, ty }
}
fn rety(&self, ty: Id) -> Self {
Self::new(self.tys, self.files, ty)
}
}
impl<'a> std::fmt::Display for Display<'a> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
use Kind as TK;
match TK::from_ty(self.ty) {
TK::Module(idx) => write!(f, "module{}", idx),
TK::Builtin(ty) => write!(f, "{}", to_str(ty)),
TK::Ptr(ty) => {
write!(f, "^{}", self.rety(self.tys.ptrs[ty as usize].base))
}
_ if let Some((key, _)) = self
.tys
.syms
.iter()
.find(|(sym, &ty)| sym.file < self.files.len() as u32 && ty == self.ty)
&& let Some(name) = self.files[key.file as usize].exprs().iter().find_map(
|expr| match expr {
Expr::BinOp {
left: &Expr::Ident { name, id, .. },
op: TokenKind::Decl,
..
} if id == key.ident => Some(name),
_ => None,
},
) =>
{
write!(f, "{name}")
}
TK::Struct(idx) => {
let record = &self.tys.structs[idx as usize];
write!(f, "{{")?;
for (i, &super::Field { ref name, ty }) in record.fields.iter().enumerate() {
if i != 0 {
write!(f, ", ")?;
}
write!(f, "{name}: {}", self.rety(ty))?;
}
write!(f, "}}")
}
TK::Func(idx) => write!(f, "fn{idx}"),
TK::Global(idx) => write!(f, "global{idx}"),
TK::Slice(idx) => {
let array = self.tys.arrays[idx as usize];
match array.len {
ArrayLen::MAX => write!(f, "[{}]", self.rety(array.ty)),
len => write!(f, "[{}; {len}]", self.rety(array.ty)),
}
}
}
}
}
pub fn bin_ret(ty: Id, op: TokenKind) -> Id {
use TokenKind as T;
match op {
T::Lt | T::Gt | T::Le | T::Ge | T::Ne | T::Eq => BOOL.into(),
_ => ty,
}
}
}
struct LookupEntry {
nid: u32,
hash: u64,
}
#[derive(Default)]
struct IdentityHash(u64);
impl std::hash::Hasher for IdentityHash {
fn finish(&self) -> u64 {
self.0
}
fn write(&mut self, _: &[u8]) {
unimplemented!()
}
fn write_u64(&mut self, i: u64) {
self.0 = i;
}
}
impl std::hash::Hash for LookupEntry {
fn hash<H: Hasher>(&self, state: &mut H) {
state.write_u64(self.hash);
}
}
struct Nodes {
values: Vec<Result<Node, u32>>,
visited: BitSet,
free: u32,
lookup: std::collections::hash_map::HashMap<
LookupEntry,
(),
std::hash::BuildHasherDefault<IdentityHash>,
>,
}
impl Default for Nodes {
fn default() -> Self {
Self {
values: Default::default(),
free: u32::MAX,
lookup: Default::default(),
visited: Default::default(),
}
}
}
impl Nodes {
fn remove_low(&mut self, id: u32) -> Node {
let value = mem::replace(&mut self.values[id as usize], Err(self.free)).unwrap();
self.free = id;
value
}
fn clear(&mut self) {
self.values.clear();
self.lookup.clear();
self.free = u32::MAX;
}
fn new_node_nop(
&mut self,
ty: impl Into<ty::Id>,
kind: Kind,
inps: impl Into<Vec<Nid>>,
) -> Nid {
let ty = ty.into();
let node =
Node { inputs: inps.into(), kind, color: 0, depth: 0, lock_rc: 0, ty, outputs: vec![] };
let mut lookup_meta = None;
if !node.is_lazy_phi() {
let (raw_entry, hash) = Self::find_node(&mut self.lookup, &self.values, &node);
let entry = match raw_entry {
hash_map::RawEntryMut::Occupied(mut o) => return o.get_key_value().0.nid,
hash_map::RawEntryMut::Vacant(v) => v,
};
lookup_meta = Some((entry, hash));
}
if self.free == u32::MAX {
self.free = self.values.len() as _;
self.values.push(Err(u32::MAX));
}
let free = self.free;
for &d in &node.inputs {
debug_assert_ne!(d, free);
self.values[d as usize].as_mut().unwrap().outputs.push(free);
}
self.free = mem::replace(&mut self.values[free as usize], Ok(node)).unwrap_err();
if let Some((entry, hash)) = lookup_meta {
entry.insert(LookupEntry { nid: free, hash }, ());
}
free
}
fn find_node<'a>(
lookup: &'a mut std::collections::hash_map::HashMap<
LookupEntry,
(),
std::hash::BuildHasherDefault<IdentityHash>,
>,
values: &[Result<Node, u32>],
node: &Node,
) -> (
hash_map::RawEntryMut<'a, LookupEntry, (), std::hash::BuildHasherDefault<IdentityHash>>,
u64,
) {
let mut hasher = crate::FnvHasher::default();
node.key().hash(&mut hasher);
let hash = hasher.finish();
let entry = lookup
.raw_entry_mut()
.from_hash(hash, |n| values[n.nid as usize].as_ref().unwrap().key() == node.key());
(entry, hash)
}
fn remove_node_lookup(&mut self, target: Nid) {
if !self[target].is_lazy_phi() {
match Self::find_node(
&mut self.lookup,
&self.values,
self.values[target as usize].as_ref().unwrap(),
)
.0
{
hash_map::RawEntryMut::Occupied(o) => o.remove(),
hash_map::RawEntryMut::Vacant(_) => unreachable!(),
};
}
}
fn new_node(&mut self, ty: impl Into<ty::Id>, kind: Kind, inps: impl Into<Vec<u32>>) -> Nid {
let id = self.new_node_nop(ty, kind, inps);
if let Some(opt) = self.peephole(id) {
debug_assert_ne!(opt, id);
self.lock(opt);
self.remove(id);
self.unlock(opt);
opt
} else {
id
}
}
fn lock(&mut self, target: Nid) {
self[target].lock_rc += 1;
}
#[track_caller]
fn unlock(&mut self, target: Nid) {
self[target].lock_rc -= 1;
}
fn remove(&mut self, target: Nid) -> bool {
if !self[target].is_dangling() {
return false;
}
for i in 0..self[target].inputs.len() {
let inp = self[target].inputs[i];
let index = self[inp].outputs.iter().position(|&p| p == target).unwrap();
self[inp].outputs.swap_remove(index);
self.remove(inp);
}
self.remove_node_lookup(target);
self.remove_low(target);
true
}
fn peephole(&mut self, target: Nid) -> Option<Nid> {
match self[target].kind {
Kind::Start => {}
Kind::End => {}
Kind::BinOp { op } => return self.peephole_binop(target, op),
Kind::Return => {}
Kind::Tuple { .. } => {}
Kind::CInt { .. } => {}
Kind::Call { .. } => {}
Kind::If => return self.peephole_if(target),
Kind::Region => {}
Kind::Phi => return self.peephole_phi(target),
Kind::Loop => {}
}
None
}
fn peephole_phi(&mut self, target: Nid) -> Option<Nid> {
if self[target].inputs[1] == self[target].inputs[2] {
return Some(self[target].inputs[1]);
}
None
}
fn peephole_if(&mut self, target: Nid) -> Option<Nid> {
let cond = self[target].inputs[1];
if let Kind::CInt { value } = self[cond].kind {
let ty = if value == 0 { ty::LEFT_UNREACHABLE } else { ty::RIGHT_UNREACHABLE };
return Some(self.new_node_nop(ty, Kind::If, [self[target].inputs[0], cond]));
}
None
}
fn peephole_binop(&mut self, target: Nid, op: TokenKind) -> Option<Nid> {
use {Kind as K, TokenKind as T};
let &[ctrl, mut lhs, mut rhs] = self[target].inputs.as_slice() else { unreachable!() };
let ty = self[target].ty;
if let (&K::CInt { value: a }, &K::CInt { value: b }) = (&self[lhs].kind, &self[rhs].kind) {
return Some(self.new_node(ty, K::CInt { value: op.apply(a, b) }, [ctrl]));
}
if lhs == rhs {
match op {
T::Sub => return Some(self.new_node(ty, K::CInt { value: 0 }, [ctrl])),
T::Add => {
let rhs = self.new_node_nop(ty, K::CInt { value: 2 }, [ctrl]);
return Some(self.new_node(ty, K::BinOp { op: T::Mul }, [ctrl, lhs, rhs]));
}
_ => {}
}
}
// this is more general the pushing constants to left to help deduplicate expressions more
let mut changed = false;
if op.is_comutative() && self[lhs].key() < self[rhs].key() {
std::mem::swap(&mut lhs, &mut rhs);
changed = true;
}
if let K::CInt { value } = self[rhs].kind {
match (op, value) {
(T::Add | T::Sub | T::Shl, 0) | (T::Mul | T::Div, 1) => return Some(lhs),
(T::Mul, 0) => return Some(rhs),
_ => {}
}
}
if op.is_comutative() && self[lhs].kind == (K::BinOp { op }) {
let &[_, a, b] = self[lhs].inputs.as_slice() else { unreachable!() };
if let K::CInt { value: av } = self[b].kind
&& let K::CInt { value: bv } = self[rhs].kind
{
// (a op #b) op #c => a op (#b op #c)
let new_rhs = self.new_node_nop(ty, K::CInt { value: op.apply(av, bv) }, [ctrl]);
return Some(self.new_node(ty, K::BinOp { op }, [ctrl, a, new_rhs]));
}
if self.is_const(b) {
// (a op #b) op c => (a op c) op #b
let new_lhs = self.new_node(ty, K::BinOp { op }, [ctrl, a, rhs]);
return Some(self.new_node(ty, K::BinOp { op }, [ctrl, new_lhs, b]));
}
}
if op == T::Add
&& self[lhs].kind == (K::BinOp { op: T::Mul })
&& self[lhs].inputs[1] == rhs
&& let K::CInt { value } = self[self[lhs].inputs[2]].kind
{
// a * #n + a => a * (#n + 1)
let new_rhs = self.new_node_nop(ty, K::CInt { value: value + 1 }, [ctrl]);
return Some(self.new_node(ty, K::BinOp { op: T::Mul }, [ctrl, rhs, new_rhs]));
}
if op == T::Sub && self[lhs].kind == (K::BinOp { op }) {
// (a - b) - c => a - (b + c)
let &[_, a, b] = self[lhs].inputs.as_slice() else { unreachable!() };
let c = rhs;
let new_rhs = self.new_node(ty, K::BinOp { op: T::Add }, [ctrl, b, c]);
return Some(self.new_node(ty, K::BinOp { op }, [ctrl, a, new_rhs]));
}
changed.then(|| self.new_node(ty, self[target].kind, [ctrl, lhs, rhs]))
}
fn is_const(&self, id: Nid) -> bool {
matches!(self[id].kind, Kind::CInt { .. })
}
fn replace(&mut self, target: Nid, with: Nid) {
let mut back_press = 0;
for i in 0..self[target].outputs.len() {
let out = self[target].outputs[i - back_press];
let index = self[out].inputs.iter().position(|&p| p == target).unwrap();
let prev_len = self[target].outputs.len();
self.modify_input(out, index, with);
back_press += (self[target].outputs.len() != prev_len) as usize;
}
self.remove(target);
}
fn modify_input(&mut self, target: Nid, inp_index: usize, with: Nid) -> Nid {
self.remove_node_lookup(target);
debug_assert_ne!(self[target].inputs[inp_index], with);
let prev = self[target].inputs[inp_index];
self[target].inputs[inp_index] = with;
let (entry, hash) = Self::find_node(
&mut self.lookup,
&self.values,
self.values[target as usize].as_ref().unwrap(),
);
match entry {
hash_map::RawEntryMut::Occupied(mut other) => {
let rpl = other.get_key_value().0.nid;
self[target].inputs[inp_index] = prev;
self.replace(target, rpl);
rpl
}
hash_map::RawEntryMut::Vacant(slot) => {
slot.insert(LookupEntry { nid: target, hash }, ());
let index = self[prev].outputs.iter().position(|&o| o == target).unwrap();
self[prev].outputs.swap_remove(index);
self[with].outputs.push(target);
target
}
}
}
#[track_caller]
fn unlock_remove(&mut self, id: Nid) -> bool {
self[id].lock_rc -= 1;
self.remove(id)
}
fn iter(&self) -> impl DoubleEndedIterator<Item = (Nid, &Node)> {
self.values.iter().enumerate().filter_map(|(i, s)| Some((i as _, s.as_ref().ok()?)))
