BuildDarkFlame/_deps/mysql-src/include/mysqlx/devapi/common.h

878 lines
20 KiB
C
Raw Normal View History

2022-01-02 18:29:32 -06:00
/*
* Copyright (c) 2015, 2019, Oracle and/or its affiliates. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2.0, as
* published by the Free Software Foundation.
*
* This program is also distributed with certain software (including
* but not limited to OpenSSL) that is licensed under separate terms,
* as designated in a particular file or component or in included license
* documentation. The authors of MySQL hereby grant you an
* additional permission to link the program and your derivative works
* with the separately licensed software that they have included with
* MySQL.
*
* Without limiting anything contained in the foregoing, this file,
* which is part of MySQL Connector/C++, is also subject to the
* Universal FOSS Exception, version 1.0, a copy of which can be found at
* http://oss.oracle.com/licenses/universal-foss-exception.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License, version 2.0, for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef MYSQLX_COMMON_H
#define MYSQLX_COMMON_H
#include "../common.h"
PUSH_SYS_WARNINGS
#include <string>
#include <stdexcept>
#include <ostream>
#include <memory>
#include <forward_list>
#include <string.h> // for memcpy
#include <utility> // std::move etc
POP_SYS_WARNINGS
#define CATCH_AND_WRAP \
catch (const ::mysqlx::Error&) { throw; } \
catch (const std::out_of_range&) { throw; } \
catch (const std::exception &e) \
{ throw ::mysqlx::Error(e.what()); } \
catch (const char *e) \
{ throw ::mysqlx::Error(e); } \
catch (...) \
{ throw ::mysqlx::Error("Unknown exception"); } \
namespace mysqlx {
MYSQLX_ABI_BEGIN(2,0)
using std::out_of_range;
using common::byte;
class Value;
/**
Base class for connector errors.
@internal
TODO: Derive from std::system_error and introduce proper
error codes.
@endinternal
@ingroup devapi
*/
// TODO: Make it header-only class somehow...
DLL_WARNINGS_PUSH
class PUBLIC_API Error : public common::Error
{
DLL_WARNINGS_POP
public:
Error(const char *msg)
: common::Error(msg)
{}
};
inline
void throw_error(const char *msg)
{
throw Error(msg);
}
/**
A wrapper around std::wstring that can perform
conversions from/to different character encodings
used by MySQL.
Currently only utf-8 encoding is supported.
@ingroup devapi_aux
*/
class string : public std::u16string
{
struct Impl
{
PUBLIC_API static std::string to_utf8(const string&);
PUBLIC_API static void from_utf8(string&, const std::string&);
PUBLIC_API static std::u32string to_ucs4(const string&);
PUBLIC_API static void from_ucs4(string&, const std::u32string&);
PUBLIC_API static std::wstring to_wide(const string&);
PUBLIC_API static void from_wide(string&, const std::wstring&);
};
template <typename T>
struct traits
{};
public:
string() {}
string(const string&) = default;
string(string&&) = default;
string& operator=(const string&) = default;
string& operator=(string&&) = default;
using std::u16string::basic_string;
string(const std::u16string &other) : std::u16string(other) {}
string(std::u16string &&other) : std::u16string(std::move(other)) {}
template <typename C>
string(const C *other)
{
try {
if (!other)
return;
std::basic_string<C> str(other);
traits<C>::from_str(*this, str);
}
CATCH_AND_WRAP
}
template <typename C>
string(const std::basic_string<C> &other)
{
try {
traits<C>::from_str(*this, other);
}
CATCH_AND_WRAP
}
template <typename C>
operator std::basic_string<C>() const
{
try {
return traits<C>::to_str(*this);
}
CATCH_AND_WRAP
}
friend bool operator==(const string&lhs, const string&rhs)
{
return operator==((const std::u16string&)lhs, (const std::u16string&)rhs);
}
friend bool operator!=(const string&lhs, const string&rhs)
{
return !(lhs == rhs);
}
// Note: These are needed to help overload resolution :/
friend bool operator==(const string &lhs, const char16_t *rhs)
{
return lhs == string(rhs);
}
friend bool operator==(const char16_t *lhs, const string &rhs)
{
return string(lhs) == rhs;
}
friend bool operator!=(const string &lhs, const char16_t *rhs)
{
return !(lhs == rhs);
}
friend bool operator!=(const char16_t *lhs, const string &rhs)
{
return !(lhs == rhs);
}
};
template<>
struct string::traits<char>
{
using string = std::string;
static void from_str(mysqlx::string &to, const string &from)
{
Impl::from_utf8(to, from);
}
static string to_str(const mysqlx::string &from)
{
return Impl::to_utf8(from);
}
};
template<>
struct string::traits<wchar_t>
{
using string = std::wstring;
static void from_str(mysqlx::string &to, const string &from)
{
Impl::from_wide(to, from);
}
static string to_str(const mysqlx::string &from)
{
return Impl::to_wide(from);
}
};
template<>
struct string::traits<char32_t>
{
using string = std::u32string;
static void from_str(mysqlx::string &to, const string &from)
{
Impl::from_ucs4(to, from);
}
static string to_str(const mysqlx::string &from)
{
return Impl::to_ucs4(from);
}
};
inline
std::ostream& operator<<(std::ostream &out, const string &str)
{
const std::string utf8(str);
out << utf8;
return out;
}
typedef unsigned long col_count_t;
typedef unsigned long row_count_t;
/**
Class representing a region of memory holding raw bytes.
Method `begin()` returns pointer to the first byte in the
region, `end()` to one past the last byte in the region.
@note An instance of `bytes` does not store the bytes -
it merely describes a region of memory and is equivalent
to a pair of pointers. It is very cheap to copy `bytes` and
pass them by value.
@note This class extends std::pair<byte *, size_t> to make
it consistent with how memory regions are described by
std::get_temporary_buffer(). It is also possible to initialize
a `bytes` instance by buffer returned from
std::get_temporary_buffer(), as follows:
bytes buf = std::get_temporary_buffer<byte>(size);
@ingroup devapi_aux
*/
class bytes : public std::pair<const byte*, size_t>
{
public:
bytes(const byte *beg_, const byte *end_)
: pair(beg_, end_ - beg_)
{}
bytes(const byte *beg, size_t len) : pair(beg, len)
{}
bytes(const char *str) : pair((const byte*)str, 0)
{
if (nullptr != str)
second = strlen(str);
}
bytes(std::pair<const byte*, size_t> buf) : pair(buf)
{}
bytes() : pair(nullptr, 0)
{}
bytes(const bytes &) = default;
virtual const byte* begin() const { return first; }
virtual const byte* end() const { return first + second; }
size_t length() const { return second; }
size_t size() const { return length(); }
class Access;
friend Access;
};
/*
Infrastructure for type-agnostic handling of lists
==================================================
Template internal::List_initializer<> defined below is used to return lists
of values from public API method so that user can store this list in
a container of his choice. The only requirement is that the container instance
should be constructible from two iterators defining a range of elements
(such constructors exists for standard STL containers, for example).
Thus, given a public API method foo() which returns a List_initializer<> for
lists of elements of type X, user can do the following:
My_container cont = foo();
The container will be constructed as if this code was executed:
My_container cont = My_container(begin, end);
where begin and end are STL iterators defining a range of