}
fn fmt(&self, f: &mut fmt::Formatter, node: Nid, rcs: &mut [usize]) -> fmt::Result {
let mut is_ready = || {
if rcs[node as usize] == 0 {
return false;
}
rcs[node as usize] = rcs[node as usize].saturating_sub(1);
rcs[node as usize] == 0
};
match self[node].kind {
Kind::BinOp { op } => {
write!(f, "(")?;
self.fmt(f, self[node].inputs[0], rcs)?;
write!(f, " {op} ")?;
self.fmt(f, self[node].inputs[1], rcs)?;
write!(f, ")")?;
}
Kind::Return => {
write!(f, "{}: return [{:?}] ", node, self[node].inputs[0])?;
if self[node].inputs[1] != 0 {
self.fmt(f, self[node].inputs[1], rcs)?;
}
writeln!(f)?;
self.fmt(f, self[node].inputs[1], rcs)?;
}
Kind::CInt { value } => write!(f, "{}", value)?,
Kind::End => {
if is_ready() {
writeln!(f, "{}: {:?}", node, self[node].kind)?;
}
}
Kind::Tuple { index } => {
if index != 0 && self[self[node].inputs[0]].kind == Kind::Start {
write!(f, "{:?}.{}", self[self[node].inputs[0]].kind, index)?;
} else if is_ready() {
writeln!(f, "{}: {:?}", node, self[node].kind)?;
for &o in &self[node].outputs {
if self.is_cfg(o) {
self.fmt(f, o, rcs)?;
}
}
}
}
Kind::Start => 'b: {
if !is_ready() {
break 'b;
}
writeln!(f, "{}: {:?}", node, self[node].kind)?;
for &o in &self[node].outputs {
self.fmt(f, o, rcs)?;
}
}
Kind::Call { func } => {
if is_ready() {
write!(f, "{}: call {}(", node, func)?;
for (i, &value) in self[node].inputs.iter().skip(1).enumerate() {
if i != 0 {
write!(f, ", ")?;
}
self.fmt(f, value, rcs)?;
}
writeln!(f, ")")?;
for &o in &self[node].outputs {
if self.is_cfg(o) {
self.fmt(f, o, rcs)?;
}
}
} else {
write!(f, "call{node}")?;
}
}
Kind::If => todo!(),
Kind::Region => todo!(),
Kind::Phi => todo!(),
Kind::Loop => todo!(),
}
Ok(())
}
fn graphviz_low(&self, out: &mut String) -> std::fmt::Result {
use std::fmt::Write;
for (i, node) in self.iter() {
let color = if self.is_cfg(i) { "yellow" } else { "white" };
writeln!(out, "node{i}[label=\"{}\" color={color}]", node.kind)?;
for (j, &o) in node.outputs.iter().enumerate() {
let color = if self.is_cfg(i) && self.is_cfg(o) { "red" } else { "lightgray" };
let index = self[o].inputs.iter().position(|&inp| i == inp).unwrap();
let style = if index == 0 && !self.is_cfg(o) { "style=dotted" } else { "" };
writeln!(
out,
"node{o} -> node{i}[color={color} taillabel={index} headlabel={j} {style}]",
)?;
}
}
Ok(())
}
#[allow(clippy::format_in_format_args)]
fn basic_blocks_instr(&mut self, out: &mut String, node: Nid) -> std::fmt::Result {
if !self.visited.set(node as _) {
return Ok(());
}
write!(out, " {node:>2}: ")?;
match self[node].kind {
Kind::Start => unreachable!(),
Kind::End => unreachable!(),
Kind::If => write!(out, " if: "),
Kind::Region => unreachable!(),
Kind::Loop => unreachable!(),
Kind::Return => write!(out, " ret: "),
Kind::CInt { value } => write!(out, "cint: #{value:<4}"),
Kind::Phi => write!(out, " phi: "),
Kind::Tuple { index } => write!(out, " arg: {index:<5}"),
Kind::BinOp { op } => {
write!(out, "{:>4}: ", op.name())
}
Kind::Call { func } => {
write!(out, "call: {func} {}", self[node].depth)
}
}?;
writeln!(
out,
" {:<14} {}",
format!("{:?}", self[node].inputs),
format!("{:?}", self[node].outputs)
)
}
fn basic_blocks_low(&mut self, out: &mut String, mut node: Nid) -> std::fmt::Result {
while self.visited.set(node as _) {
match dbg!(self[node].kind) {
Kind::Start => {
writeln!(out, "start: {}", self[node].depth)?;
let mut cfg_index = Nid::MAX;
for o in self[node].outputs.clone() {
if self[o].kind == (Kind::Tuple { index: 0 }) {
cfg_index = o;
continue;
}
self.basic_blocks_instr(out, o)?;
}
node = cfg_index;
}
Kind::End => break,
Kind::If => {
self.visited.unset(node as _);
self.basic_blocks_instr(out, node)?;
self.basic_blocks_low(out, self[node].outputs[0])?;
node = self[node].outputs[1];
}
Kind::Region => {
let mut cfg_index = Nid::MAX;
for o in self[node].outputs.clone().into_iter() {
if self.is_cfg(o) {
cfg_index = o;
continue;
}
self.basic_blocks_instr(out, o)?;
}
node = cfg_index;
}
Kind::Loop => {
writeln!(out, "loop{node} {}", self[node].depth)?;
let mut cfg_index = Nid::MAX;
for o in self[node].outputs.clone().into_iter() {
if self.is_cfg(o) {
cfg_index = o;
continue;
}
self.basic_blocks_instr(out, o)?;
}
node = cfg_index;
}
Kind::Return => {
self.visited.unset(node as _);
self.basic_blocks_instr(out, node)?;
node = self[node].outputs[0];
}
Kind::CInt { .. } => unreachable!(),
Kind::Phi => unreachable!(),
Kind::Tuple { .. } => {
writeln!(out, "b{node}: {}", self[node].depth)?;
let mut cfg_index = Nid::MAX;
for o in self[node].outputs.clone().into_iter() {
if self.is_cfg(o) {
cfg_index = o;
continue;
}
self.basic_blocks_instr(out, o)?;
}
if !self[cfg_index].kind.ends_basic_block()
&& !matches!(self[cfg_index].kind, Kind::Call { .. })
{
writeln!(out, " goto: {cfg_index}")?;
}
node = cfg_index;
}
Kind::BinOp { .. } => unreachable!(),
Kind::Call { .. } => {
self.visited.unset(node as _);
self.basic_blocks_instr(out, node)?;
let mut cfg_index = Nid::MAX;
for o in self[node].outputs.clone().into_iter() {
if self.is_cfg(o) {
cfg_index = o;
continue;
}
if self[o].inputs[0] == node {
self.basic_blocks_instr(out, o)?;
}
}
node = cfg_index;
}
}
}
Ok(())
}
fn basic_blocks(&mut self) {
let mut out = String::new();
self.visited.clear(self.values.len());
self.basic_blocks_low(&mut out, 0).unwrap();
println!("{out}");
}
fn graphviz(&self) {
let out = &mut String::new();
_ = self.graphviz_low(out);
log::inf!("{out}");
}
fn is_cfg(&self, o: Nid) -> bool {
self[o].kind.is_cfg()
}
fn check_final_integrity(&self) {
let mut failed = false;
for (i, node) in self.iter() {
debug_assert_eq!(node.lock_rc, 0, "{:?}", node.kind);
if !matches!(node.kind, Kind::Return | Kind::End) && node.outputs.is_empty() {
log::err!("outputs are empry {i} {:?}", node.kind);
failed = true;
}
let mut allowed_cfgs = 1 + (node.kind == Kind::If) as usize;
for &o in &node.outputs {
if self.is_cfg(i) {
if allowed_cfgs == 0 && self.is_cfg(o) {
log::err!(
"multiple cfg outputs detected: {:?} -> {:?}",
node.kind,
self[o].kind
);
failed = true;
} else {
allowed_cfgs += self.is_cfg(o) as usize;
}
}
if matches!(node.kind, Kind::Region | Kind::Loop)
&& !self.is_cfg(o)
&& self[o].kind != Kind::Phi
{
log::err!("unexpected output node on region: {:?}", self[o].kind);
failed = true;
}
let other = match &self.values[o as usize] {
Ok(other) => other,
Err(_) => {
log::err!("the edge points to dropped node: {i} {:?} {o}", node.kind,);
failed = true;
continue;
}
};
let occurs = self[o].inputs.iter().filter(|&&el| el == i).count();
let self_occurs = self[i].outputs.iter().filter(|&&el| el == o).count();
if occurs != self_occurs {
log::err!(
"the edge is not bidirectional: {i} {:?} {self_occurs} {o} {:?} {occurs}",
node.kind,
other.kind
);
failed = true;
}
}
}
if failed {
panic!()
}
}
fn climb_expr(&mut self, from: Nid, mut for_each: impl FnMut(Nid, &Node) -> bool) -> bool {
fn climb_impl(
nodes: &mut Nodes,
from: Nid,
for_each: &mut impl FnMut(Nid, &Node) -> bool,
) -> bool {
for i in 0..nodes[from].inputs.len() {
let n = nodes[from].inputs[i];
if n != Nid::MAX
&& nodes.visited.set(n as usize)
&& !nodes.is_cfg(n)
&& (for_each(n, &nodes[n]) || climb_impl(nodes, n, for_each))
{
return true;
}
}
false
}
self.visited.clear(self.values.len());
climb_impl(self, from, &mut for_each)
}
fn late_peephole(&mut self, target: Nid) -> Nid {
if let Some(id) = self.peephole(target) {
self.replace(target, id);
return id;
}
target
}
fn load_loop_value(&mut self, index: usize, value: &mut Nid, loops: &mut [Loop]) {
if *value != 0 {
return;
}
let [loob, loops @ ..] = loops else { unreachable!() };
let lvalue = &mut loob.scope[index].value;
self.load_loop_value(index, lvalue, loops);
if !self[*lvalue].is_lazy_phi() {
self.unlock(*value);
let inps = [loob.node, *lvalue, 0];
self.unlock(inps[1]);
let ty = self[inps[1]].ty;
let phi = self.new_node_nop(ty, Kind::Phi, inps);
self[phi].lock_rc += 2;
*value = phi;
*lvalue = phi;
} else {
self.unlock_remove(*value);
*value = *lvalue;
self.lock(*value);
}
}
}
impl ops::Index<u32> for Nodes {
type Output = Node;
fn index(&self, index: u32) -> &Self::Output {
self.values[index as usize].as_ref().unwrap()
}
}
impl ops::IndexMut<u32> for Nodes {
fn index_mut(&mut self, index: u32) -> &mut Self::Output {
self.values[index as usize].as_mut().unwrap()
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
#[repr(u8)]
pub enum Kind {
Start,
End,
If,
Region,
Loop,
Return,
CInt { value: i64 },
Phi,
Tuple { index: u32 },
BinOp { op: lexer::TokenKind },
Call { func: ty::Func },
}
impl Kind {
fn is_pinned(&self) -> bool {
self.is_cfg() || matches!(self, Kind::Phi)
}
fn is_cfg(&self) -> bool {
matches!(
self,
Kind::Start
| Kind::End
| Kind::Return
| Kind::Tuple { .. }
| Kind::Call { .. }
| Kind::If
| Kind::Region
| Kind::Loop
)
}
fn ends_basic_block(&self) -> bool {
matches!(self, Kind::Return | Kind::If | Kind::End)
}
fn starts_basic_block(&self) -> bool {
matches!(self, Kind::Start | Kind::End | Kind::Tuple { .. } | Kind::Region | Kind::Loop)
}
}
impl fmt::Display for Kind {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Kind::CInt { value } => write!(f, "#{value}"),
Kind::Tuple { index } => write!(f, "tupl[{index}]"),
Kind::BinOp { op } => write!(f, "{op}"),
Kind::Call { func, .. } => write!(f, "call {func}"),
slf => write!(f, "{slf:?}"),
}
}
}
#[derive(Debug)]
struct Node {
inputs: Vec<Nid>,
outputs: Vec<Nid>,
kind: Kind,
color: u32,
depth: u32,
lock_rc: u32,
ty: ty::Id,
}
impl Node {
fn is_dangling(&self) -> bool {
self.outputs.len() + self.lock_rc as usize == 0
}
fn key(&self) -> (Kind, &[Nid], ty::Id) {
(self.kind, &self.inputs, self.ty)
}
fn is_lazy_phi(&self) -> bool {
self.kind == Kind::Phi && self.inputs[2] == 0
}
}
impl fmt::Display for Nodes {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.fmt(
f,
0,
&mut self
.values
.iter()
.map(|s| match s {
Ok(Node { kind: Kind::Start, .. }) => 1,
Ok(Node { kind: Kind::End, ref outputs, .. }) => outputs.len(),
Ok(val) => val.inputs.len(),
Err(_) => 0,
})
.collect::<Vec<_>>(),
)
}
}
type Offset = u32;
type Size = u32;
type ArrayLen = u32;
struct Loop {
node: Nid,
ctrl: [Nid; 2],
ctrl_scope: [Vec<Variable>; 2],
scope: Vec<Variable>,
}
#[derive(Clone, Copy)]
struct Variable {
id: Ident,
value: Nid,
}
struct ColorMeta {
rc: u32,
depth: u32,
call_count: u32,
loc: Loc,
}
#[derive(Default)]
struct ItemCtx {
file: FileId,
id: ty::Id,
ret: Option<ty::Id>,
task_base: usize,
nodes: Nodes,
start: Nid,
end: Nid,
ctrl: Nid,
loop_depth: u32,
colors: Vec<ColorMeta>,
call_count: u32,
filled: Vec<Nid>,
delayed_frees: Vec<u32>,
loops: Vec<Loop>,
vars: Vec<Variable>,
regs: reg::Alloc,
ret_relocs: Vec<Reloc>,
relocs: Vec<TypedReloc>,
code: Vec<u8>,
}
impl ItemCtx {
fn next_color(&mut self) -> u32 {
self.colors.push(ColorMeta {
rc: 0,
call_count: self.call_count,
depth: self.loop_depth,
loc: Default::default(),
});
self.colors.len() as _ // leave out 0 (sentinel)
}
fn set_next_color(&mut self, node: Nid) {
let color = self.next_color();
self.set_color(node, color);
}
fn set_color(&mut self, node: Nid, color: u32) {
if self.nodes[node].color != 0 {
debug_assert_ne!(self.nodes[node].color, color);
self.colors[self.nodes[node].color as usize - 1].rc -= 1;
}
self.nodes[node].color = color;
self.colors[color as usize - 1].rc += 1;
}
fn recolor(&mut self, node: Nid, from: u32, to: u32) {
if from == to {
return;
}
if self.nodes[node].color != from {
return;
}
self.set_color(node, to);
for i in 0..self.nodes[node].inputs.len() {
self.recolor(self.nodes[node].inputs[i], from, to);
}
}
fn check_color_integrity(&self) {
let node_count = self
.nodes
.values
.iter()
.filter(|v| {
matches!(
v,
Ok(Node {
kind: Kind::BinOp { .. }
| Kind::Call { .. }
| Kind::Phi
| Kind::CInt { .. },
..
})
) || matches!(
v,
Ok(Node { kind: Kind::Tuple { index: 1.. }, inputs, .. }) if inputs.first() == Some(&0)
)
})
.count();
let color_count = self.colors.iter().map(|c| c.rc).sum::<u32>();
debug_assert_eq!(node_count, color_count as usize);
}
fn emit(&mut self, instr: (usize, [u8; instrs::MAX_SIZE])) {
emit(&mut self.code, instr);
}
fn free_loc(&mut self, loc: impl Into<Option<Loc>>) {
if let Some(loc) = loc.into() {
self.regs.free(loc.reg);
}
}
}
fn emit(out: &mut Vec<u8>, (len, instr): (usize, [u8; instrs::MAX_SIZE])) {
out.extend_from_slice(&instr[..len]);
}
fn write_reloc(doce: &mut [u8], offset: usize, value: i64, size: u16) {
let value = value.to_ne_bytes();
doce[offset..offset + size as usize].copy_from_slice(&value[..size as usize]);
}
#[derive(PartialEq, Eq, Hash)]
struct SymKey {
file: u32,
ident: u32,
}
impl SymKey {
pub fn pointer_to(ty: ty::Id) -> Self {
Self { file: u32::MAX, ident: ty.repr() }
}
}
#[derive(Clone, Copy)]
struct Sig {
args: ty::Tuple,
ret: ty::Id,
}
struct Func {
file: FileId,
expr: ExprRef,
sig: Option<Sig>,
offset: Offset,
// TODO: change to indices into common vec
relocs: Vec<TypedReloc>,
code: Vec<u8>,
}
impl Default for Func {
fn default() -> Self {
Self {
file: u32::MAX,
expr: Default::default(),
sig: None,
offset: u32::MAX,
relocs: Default::default(),
code: Default::default(),
}
}
}
struct TypedReloc {
target: ty::Id,
reloc: Reloc,
}
struct Global {
file: FileId,
name: Ident,
ty: ty::Id,
offset: Offset,
data: Vec<u8>,
}
impl Default for Global {
fn default() -> Self {
Self {
ty: Default::default(),
offset: u32::MAX,
data: Default::default(),
file: 0,
name: 0,
}
}
}
// TODO: make into bit struct (width: u2, sub_offset: u3, offset: u27)
#[derive(Clone, Copy, Debug)]
struct Reloc {
offset: Offset,
sub_offset: u8,
width: u8,
}
impl Reloc {
fn new(offset: usize, sub_offset: u8, width: u8) -> Self {
Self { offset: offset as u32, sub_offset, width }
}
fn apply_jump(mut self, code: &mut [u8], to: u32, from: u32) -> i64 {
self.offset += from;
let offset = to as i64 - self.offset as i64;
self.write_offset(code, offset);
offset
}
fn write_offset(&self, code: &mut [u8], offset: i64) {
let bytes = offset.to_ne_bytes();
let slice = &mut code[self.offset as usize + self.sub_offset as usize..];
slice[..self.width as usize].copy_from_slice(&bytes[..self.width as usize]);
}
}
struct Field {
name: Rc<str>,
ty: ty::Id,
}
struct Struct {
fields: Rc<[Field]>,
}
struct Ptr {
base: ty::Id,
}
struct ParamAlloc(Range<u8>);
impl ParamAlloc {
pub fn next(&mut self) -> u8 {
self.0.next().expect("too many paramteters")
}
fn next_wide(&mut self) -> u8 {
(self.next(), self.next()).0
}
}
#[derive(Clone, Copy)]
struct Array {
ty: ty::Id,
len: ArrayLen,
}
#[derive(Default)]
struct Types {
syms: HashMap<SymKey, ty::Id>,
funcs: Vec<Func>,
args: Vec<ty::Id>,
globals: Vec<Global>,
structs: Vec<Struct>,
ptrs: Vec<Ptr>,
arrays: Vec<Array>,
}
impl Types {
fn parama(&self, ret: impl Into<ty::Id>) -> ParamAlloc {
ParamAlloc(2 + (9..=16).contains(&self.size_of(ret.into())) as u8..12)
}
fn offset_of(&self, idx: ty::Struct, field: &str) -> Option<(Offset, ty::Id)> {
let record = &self.structs[idx as usize];
let until = record.fields.iter().position(|f| f.name.as_ref() == field)?;
let mut offset = 0;
for &Field { ty, .. } in &record.fields[..until] {
offset = Self::align_up(offset, self.align_of(ty));
offset += self.size_of(ty);
}
Some((offset, record.fields[until].ty))
}
fn make_ptr(&mut self, base: ty::Id) -> ty::Id {
ty::Kind::Ptr(self.make_ptr_low(base)).compress()
}
fn make_ptr_low(&mut self, base: ty::Id) -> ty::Ptr {
let id = SymKey::pointer_to(base);
self.syms
.entry(id)
.or_insert_with(|| {
self.ptrs.push(Ptr { base });
ty::Kind::Ptr(self.ptrs.len() as u32 - 1).compress()
})
.expand()
.inner()
}
fn make_array(&mut self, ty: ty::Id, len: ArrayLen) -> ty::Id {
ty::Kind::Slice(self.make_array_low(ty, len)).compress()
}
fn make_array_low(&mut self, ty: ty::Id, len: ArrayLen) -> ty::Slice {
let id = SymKey {
file: match len {
ArrayLen::MAX => ArrayLen::MAX - 1,
len => ArrayLen::MAX - len - 2,
},
ident: ty.repr(),
};
self.syms
.entry(id)
.or_insert_with(|| {
self.arrays.push(Array { ty, len });
ty::Kind::Slice(self.arrays.len() as u32 - 1).compress()
})
.expand()
.inner()
}
fn align_up(value: Size, align: Size) -> Size {
(value + align - 1) & !(align - 1)
}
fn size_of(&self, ty: ty::Id) -> Size {
match ty.expand() {
ty::Kind::Ptr(_) => 8,
ty::Kind::Builtin(ty::VOID) => 0,
ty::Kind::Builtin(ty::NEVER) => unreachable!(),
ty::Kind::Builtin(ty::INT | ty::UINT) => 8,
ty::Kind::Builtin(ty::I32 | ty::U32 | ty::TYPE) => 4,
ty::Kind::Builtin(ty::I16 | ty::U16) => 2,
ty::Kind::Builtin(ty::I8 | ty::U8 | ty::BOOL) => 1,
ty::Kind::Slice(arr) => {
let arr = &self.arrays[arr as usize];
match arr.len {
0 => 0,
ArrayLen::MAX => 16,
len => self.size_of(arr.ty) * len,
}
}
ty::Kind::Struct(stru) => {
let mut offset = 0u32;
let record = &self.structs[stru as usize];
for &Field { ty, .. } in record.fields.iter() {
let align = self.align_of(ty);
offset = Self::align_up(offset, align);
offset += self.size_of(ty);
}
offset
}
ty => unimplemented!("size_of: {:?}", ty),
}
}
fn align_of(&self, ty: ty::Id) -> Size {
match ty.expand() {
ty::Kind::Struct(stru) => self.structs[stru as usize]
.fields
.iter()
.map(|&Field { ty, .. }| self.align_of(ty))
.max()
.unwrap(),
ty::Kind::Slice(arr) => {
let arr = &self.arrays[arr as usize];
match arr.len {
ArrayLen::MAX => 8,
_ => self.align_of(arr.ty),
}
}
_ => self.size_of(ty).max(1),
}
}
}
mod task {
use super::Offset;
pub fn unpack(offset: Offset) -> Result<Offset, usize> {
if offset >> 31 != 0 {
Err((offset & !(1 << 31)) as usize)
} else {
Ok(offset)
}
}
pub fn id(index: usize) -> Offset {
1 << 31 | index as u32
}
}
struct FTask {
file: FileId,
id: ty::Func,
}
#[derive(Default, Debug)]
struct Ctx {
ty: Option<ty::Id>,
}
impl Ctx {
pub fn with_ty(self, ty: impl Into<ty::Id>) -> Self {
Self { ty: Some(ty.into()) }
}
}
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq)]
struct Loc {
reg: reg::Reg,
}
#[derive(Default, Debug, Clone, Copy)]
struct GenCtx {
loc: Option<Loc>,
}
impl GenCtx {
pub fn with_loc(self, loc: impl Into<Loc>) -> Self {
Self { loc: Some(loc.into()) }
}
}
#[derive(Default)]
struct Pool {
cis: Vec<ItemCtx>,
}
#[derive(Default)]
pub struct Codegen {
pub files: Vec<parser::Ast>,
tasks: Vec<Option<FTask>>,
tys: Types,
ci: ItemCtx,
pool: Pool,
errors: RefCell<String>,
}
impl Codegen {
pub fn generate(&mut self) {
self.find_or_declare(0, 0, None, "main");
self.make_func_reachable(0);
self.complete_call_graph_low();
}
fn assemble(&mut self, to: &mut Vec<u8>) {
emit(to, instrs::jal(reg::RET_ADDR, reg::ZERO, 0));
emit(to, instrs::tx());
self.dump_reachable(0, to);
Reloc::new(0, 3, 4).apply_jump(to, self.tys.funcs[0].offset, 0);
}
fn dump_reachable(&mut self, from: ty::Func, to: &mut Vec<u8>) {
let mut frontier = vec![ty::Kind::Func(from).compress()];
while let Some(itm) = frontier.pop() {
match itm.expand() {
ty::Kind::Func(func) => {
let fuc = &mut self.tys.funcs[func as usize];
if task::unpack(fuc.offset).is_ok() {
continue;
}
fuc.offset = to.len() as _;
to.extend(&fuc.code);
frontier.extend(fuc.relocs.iter().map(|r| r.target));
}
ty::Kind::Global(glob) => {
let glb = &mut self.tys.globals[glob as usize];
if task::unpack(glb.offset).is_ok() {
continue;
}
glb.offset = to.len() as _;
to.extend(&glb.data);
}
_ => unreachable!(),
}
}
for fuc in &self.tys.funcs {
if task::unpack(fuc.offset).is_err() {
continue;
}
for rel in &fuc.relocs {
let offset = match rel.target.expand() {
ty::Kind::Func(fun) => self.tys.funcs[fun as usize].offset,
ty::Kind::Global(glo) => self.tys.globals[glo as usize].offset,
_ => unreachable!(),
};
rel.reloc.apply_jump(to, offset, fuc.offset);
}
}
}
pub fn disasm(
&mut self,
mut sluce: &[u8],
output: &mut impl std::io::Write,
) -> std::io::Result<()> {
use crate::DisasmItem;
let functions = self
.tys
.funcs
.iter()
.filter(|f| task::unpack(f.offset).is_ok())
.map(|f| {
let file = &self.files[f.file as usize];
let Expr::BinOp { left: &Expr::Ident { name, .. }, .. } = f.expr.get(file).unwrap()
else {
unreachable!()
};
(f.offset, (name, f.code.len() as u32, DisasmItem::Func))
})
.chain(self.tys.globals.iter().filter(|g| task::unpack(g.offset).is_ok()).map(|g| {
let file = &self.files[g.file as usize];
(g.offset, (file.ident_str(g.name), self.tys.size_of(g.ty), DisasmItem::Global))
}))
.collect::<BTreeMap<_, _>>();
crate::disasm(&mut sluce, &functions, output, |_| {})
}
fn make_func_reachable(&mut self, func: ty::Func) {
let fuc = &mut self.tys.funcs[func as usize];
if fuc.offset == u32::MAX {
fuc.offset = task::id(self.tasks.len() as _);
self.tasks.push(Some(FTask { file: fuc.file, id: func }));
}
}
fn expr(&mut self, expr: &Expr) -> Option<Nid> {
self.expr_ctx(expr, Ctx::default())
}
fn build_struct(&mut self, fields: &[(&str, Expr)]) -> ty::Struct {
let fields = fields
.iter()
.map(|&(name, ty)| Field { name: name.into(), ty: self.ty(&ty) })
.collect();
self.tys.structs.push(Struct { fields });
self.tys.structs.len() as u32 - 1
}
fn expr_ctx(&mut self, expr: &Expr, ctx: Ctx) -> Option<Nid> {
let msg = "i know nothing about this name gal which is vired \
because we parsed succesfully";
match *expr {
Expr::Comment { .. } => Some(0),
Expr::Ident { pos, id, .. } => {
let Some(index) = self.ci.vars.iter().position(|v| v.id == id) else {
self.report(pos, msg);
return Some(self.ci.end);
};
self.ci.nodes.load_loop_value(
index,
&mut self.ci.vars[index].value,
&mut self.ci.loops,
);
Some(self.ci.vars[index].value)
}
Expr::BinOp { left: &Expr::Ident { id, .. }, op: TokenKind::Decl, right } => {
let value = self.expr(right)?;
self.ci.nodes.lock(value);
self.ci.vars.push(Variable { id, value });
Some(0)
}
Expr::BinOp { left: &Expr::Ident { id, pos, .. }, op: TokenKind::Assign, right } => {
let value = self.expr(right)?;
self.ci.nodes.lock(value);
let Some(var) = self.ci.vars.iter_mut().find(|v| v.id == id) else {
self.report(pos, msg);
return Some(self.ci.end);
};
let prev = std::mem::replace(&mut var.value, value);
self.ci.nodes.unlock_remove(prev);
Some(0)
}
Expr::BinOp { left, op, right } => {
let lhs = self.expr_ctx(left, ctx)?;
self.ci.nodes.lock(lhs);
let rhs = self.expr_ctx(right, Ctx::default().with_ty(self.tof(lhs)));
self.ci.nodes.unlock(lhs);
let rhs = rhs?;
let ty = self.assert_ty(
left.pos(),
self.tof(rhs),
self.tof(lhs),
false,
"right operand",
);
let inps = [0, lhs, rhs];
Some(self.ci.nodes.new_node(ty::bin_ret(ty, op), Kind::BinOp { op }, inps))
}
Expr::If { cond, then, else_, .. } => {
let cond = self.expr_ctx(cond, Ctx::default().with_ty(ty::BOOL))?;
let if_node = self.ci.nodes.new_node(ty::VOID, Kind::If, [self.ci.ctrl, cond]);
'b: {
let branch = match self.tof(if_node).expand().inner() {
ty::LEFT_UNREACHABLE => else_,
ty::RIGHT_UNREACHABLE => Some(then),
_ => break 'b,
};
self.ci.nodes.lock(self.ci.ctrl);
self.ci.nodes.remove(if_node);
self.ci.nodes.unlock(self.ci.ctrl);
if let Some(branch) = branch {
return self.expr(branch);
} else {
return Some(0);
}
}
let mut else_scope = self.ci.vars.clone();
for &el in &self.ci.vars {
self.ci.nodes.lock(el.value);
}
self.ci.ctrl =
self.ci.nodes.new_node(ty::VOID, Kind::Tuple { index: 0 }, [if_node]);
let lcntrl = self.expr(then).map_or(Nid::MAX, |_| self.ci.ctrl);
let mut then_scope = std::mem::replace(&mut self.ci.vars, else_scope);
self.ci.ctrl =
self.ci.nodes.new_node(ty::VOID, Kind::Tuple { index: 1 }, [if_node]);
let rcntrl = if let Some(else_) = else_ {
self.expr(else_).map_or(Nid::MAX, |_| self.ci.ctrl)
} else {
self.ci.ctrl
};
if lcntrl == Nid::MAX && rcntrl == Nid::MAX {
for then_var in then_scope {
self.ci.nodes.unlock_remove(then_var.value);
}
return None;
} else if lcntrl == Nid::MAX {
for then_var in then_scope {
self.ci.nodes.unlock_remove(then_var.value);
}
return Some(0);
} else if rcntrl == Nid::MAX {
for else_var in &self.ci.vars {
self.ci.nodes.unlock_remove(else_var.value);
}
self.ci.vars = then_scope;
self.ci.ctrl = lcntrl;
return Some(0);
}
self.ci.ctrl = self.ci.nodes.new_node(ty::VOID, Kind::Region, [lcntrl, rcntrl]);
else_scope = std::mem::take(&mut self.ci.vars);
for (i, (else_var, then_var)) in
else_scope.iter_mut().zip(&mut then_scope).enumerate()
{
if else_var.value == then_var.value {
self.ci.nodes.unlock_remove(then_var.value);
continue;
}
self.ci.nodes.load_loop_value(i, &mut then_var.value, &mut self.ci.loops);
self.ci.nodes.load_loop_value(i, &mut else_var.value, &mut self.ci.loops);
self.ci.nodes.unlock(then_var.value);
let ty = self.ci.nodes[else_var.value].ty;
debug_assert_eq!(
ty,
self.ci.nodes[then_var.value].ty,
"TODO: typecheck properly: {} != {}\n{}",
self.ty_display(ty),
self.ty_display(self.ci.nodes[then_var.value].ty),
self.errors.borrow()
);
let inps = [self.ci.ctrl, then_var.value, else_var.value];
self.ci.nodes.unlock(else_var.value);
else_var.value = self.ci.nodes.new_node(ty, Kind::Phi, inps);
self.ci.nodes.lock(else_var.value);
}
self.ci.vars = else_scope;
Some(0)
}
Expr::Loop { body, .. } => {
self.ci.ctrl = self.ci.nodes.new_node(ty::VOID, Kind::Loop, [self.ci.ctrl; 2]);
self.ci.loops.push(Loop {
node: self.ci.ctrl,
ctrl: [Nid::MAX; 2],
ctrl_scope: std::array::from_fn(|_| vec![]),
scope: self.ci.vars.clone(),
});
for var in &mut self.ci.vars {
var.value = 0;
}
self.ci.nodes[0].lock_rc += self.ci.vars.len() as u32;
self.expr(body);
if self.ci.loops.last_mut().unwrap().ctrl[0] != Nid::MAX {
self.jump_to(0, 0);
self.ci.ctrl = self.ci.loops.last_mut().unwrap().ctrl[0];
}
let Loop { node, ctrl: [.., bre], ctrl_scope: [.., mut bre_scope], scope } =
self.ci.loops.pop().unwrap();
self.ci.nodes.modify_input(node, 1, self.ci.ctrl);
self.ci.ctrl = bre;
if bre == Nid::MAX {
return None;
}
self.ci.nodes.lock(self.ci.ctrl);
std::mem::swap(&mut self.ci.vars, &mut bre_scope);
for ((dest_var, mut scope_var), loop_var) in
self.ci.vars.iter_mut().zip(scope).zip(bre_scope)
{
self.ci.nodes.unlock(loop_var.value);
if loop_var.value != 0 {
self.ci.nodes.unlock(scope_var.value);
if loop_var.value != scope_var.value {
scope_var.value =
self.ci.nodes.modify_input(scope_var.value, 2, loop_var.value);
self.ci.nodes.lock(scope_var.value);
} else {
let phi = &self.ci.nodes[scope_var.value];
debug_assert_eq!(phi.kind, Kind::Phi);
debug_assert_eq!(phi.inputs[2], 0);
let prev = phi.inputs[1];
self.ci.nodes.replace(scope_var.value, prev);
scope_var.value = prev;
self.ci.nodes.lock(prev);
}
}
if dest_var.value == 0 {
self.ci.nodes.unlock_remove(dest_var.value);
dest_var.value = scope_var.value;
self.ci.nodes.lock(dest_var.value);
}
self.ci.nodes.unlock_remove(scope_var.value);
}
self.ci.nodes.unlock(self.ci.ctrl);
Some(0)
}
Expr::Break { pos } => self.jump_to(pos, 1),
Expr::Continue { pos } => self.jump_to(pos, 0),
Expr::Call { func: &Expr::Ident { pos, id, name, .. }, args, .. } => {
self.ci.call_count += 1;
let func = self.find_or_declare(pos, self.ci.file, Some(id), name);
let ty::Kind::Func(func) = func else {
self.report(
pos,
format_args!(
"compiler cant (yet) call '{}'",
self.ty_display(func.compress())
),
);
return Some(self.ci.end);
};
self.make_func_reachable(func);
let fuc = &self.tys.funcs[func as usize];
let sig = fuc.sig.expect("TODO: generic functions");
let ast = self.files[fuc.file as usize].clone();
let Expr::BinOp { right: &Expr::Closure { args: cargs, .. }, .. } =
fuc.expr.get(&ast).unwrap()
else {
unreachable!()
};
self.assert_report(
args.len() == cargs.len(),
pos,
format_args!(
"expected {} function argumenr{}, got {}",
cargs.len(),
if cargs.len() == 1 { "" } else { "s" },
args.len()
),
);
let mut inps = vec![self.ci.ctrl];
for ((arg, carg), tyx) in args.iter().zip(cargs).zip(sig.args.range()) {
let ty = self.tys.args[tyx];
if self.tys.size_of(ty) == 0 {
continue;
}
let value = self.expr_ctx(arg, Ctx::default().with_ty(ty))?;
_ = self.assert_ty(
arg.pos(),
self.tof(value),
ty,
true,
format_args!("argument {}", carg.name),
);
inps.push(value);
}
self.ci.ctrl = self.ci.nodes.new_node(sig.ret, Kind::Call { func }, inps);
Some(self.ci.ctrl)
}
Expr::Return { pos, val } => {
let value = if let Some(val) = val {
self.expr_ctx(val, Ctx { ty: self.ci.ret })?
} else {
0
};
let inps = [self.ci.ctrl, value];
let out = &mut String::new();
self.report_log_to(pos, "returning here", out);
self.ci.ctrl = self.ci.nodes.new_node(ty::VOID, Kind::Return, inps);
self.ci.nodes[self.ci.end].inputs.push(self.ci.ctrl);
self.ci.nodes[self.ci.ctrl].outputs.push(self.ci.end);
let expected = *self.ci.ret.get_or_insert(self.tof(value));
_ = self.assert_ty(pos, self.tof(value), expected, true, "return value");
None
}
Expr::Block { stmts, .. } => {
let base = self.ci.vars.len();
let mut ret = Some(0);
for stmt in stmts {
ret = ret.and(self.expr(stmt));
if let Some(id) = ret {
_ = self.assert_ty(
stmt.pos(),
self.tof(id),
ty::VOID.into(),
true,
"statement",
);
} else {
break;
}
}
self.ci.nodes.lock(self.ci.ctrl);
for var in self.ci.vars.drain(base..) {
self.ci.nodes.unlock_remove(var.value);
}
self.ci.nodes.unlock(self.ci.ctrl);
ret
}
Expr::Number { value, .. } => Some(self.ci.nodes.new_node(
ctx.ty.filter(|ty| ty.is_integer() || ty.is_pointer()).unwrap_or(ty::INT.into()),
Kind::CInt { value },
[0],
)),
ref e => {
self.report_unhandled_ast(e, "bruh");
Some(self.ci.end)
}
}
}
fn jump_to(&mut self, pos: Pos, id: usize) -> Option<Nid> {
let Some(loob) = self.ci.loops.last_mut() else {
self.report(pos, "break outside a loop");
return None;
};
if loob.ctrl[id] == Nid::MAX {
loob.ctrl[id] = self.ci.ctrl;
loob.ctrl_scope[id] = self.ci.vars[..loob.scope.len()].to_owned();
for v in &loob.ctrl_scope[id] {
self.ci.nodes.lock(v.value)
}
} else {
loob.ctrl[id] =
self.ci.nodes.new_node(ty::VOID, Kind::Region, [self.ci.ctrl, loob.ctrl[id]]);
for (else_var, then_var) in loob.ctrl_scope[id].iter_mut().zip(&self.ci.vars) {
if else_var.value == then_var.value {
continue;
}
let ty = self.ci.nodes[else_var.value].ty;
debug_assert_eq!(ty, self.ci.nodes[then_var.value].ty, "TODO: typecheck properly");
let inps = [loob.ctrl[id], then_var.value, else_var.value];
self.ci.nodes.unlock(else_var.value);
else_var.value = self.ci.nodes.new_node(ty, Kind::Phi, inps);
self.ci.nodes.lock(else_var.value);
}
}
self.ci.ctrl = self.ci.end;
None
}
#[inline(always)]
fn tof(&self, id: Nid) -> ty::Id {
self.ci.nodes[id].ty
}
fn complete_call_graph(&mut self) {
self.complete_call_graph_low();
}
fn complete_call_graph_low(&mut self) {
while self.ci.task_base < self.tasks.len()
&& let Some(task_slot) = self.tasks.pop()
{
let Some(task) = task_slot else { continue };
self.handle_task(task);
}
}
fn handle_task(&mut self, FTask { file, id }: FTask) {
let func = &mut self.tys.funcs[id as usize];
func.offset = u32::MAX - 1;
debug_assert!(func.file == file);
let sig = func.sig.unwrap();
let ast = self.files[file as usize].clone();
let expr = func.expr.get(&ast).unwrap();
let repl = ItemCtx {
file,
id: ty::Kind::Func(id).compress(),
ret: Some(sig.ret),
..self.pool.cis.pop().unwrap_or_default()
};
let prev_ci = std::mem::replace(&mut self.ci, repl);
self.ci.start = self.ci.nodes.new_node(ty::VOID, Kind::Start, []);
self.ci.end = self.ci.nodes.new_node(ty::NEVER, Kind::End, []);
self.ci.ctrl = self.ci.nodes.new_node(ty::VOID, Kind::Tuple { index: 0 }, [self.ci.start]);
let Expr::BinOp {
left: Expr::Ident { name, .. },
op: TokenKind::Decl,
right: &Expr::Closure { body, args, .. },
} = expr
else {
unreachable!("{expr}")
};
let mut sig_args = sig.args.range();
for (arg, index) in args.iter().zip(1u32..) {
let ty = self.tys.args[sig_args.next().unwrap()];
let value = self.ci.nodes.new_node(ty, Kind::Tuple { index }, [self.ci.start]);
self.ci.nodes.lock(value);
let sym = parser::find_symbol(&ast.symbols, arg.id);
assert!(sym.flags & idfl::COMPTIME == 0, "TODO");
self.ci.vars.push(Variable { id: arg.id, value });
}
let mut orig_vars = self.ci.vars.clone();
if self.expr(body).is_some() {
self.report(body.pos(), "expected all paths in the fucntion to return");
}
for (i, var) in self.ci.vars.drain(..).enumerate() {
let ty = self.ci.nodes[var.value].ty;
if self.ci.nodes.unlock_remove(var.value) {
// mark as unused
orig_vars[i].id = u32::MAX;
orig_vars[i].value = ty.repr();
}
}
if self.errors.borrow().is_empty() {
self.gcm();
//self.ci.nodes.graphviz();
log::inf!("{id} {name}: ");
self.ci.nodes.basic_blocks();
return;
#[cfg(debug_assertions)]
{
self.ci.nodes.check_final_integrity();
}
log::trc!("{}", self.ci.nodes);
'_open_function: {
self.ci.emit(instrs::addi64(reg::STACK_PTR, reg::STACK_PTR, 0));
self.ci.emit(instrs::st(reg::RET_ADDR, reg::STACK_PTR, 0, 0));
}
self.ci.regs.init();
let call_count = self.ci.call_count;
'_color_args: {
for var in &orig_vars {
if var.id != u32::MAX {
self.ci.set_next_color(var.value);
}
}
}
self.color_control(self.ci.nodes[self.ci.start].outputs[0]);
#[cfg(debug_assertions)]
{
self.ci.check_color_integrity();
}
self.ci.vars = orig_vars;
self.ci.call_count = call_count;
self.emit_control(self.ci.nodes[self.ci.start].outputs[0]);
self.ci.vars.clear();
if let Some(last_ret) = self.ci.ret_relocs.last()
&& last_ret.offset as usize == self.ci.code.len() - 5
{
self.ci.code.truncate(self.ci.code.len() - 5);
self.ci.ret_relocs.pop();
}
let end = self.ci.code.len();
for ret_rel in self.ci.ret_relocs.drain(..) {
ret_rel.apply_jump(&mut self.ci.code, end as _, 0);
}
'_close_function: {
let pushed = self.ci.regs.pushed_size() as i64;
let stack = 0;
write_reloc(&mut self.ci.code, 3, -(pushed + stack), 8);
write_reloc(&mut self.ci.code, 3 + 8 + 3, stack, 8);
write_reloc(&mut self.ci.code, 3 + 8 + 3 + 8, pushed, 2);
self.ci.emit(instrs::ld(reg::RET_ADDR, reg::STACK_PTR, stack as _, pushed as _));
self.ci.emit(instrs::addi64(reg::STACK_PTR, reg::STACK_PTR, (pushed + stack) as _));
self.ci.emit(instrs::jala(reg::ZERO, reg::RET_ADDR, 0));
}
}
self.tys.funcs[id as usize].code.append(&mut self.ci.code);
self.tys.funcs[id as usize].relocs.append(&mut self.ci.relocs);
self.ci.nodes.clear();
self.ci.colors.clear();
self.ci.filled.clear();
self.pool.cis.push(std::mem::replace(&mut self.ci, prev_ci));
}
fn color_control(&mut self, mut ctrl: Nid) -> Option<Nid> {
for _ in 0..30 {
match self.ci.nodes[ctrl].kind {
Kind::Start => unreachable!(),
Kind::End => unreachable!(),
Kind::Return => {
let ret = self.ci.nodes[ctrl].inputs[1];
if ret != 0 {
_ = self.color_expr_consume(ret);
if node_color!(self, ret).call_count == self.ci.call_count {
node_loc!(self, ret) =
match self.tys.size_of(self.ci.ret.expect("TODO")) {
0 => Loc::default(),
1..=8 => Loc { reg: 1 },
s => todo!("{s}"),
};
}
self.ci.regs.mark_leaked(1);
}
return None;
}
Kind::CInt { .. } => unreachable!(),
Kind::Tuple { .. } => {
ctrl = self.ci.nodes[ctrl].outputs[0];
}
Kind::BinOp { .. } => unreachable!(),
Kind::Call { .. } => {
for i in 1..self.ci.nodes[ctrl].inputs.len() {
let arg = self.ci.nodes[ctrl].inputs[i];
_ = self.color_expr_consume(arg);
self.ci.set_next_color(arg);
}
self.ci.call_count -= 1;
self.ci.set_next_color(ctrl);
ctrl = *self.ci.nodes[ctrl]
.outputs
.iter()
.find(|&&o| self.ci.nodes.is_cfg(o))
.unwrap();
}
Kind::If => {
_ = self.color_expr_consume(self.ci.nodes[ctrl].inputs[1]);
let left_unreachable = self.color_control(self.ci.nodes[ctrl].outputs[0]);
let right_unreachable = self.color_control(self.ci.nodes[ctrl].outputs[1]);
let dest = match (left_unreachable, right_unreachable) {
(None, None) => return None,
(None, Some(n)) | (Some(n), None) => return Some(n),
(Some(l), Some(r)) if l == r => l,
(Some(left), Some(right)) => {
todo!("{:?} {:?}", self.ci.nodes[left], self.ci.nodes[right]);
}
};
if self.ci.nodes[dest].kind == Kind::Loop {
return Some(dest);
}
debug_assert_eq!(self.ci.nodes[dest].kind, Kind::Region);
for i in 0..self.ci.nodes[dest].outputs.len() {
let o = self.ci.nodes[dest].outputs[i];
if self.ci.nodes[o].kind == Kind::Phi {
self.color_phi(o);
self.ci.nodes[o].depth = self.ci.loop_depth;
}
}
ctrl = *self.ci.nodes[dest]
.outputs
.iter()
.find(|&&o| self.ci.nodes[o].kind != Kind::Phi)
.unwrap();
}
Kind::Region => return Some(ctrl),
Kind::Phi => todo!(),
Kind::Loop => {
if self.ci.nodes[ctrl].lock_rc != 0 {
return Some(ctrl);
}
for i in 0..self.ci.nodes[ctrl].outputs.len() {
let maybe_phi = self.ci.nodes[ctrl].outputs[i];
let Node { kind: Kind::Phi, ref inputs, .. } = self.ci.nodes[maybe_phi]
else {
continue;
};
_ = self.color_expr_consume(inputs[1]);
self.ci.nodes[maybe_phi].depth = self.ci.loop_depth;
self.ci.set_next_color(maybe_phi);
}
self.ci.nodes[ctrl].lock_rc = self.ci.code.len() as _;
self.ci.loop_depth += 1;
self.color_control(
*self.ci.nodes[ctrl]
.outputs
.iter()
.find(|&&o| self.ci.nodes[o].kind != Kind::Phi)
.unwrap(),
);
for i in 0..self.ci.nodes[ctrl].outputs.len() {
self.color_phi(self.ci.nodes[ctrl].outputs[i]);
}
self.ci.loop_depth -= 1;
self.ci.nodes[ctrl].lock_rc = 0;
return None;
}
}
}
unreachable!()
}
fn color_phi(&mut self, maybe_phi: Nid) {
let Node { kind: Kind::Phi, ref inputs, .. } = self.ci.nodes[maybe_phi] else {
return;
};
let &[region, left, right] = inputs.as_slice() else { unreachable!() };
let lcolor = self.color_expr_consume(left);
let rcolor = self.color_expr_consume(right);
if self.ci.nodes[maybe_phi].color != 0 {
// loop phi
if let Some(c) = rcolor
&& !self.ci.nodes.climb_expr(right, |i, n| {
matches!(n.kind, Kind::Phi) && n.inputs[0] == region && i != maybe_phi
})
{
self.ci.recolor(right, c, self.ci.nodes[maybe_phi].color);
}
} else {
let color = match (lcolor, rcolor) {
(None, None) => self.ci.next_color(),
(None, Some(c)) | (Some(c), None) => c,
(Some(lc), Some(rc)) => {
self.ci.recolor(right, rc, lc);
lc
}
};
self.ci.set_color(maybe_phi, color);
}
}
#[must_use = "dont forget to drop the location"]
fn color_expr_consume(&mut self, expr: Nid) -> Option<u32> {
if self.ci.nodes[expr].lock_rc == 0 && self.ci.nodes[expr].kind != Kind::Phi {
self.ci.nodes[expr].depth = self.ci.loop_depth;
self.color_expr(expr);
}
self.use_colored_expr(expr)
}
fn color_expr(&mut self, expr: Nid) {
match self.ci.nodes[expr].kind {
Kind::Start => unreachable!(),
Kind::End => unreachable!(),
Kind::Return => unreachable!(),
Kind::CInt { .. } => self.ci.set_next_color(expr),
Kind::Tuple { index } => {
debug_assert!(index != 0);
}
Kind::BinOp { .. } => {
let &[_, left, right] = self.ci.nodes[expr].inputs.as_slice() else {
unreachable!()
};
let lcolor = self.color_expr_consume(left);
let rcolor = self.color_expr_consume(right);
let color = lcolor.or(rcolor).unwrap_or_else(|| self.ci.next_color());
self.ci.set_color(expr, color);
}
Kind::Call { .. } => {}
Kind::If => todo!(),
Kind::Region => todo!(),
Kind::Phi => {}
Kind::Loop => todo!(),
}
}
#[must_use]
fn use_colored_expr(&mut self, expr: Nid) -> Option<u32> {
self.ci.nodes[expr].lock_rc += 1;
debug_assert_ne!(self.ci.nodes[expr].color, 0, "{:?}", self.ci.nodes[expr].kind);
(self.ci.nodes[expr].lock_rc as usize >= self.ci.nodes[expr].outputs.len()
&& self.ci.nodes[expr].depth == self.ci.loop_depth)
.then_some(self.ci.nodes[expr].color)
}
fn emit_control(&mut self, mut ctrl: Nid) -> Option<Nid> {
for _ in 0..30 {
match self.ci.nodes[ctrl].kind {
Kind::Start => unreachable!(),
Kind::End => unreachable!(),
Kind::Return => {
let ret = self.ci.nodes[ctrl].inputs[1];
if ret != 0 {
// NOTE: this is safer less efficient way, maybe it will be needed
// self.emit_expr_consume(ret);
// if node_color!(self, ret).call_count != self.ci.call_count {
// let src = node_loc!(self, ret);
// let loc = match self.tys.size_of(self.ci.ret.expect("TODO")) {
// 0 => Loc::default(),
// 1..=8 => Loc { reg: 1 },
// s => todo!("{s}"),
// };
// if src != loc {
// let inst = instrs::cp(loc.reg, src.reg);
// self.ci.emit(inst);
// }
// }
node_loc!(self, ret) = match self.tys.size_of(self.ci.ret.expect("TODO")) {
0 => Loc::default(),
1..=8 => Loc { reg: 1 },
s => todo!("{s}"),
};
self.emit_expr_consume(ret);
}
self.ci.ret_relocs.push(Reloc::new(self.ci.code.len(), 1, 4));
self.ci.emit(instrs::jmp(0));
return None;
}
Kind::CInt { .. } => unreachable!(),
Kind::Tuple { .. } => {
ctrl = self.ci.nodes[ctrl].outputs[0];
}
Kind::BinOp { .. } => unreachable!(),
Kind::Call { func } => {
let ret = self.tof(ctrl);
let mut parama = self.tys.parama(ret);
for i in 1..self.ci.nodes[ctrl].inputs.len() {
let arg = self.ci.nodes[ctrl].inputs[i];
let dst = match self.tys.size_of(self.tof(arg)) {
0 => continue,
1..=8 => Loc { reg: parama.next() },
s => todo!("{s}"),
};
self.emit_expr_consume(arg);
self.ci.emit(instrs::cp(dst.reg, node_loc!(self, arg).reg));
}
let reloc = Reloc::new(self.ci.code.len(), 3, 4);
self.ci
.relocs
.push(TypedReloc { target: ty::Kind::Func(func).compress(), reloc });
self.ci.emit(instrs::jal(reg::RET_ADDR, reg::ZERO, 0));
self.ci.call_count -= 1;
'b: {
let ret_loc = match self.tys.size_of(ret) {
0 => break 'b,
1..=8 => Loc { reg: 1 },
s => todo!("{s}"),
};
if self.ci.nodes[ctrl].outputs.len() == 1 {
break 'b;
}
if self.ci.call_count == 0 {
node_loc!(self, ctrl) = ret_loc;
} else {
self.emit_pass_low(ret_loc, ctrl);
}
}
ctrl = *self.ci.nodes[ctrl]
.outputs
.iter()
.find(|&&o| self.ci.nodes.is_cfg(o))
.unwrap();
}
Kind::If => {
let cond = self.ci.nodes[ctrl].inputs[1];
let jump_offset: i64;
let mut swapped = false;
'resolve_cond: {
'optimize_cond: {
let Kind::BinOp { op } = self.ci.nodes[cond].kind else {
break 'optimize_cond;
};
let &[_, left, right] = self.ci.nodes[cond].inputs.as_slice() else {
unreachable!()
};
let Some((op, swpd)) =
Self::cond_op(op, self.ci.nodes[left].ty.is_signed())
else {
break 'optimize_cond;
};
swapped = swpd;
self.emit_expr_consume(left);
self.emit_expr_consume(right);
jump_offset = self.ci.code.len() as _;
self.ci.emit(op(
node_loc!(self, left).reg,
node_loc!(self, right).reg,
0,
));
break 'resolve_cond;
}
self.emit_expr_consume(cond);
jump_offset = self.ci.code.len() as _;
self.ci.emit(instrs::jeq(node_loc!(self, cond).reg, reg::ZERO, 0));
}
let [loff, roff] = [swapped as usize, !swapped as usize];
let filled_base = self.ci.filled.len();
let left_unreachable = self.emit_control(self.ci.nodes[ctrl].outputs[loff]);
for fld in self.ci.filled.drain(filled_base..) {
self.ci.nodes[fld].depth = 0;
}
let mut skip_then_offset = self.ci.code.len() as i64;
if let Some(region) = left_unreachable {
for i in 0..self.ci.nodes[region].outputs.len() {
let o = self.ci.nodes[region].outputs[i];
if self.ci.nodes[o].kind != Kind::Phi {
continue;
}
let out = self.ci.nodes[o].inputs[1 + loff];
self.emit_expr_consume(out);
self.emit_pass(out, o);
}
skip_then_offset = self.ci.code.len() as i64;
self.ci.emit(instrs::jmp(0));
}
let right_base = self.ci.code.len();
let filled_base = self.ci.filled.len();
let right_unreachable = self.emit_control(self.ci.nodes[ctrl].outputs[roff]);
for fld in self.ci.filled.drain(filled_base..) {
self.ci.nodes[fld].depth = 0;
}
if let Some(region) = left_unreachable {
for i in 0..self.ci.nodes[region].outputs.len() {
let o = self.ci.nodes[region].outputs[i];
if self.ci.nodes[o].kind != Kind::Phi {
continue;
}
let out = self.ci.nodes[o].inputs[1 + roff];
self.emit_expr_consume(out);
self.emit_pass(out, o);
}
let right_end = self.ci.code.len();
if right_base == right_end {
self.ci.code.truncate(skip_then_offset as _);
} else {
write_reloc(
&mut self.ci.code,
skip_then_offset as usize + 1,
right_end as i64 - skip_then_offset,
4,
);
skip_then_offset += instrs::jmp(69).0 as i64;
}
}
write_reloc(
&mut self.ci.code,
jump_offset as usize + 3,
skip_then_offset - jump_offset,
2,
);
let dest = left_unreachable.or(right_unreachable)?;
if self.ci.nodes[dest].kind == Kind::Loop {
return Some(dest);
}
debug_assert_eq!(self.ci.nodes[dest].kind, Kind::Region);
ctrl = *self.ci.nodes[dest]
.outputs
.iter()
.find(|&&o| self.ci.nodes[o].kind != Kind::Phi)
.unwrap();
}
Kind::Region => return Some(ctrl),
Kind::Phi => todo!(),
Kind::Loop => {
if self.ci.nodes[ctrl].lock_rc != 0 {
return Some(ctrl);
}
for i in 0..self.ci.nodes[ctrl].outputs.len() {
let o = self.ci.nodes[ctrl].outputs[i];
if self.ci.nodes[o].kind != Kind::Phi {
continue;
}
let out = self.ci.nodes[o].inputs[1];
self.emit_expr_consume(out);
self.emit_pass(out, o);
}
self.ci.nodes[ctrl].lock_rc = self.ci.code.len() as _;
self.ci.loop_depth += 1;
let end = self.emit_control(
*self.ci.nodes[ctrl]
.outputs
.iter()
.find(|&&o| self.ci.nodes[o].kind != Kind::Phi)
.unwrap(),
);
debug_assert_eq!(end, Some(ctrl));
for i in 0..self.ci.nodes[ctrl].outputs.len() {
let o = self.ci.nodes[ctrl].outputs[i];
if self.ci.nodes[o].kind != Kind::Phi {
continue;
}
let out = self.ci.nodes[o].inputs[2];
// TODO: this can be improved if we juggle ownership of the Phi inputs
self.emit_expr(out);
}
for i in 0..self.ci.nodes[ctrl].outputs.len() {
let o = self.ci.nodes[ctrl].outputs[i];
if self.ci.nodes[o].kind != Kind::Phi {
continue;
}
let out = self.ci.nodes[o].inputs[2];
self.use_expr(out);
self.emit_pass(out, o);
}
self.ci.emit(instrs::jmp(
self.ci.nodes[ctrl].lock_rc as i32 - self.ci.code.len() as i32,
));
self.ci.loop_depth -= 1;
for free in self.ci.delayed_frees.extract_if(|&mut color| {
self.ci.colors[color as usize].depth == self.ci.loop_depth
}) {
let color = &self.ci.colors[free as usize];
debug_assert_ne!(color.loc, Loc::default());
self.ci.regs.free(color.loc.reg);
}
return None;
}
}
}
unreachable!()
}
fn emit_expr_consume(&mut self, expr: Nid) {
self.emit_expr(expr);
self.use_expr(expr);
}
fn emit_expr(&mut self, expr: Nid) {
if self.ci.nodes[expr].depth == u32::MAX {
return;
}
self.ci.nodes[expr].depth = u32::MAX;
self.ci.filled.push(expr);
match self.ci.nodes[expr].kind {
Kind::Start => unreachable!(),
Kind::End => unreachable!(),
Kind::Return => unreachable!(),
Kind::CInt { value } => {
_ = self.lazy_init(expr);
let instr = instrs::li64(node_loc!(self, expr).reg, value as _);
self.ci.emit(instr);
}
Kind::Tuple { index } => {
debug_assert!(index != 0);
_ = self.lazy_init(expr);
let mut params = self.tys.parama(self.ci.ret.unwrap());
for (i, var) in self.ci.vars.iter().enumerate() {
if var.id == u32::MAX {
match self.tys.size_of(ty::Id::from_bt(var.value)) {
0 => {}
1..=8 => _ = params.next(),
s => todo!("{s}"),
}
continue;
}
match self.tys.size_of(self.ci.nodes[var.value].ty) {
0 => {}
1..=8 => {
let reg = params.next();
if i == index as usize - 1 {
emit(&mut self.ci.code, instrs::cp(node_loc!(self, expr).reg, reg));
}
}
s => todo!("{s}"),
}
}
}
Kind::BinOp { op } => {
_ = self.lazy_init(expr);
let ty = self.tof(expr);
let &[_, left, right] = self.ci.nodes[expr].inputs.as_slice() else {
unreachable!()
};
self.emit_expr_consume(left);
if let Kind::CInt { value } = self.ci.nodes[right].kind
&& (node_loc!(self, right) == Loc::default()
|| self.ci.nodes[right].depth != u32::MAX)
&& let Some(op) = Self::imm_math_op(op, ty.is_signed(), self.tys.size_of(ty))
{
let instr =
op(node_loc!(self, expr).reg, node_loc!(self, left).reg, value as _);
self.ci.emit(instr);
} else {
self.emit_expr_consume(right);
let op = Self::math_op(op, ty.is_signed(), self.tys.size_of(ty))
.expect("TODO: what now?");
let instr = op(
node_loc!(self, expr).reg,
node_loc!(self, left).reg,
node_loc!(self, right).reg,
);
self.ci.emit(instr);
}
}
Kind::Call { .. } => {}
Kind::If => todo!(),
Kind::Region => todo!(),
Kind::Phi => {}
Kind::Loop => todo!(),
}
}
fn use_expr(&mut self, expr: Nid) {
let node = &mut self.ci.nodes[expr];
node.lock_rc = node.lock_rc.saturating_sub(1);
if node.lock_rc != 0 {
return;
}
let color = &mut self.ci.colors[node.color as usize - 1];
color.rc -= 1;
if color.rc == 0 {
if color.depth != self.ci.loop_depth {
self.ci.delayed_frees.push(node.color);
} else if color.loc != Loc::default() {
self.ci.regs.free(color.loc.reg);
}
}
}
#[allow(clippy::type_complexity)]
fn imm_math_op(
op: TokenKind,
signed: bool,
size: u32,
) -> Option<fn(u8, u8, u64) -> (usize, [u8; instrs::MAX_SIZE])> {
use {instrs::*, TokenKind as T};
macro_rules! def_op {
($name:ident |$a:ident, $b:ident, $c:ident| $($tt:tt)*) => {
macro_rules! $name {
($$($$op:ident),*) => {
[$$(
|$a, $b, $c: u64| $$op($($tt)*),
)*]
}
}
};
}
def_op!(basic_op | a, b, c | a, b, c as _);
def_op!(sub_op | a, b, c | a, b, c.wrapping_neg() as _);
let ops = match op {
T::Add => basic_op!(addi8, addi16, addi32, addi64),
T::Sub => sub_op!(addi8, addi16, addi32, addi64),
T::Mul => basic_op!(muli8, muli16, muli32, muli64),
T::Band => return Some(andi),
T::Bor => return Some(ori),
T::Xor => return Some(xori),
T::Shr if signed => basic_op!(srui8, srui16, srui32, srui64),
T::Shr => basic_op!(srui8, srui16, srui32, srui64),
T::Shl => basic_op!(slui8, slui16, slui32, slui64),
_ => return None,
};
Some(ops[size.ilog2() as usize])
}
#[allow(clippy::type_complexity)]
fn cond_op(
op: TokenKind,
signed: bool,
) -> Option<(fn(u8, u8, i16) -> (usize, [u8; instrs::MAX_SIZE]), bool)> {
Some((
match op {
TokenKind::Le if signed => instrs::jgts,
TokenKind::Le => instrs::jgtu,
TokenKind::Lt if signed => instrs::jlts,
TokenKind::Lt => instrs::jltu,
TokenKind::Eq => instrs::jne,
TokenKind::Ne => instrs::jeq,
_ => return None,
},
matches!(op, TokenKind::Lt | TokenKind::Gt),
))
}
#[allow(clippy::type_complexity)]
fn math_op(
op: TokenKind,
signed: bool,
size: u32,
) -> Option<fn(u8, u8, u8) -> (usize, [u8; instrs::MAX_SIZE])> {
use {instrs::*, TokenKind as T};
macro_rules! div { ($($op:ident),*) => {[$(|a, b, c| $op(a, reg::ZERO, b, c)),*]}; }
macro_rules! rem { ($($op:ident),*) => {[$(|a, b, c| $op(reg::ZERO, a, b, c)),*]}; }
let ops = match op {
T::Add => [add8, add16, add32, add64],
T::Sub => [sub8, sub16, sub32, sub64],
T::Mul => [mul8, mul16, mul32, mul64],
T::Div if signed => div!(dirs8, dirs16, dirs32, dirs64),
T::Div => div!(diru8, diru16, diru32, diru64),
T::Mod if signed => rem!(dirs8, dirs16, dirs32, dirs64),
T::Mod => rem!(diru8, diru16, diru32, diru64),
T::Band => return Some(and),
T::Bor => return Some(or),
T::Xor => return Some(xor),
T::Shl => [slu8, slu16, slu32, slu64],
T::Shr if signed => [srs8, srs16, srs32, srs64],
T::Shr => [sru8, sru16, sru32, sru64],
_ => return None,
};
Some(ops[size.ilog2() as usize])
}
// TODO: sometimes its better to do this in bulk
fn ty(&mut self, expr: &Expr) -> ty::Id {
match *expr {
Expr::Ident { id, .. } if ident::is_null(id) => id.into(),
ref e => {
self.report_unhandled_ast(e, "type");
ty::NEVER.into()
}
}
}
fn find_or_declare(
&mut self,
pos: Pos,
file: FileId,
name: Option<Ident>,
lit_name: &str,
) -> ty::Kind {
log::trc!("find_or_declare: {lit_name} {file}");
let f = self.files[file as usize].clone();
let Some((expr, ident)) = f.find_decl(name.ok_or(lit_name)) else {
match name.ok_or(lit_name) {
Ok(name) => {
let name = self.cfile().ident_str(name);
self.report(pos, format_args!("idk indentifier: {name}"))
}
Err("main") => self.report(
pos,
format_args!(
"missing main function in '{}', compiler can't \
emmit libraries since such concept is not defined",
f.path
),
),
Err(name) => self.report(pos, format_args!("idk indentifier: {name}")),
}
return ty::Kind::Builtin(ty::NEVER);
};
if let Some(existing) = self.tys.syms.get(&SymKey { file, ident }) {
if let ty::Kind::Func(id) = existing.expand()
&& let func = &mut self.tys.funcs[id as usize]
&& let Err(idx) = task::unpack(func.offset)
&& idx < self.tasks.len()
{
func.offset = task::id(self.tasks.len());
let task = self.tasks[idx].take();
self.tasks.push(task);
}
return existing.expand();
}
let prev_file = std::mem::replace(&mut self.ci.file, file);
let sym = match expr {
Expr::BinOp {
left: &Expr::Ident { .. },
op: TokenKind::Decl,
right: &Expr::Closure { pos, args, ret, .. },
} => {
let func = Func {
file,
sig: '_b: {
let arg_base = self.tys.args.len();
for arg in args {
let sym = parser::find_symbol(&f.symbols, arg.id);
assert!(sym.flags & idfl::COMPTIME == 0, "TODO");
let ty = self.ty(&arg.ty);
self.tys.args.push(ty);
}
let Some(args) = self.pack_args(arg_base) else {
self.fatal_report(
pos,
"you cant be serious, using more the 31 arguments in a function",
);
};
let ret = self.ty(ret);
Some(Sig { args, ret })
},
expr: {
let refr = ExprRef::new(expr);
debug_assert!(refr.get(&f).is_some());
refr
},
..Default::default()
};
let id = self.tys.funcs.len() as _;
self.tys.funcs.push(func);
ty::Kind::Func(id)
}
Expr::BinOp {
left: &Expr::Ident { .. },
op: TokenKind::Decl,
right: Expr::Struct { fields, .. },
} => ty::Kind::Struct(self.build_struct(fields)),
Expr::BinOp { .. } => {
todo!()
}
e => unimplemented!("{e:#?}"),
};
self.ci.file = prev_file;
self.tys.syms.insert(SymKey { ident, file }, sym.compress());
sym
}
fn ty_display(&self, ty: ty::Id) -> ty::Display {
ty::Display::new(&self.tys, &self.files, ty)
}
#[must_use]
#[track_caller]
fn assert_ty(
&self,
pos: Pos,
ty: ty::Id,
expected: ty::Id,
preserve_expected: bool,
hint: impl fmt::Display,
) -> ty::Id {
if let Some(res) = ty.try_upcast(expected)
&& (!preserve_expected || res == expected)
{
res
} else {
let ty = self.ty_display(ty);
let expected = self.ty_display(expected);
self.report(pos, format_args!("expected {hint} to be of type {expected}, got {ty}"));
ty::NEVER.into()
}
}
fn report_log(&self, pos: Pos, msg: impl std::fmt::Display) {
let mut buf = self.errors.borrow_mut();
self.report_log_to(pos, msg, &mut *buf);
}
fn report_log_to(&self, pos: Pos, msg: impl std::fmt::Display, out: &mut impl std::fmt::Write) {
let str = &self.cfile().file;
let (line, mut col) = lexer::line_col(str.as_bytes(), pos);
_ = writeln!(out, "{}:{}:{}: {}", self.cfile().path, line, col, msg);
let line = &str[str[..pos as usize].rfind('\n').map_or(0, |i| i + 1)
..str[pos as usize..].find('\n').unwrap_or(str.len()) + pos as usize];
col += line.matches('\t').count() * 3;
_ = writeln!(out, "{}", line.replace("\t", " "));
_ = writeln!(out, "{}^", " ".repeat(col - 1));
}
#[track_caller]
fn assert_report(&self, cond: bool, pos: Pos, msg: impl std::fmt::Display) {
if !cond {
self.report(pos, msg);
}
}
#[track_caller]
fn report(&self, pos: Pos, msg: impl std::fmt::Display) {
self.report_log(pos, msg);
}
#[track_caller]
fn report_unhandled_ast(&self, ast: &Expr, hint: &str) {
self.report(
ast.pos(),
format_args!(
"compiler does not (yet) know how to handle ({hint}):\n\
{ast:}\n\
info for weak people:\n\
{ast:#?}"
),
);
}
fn cfile(&self) -> &parser::Ast {
&self.files[self.ci.file as usize]
}
fn pack_args(&mut self, arg_base: usize) -> Option<ty::Tuple> {
let needle = &self.tys.args[arg_base..];
if needle.is_empty() {
return Some(ty::Tuple::empty());
}
let len = needle.len();
// FIXME: maybe later when this becomes a bottleneck we use more
// efficient search (SIMD?, indexing?)
let sp = self.tys.args.windows(needle.len()).position(|val| val == needle).unwrap();
self.tys.args.truncate((sp + needle.len()).max(arg_base));
ty::Tuple::new(sp, len)
}
fn emit_pass(&mut self, src: Nid, dst: Nid) {
if self.ci.nodes[src].color == self.ci.nodes[dst].color {
return;
}
self.emit_pass_low(node_loc!(self, src), dst);
}
fn emit_pass_low(&mut self, src: Loc, dst: Nid) {
let loc = &mut node_loc!(self, dst);
if src != *loc {
if *loc == Loc::default() {
let reg = self.ci.regs.allocate(0);
*loc = Loc { reg };
}
let inst = instrs::cp(loc.reg, src.reg);
self.ci.emit(inst);
}
}
#[must_use]
fn lazy_init(&mut self, expr: Nid) -> bool {
let loc = &mut node_loc!(self, expr);
if *loc == Loc::default() {
let reg = self.ci.regs.allocate(0);
*loc = Loc { reg };
return true;
}
false
}
fn fatal_report(&self, pos: Pos, msg: impl Display) -> ! {
self.report(pos, msg);
eprintln!("{}", self.errors.borrow());
std::process::exit(1);
}
fn gcm(&mut self) {
fn idepth(nodes: &mut Nodes, target: Nid) -> u32 {
if target == 0 {
return 0;
}
if nodes[target].depth == 0 {
let dm = idom(nodes, target);
nodes[target].depth = idepth(nodes, dm) + 1;
}
nodes[target].depth
}
fn idom(nodes: &mut Nodes, target: Nid) -> Nid {
match nodes[target].kind {
Kind::Start => 0,
Kind::End => unreachable!(),
Kind::Loop
| Kind::CInt { .. }
| Kind::BinOp { .. }
| Kind::Call { .. }
| Kind::Phi
| Kind::Tuple { .. }
| Kind::Return
| Kind::If => nodes[target].inputs[0],
Kind::Region => {
let &[mut lcfg, mut rcfg] = nodes[target].inputs.as_slice() else {
unreachable!()
};
while lcfg != rcfg {
let [ldepth, rdepth] = [idepth(nodes, lcfg), idepth(nodes, rcfg)];
if ldepth >= rdepth {
lcfg = idom(nodes, lcfg);
}
if ldepth <= rdepth {
rcfg = idom(nodes, rcfg);
}
}
lcfg
}
}
}
fn push_up(nodes: &mut Nodes, node: Nid) {
if !nodes.visited.set(node as _) {
return;
}
if nodes[node].kind.is_pinned() {
for i in 0..nodes[node].inputs.len() {
let i = nodes[node].inputs[i];
push_up(nodes, i);
}
} else {
let mut max = 0;
for i in 0..nodes[node].inputs.len() {
let i = nodes[node].inputs[i];
let is_call = matches!(nodes[i].kind, Kind::Call { .. });
if nodes.is_cfg(i) && !is_call {
continue;
}
push_up(nodes, i);
if idepth(nodes, i) > idepth(nodes, max) {
max = if is_call { i } else { idom(nodes, i) };
}
}
if max == 0 {
return;
}
let index = nodes[0].outputs.iter().position(|&p| p == node).unwrap();
nodes[0].outputs.remove(index);
nodes[node].inputs[0] = max;
debug_assert!(
!nodes[max].outputs.contains(&node)
|| matches!(nodes[max].kind, Kind::Call { .. }),
"{node} {:?} {max} {:?}",
nodes[node],
nodes[max]
);
nodes[max].outputs.push(node);
}
}
fn push_down(nodes: &mut Nodes, node: Nid) {
if !nodes.visited.set(node as _) {
return;
}
// TODO: handle memory nodes first
}
self.ci.nodes.visited.clear(self.ci.nodes.values.len());
push_up(&mut self.ci.nodes, self.ci.end);
// TODO: handle infinte loops
self.ci.nodes.visited.clear(self.ci.nodes.values.len());
}
}
#[derive(Default)]
pub struct LoggedMem {
pub mem: hbvm::mem::HostMemory,
}
impl hbvm::mem::Memory for LoggedMem {
unsafe fn load(
&mut self,
addr: hbvm::mem::Address,
target: *mut u8,
count: usize,
) -> Result<(), hbvm::mem::LoadError> {
log::trc!(
"load: {:x} {:?}",
addr.get(),
core::slice::from_raw_parts(addr.get() as *const u8, count)
.iter()
.rev()
.map(|&b| format!("{b:02x}"))
.collect::<String>()
);
self.mem.load(addr, target, count)
}
unsafe fn store(
&mut self,
addr: hbvm::mem::Address,
source: *const u8,
count: usize,
) -> Result<(), hbvm::mem::StoreError> {
log::trc!(
"store: {:x} {:?}",
addr.get(),
core::slice::from_raw_parts(source, count)
.iter()
.rev()
.map(|&b| format!("{b:02x}"))
.collect::<String>()
);
self.mem.store(addr, source, count)
}
unsafe fn prog_read<T: Copy>(&mut self, addr: hbvm::mem::Address) -> T {
log::trc!(
"read-typed: {:x} {} {:?}",
addr.get(),
std::any::type_name::<T>(),
if core::mem::size_of::<T>() == 1
&& let Some(nm) =
instrs::NAMES.get(std::ptr::read(addr.get() as *const u8) as usize)
{
nm.to_string()
} else {
core::slice::from_raw_parts(addr.get() as *const u8, core::mem::size_of::<T>())
.iter()
.map(|&b| format!("{:02x}", b))
.collect::<String>()
}
);
self.mem.prog_read(addr)
}
}
#[cfg(test)]
mod tests {
use {
crate::{
parser::{self, FileId},
son::LoggedMem,
},
std::io,
};
const README: &str = include_str!("../README.md");
fn generate(ident: &'static str, input: &'static str, output: &mut String) {
fn find_block(mut input: &'static str, test_name: &'static str) -> &'static str {
const CASE_PREFIX: &str = "#### ";
const CASE_SUFFIX: &str = "\n```hb";
loop {
let Some(pos) = input.find(CASE_PREFIX) else {
unreachable!("test {test_name} not found");
};
input = unsafe { input.get_unchecked(pos + CASE_PREFIX.len()..) };
if !input.starts_with(test_name) {
continue;
}
input = unsafe { input.get_unchecked(test_name.len()..) };
if !input.starts_with(CASE_SUFFIX) {
continue;
}
input = unsafe { input.get_unchecked(CASE_SUFFIX.len()..) };
let end = input.find("```").unwrap_or(input.len());
break unsafe { input.get_unchecked(..end) };
}
}
let input = find_block(input, ident);
let mut module_map = Vec::new();
let mut last_start = 0;
let mut last_module_name = "test";
for (i, m) in input.match_indices("// in module: ") {
parser::test::format(ident, input[last_start..i].trim());
module_map.push((last_module_name, &input[last_start..i]));
let (module_name, _) = input[i + m.len()..].split_once('\n').unwrap();
last_module_name = module_name;
last_start = i + m.len() + module_name.len() + 1;
}
parser::test::format(ident, input[last_start..].trim());
module_map.push((last_module_name, input[last_start..].trim()));
let loader = |path: &str, _: &str| {
module_map
.iter()
.position(|&(name, _)| name == path)
.map(|i| i as FileId)
.ok_or(io::Error::from(io::ErrorKind::NotFound))
};
let mut codegen = super::Codegen {
files: module_map
.iter()
.map(|&(path, content)| parser::Ast::new(path, content.to_owned(), &loader))
.collect(),
..Default::default()
};
codegen.generate();
{
let errors = codegen.errors.borrow();
if !errors.is_empty() {
output.push_str(&errors);
return;
}
}
let mut out = Vec::new();
codegen.assemble(&mut out);
let mut buf = Vec::<u8>::new();
let err = codegen.disasm(&out, &mut buf);
output.push_str(String::from_utf8(buf).unwrap().as_str());
if let Err(e) = err {
writeln!(output, "!!! asm is invalid: {e}").unwrap();
return;
}
let mut stack = [0_u64; 128];
let mut vm = unsafe {
hbvm::Vm::<_, { 1024 * 10 }>::new(
LoggedMem::default(),
hbvm::mem::Address::new(out.as_ptr() as u64),
)
};
vm.write_reg(super::reg::STACK_PTR, unsafe { stack.as_mut_ptr().add(stack.len()) } as u64);
use std::fmt::Write;
let stat = loop {
match vm.run() {
Ok(hbvm::VmRunOk::End) => break Ok(()),
Ok(hbvm::VmRunOk::Ecall) => match vm.read_reg(2).0 {
1 => writeln!(output, "ev: Ecall").unwrap(), // compatibility with a test
69 => {
let [size, align] = [vm.read_reg(3).0 as usize, vm.read_reg(4).0 as usize];
let layout = std::alloc::Layout::from_size_align(size, align).unwrap();
let ptr = unsafe { std::alloc::alloc(layout) };
vm.write_reg(1, ptr as u64);
}
96 => {
let [ptr, size, align] = [
vm.read_reg(3).0 as usize,
vm.read_reg(4).0 as usize,
vm.read_reg(5).0 as usize,
];
let layout = std::alloc::Layout::from_size_align(size, align).unwrap();
unsafe { std::alloc::dealloc(ptr as *mut u8, layout) };
}
3 => vm.write_reg(1, 42),
unknown => unreachable!("unknown ecall: {unknown:?}"),
},
Ok(hbvm::VmRunOk::Timer) => {
writeln!(output, "timed out").unwrap();
break Ok(());
}
Ok(ev) => writeln!(output, "ev: {:?}", ev).unwrap(),
Err(e) => break Err(e),
}
};
writeln!(output, "code size: {}", out.len()).unwrap();
writeln!(output, "ret: {:?}", vm.read_reg(1).0).unwrap();
writeln!(output, "status: {:?}", stat).unwrap();
}
crate::run_tests! { generate:
arithmetic => README;
variables => README;
functions => README;
comments => README;
if_statements => README;
loops => README;
//fb_driver => README;
//pointers => README;
//structs => README;
//different_types => README;
//struct_operators => README;
//directives => README;
//global_variables => README;
//generic_types => README;
//generic_functions => README;
//c_strings => README;
//struct_patterns => README;
//arrays => README;
//struct_return_from_module_function => README;
////comptime_pointers => README;
//sort_something_viredly => README;
hex_octal_binary_literals => README;
//comptime_min_reg_leak => README;
////structs_in_registers => README;
//comptime_function_from_another_file => README;
//inline => README;
//inline_test => README;
const_folding_with_arg => README;
// FIXME: contains redundant copies
branch_assignments => README;
//exhaustive_loop_testing => README;
}
}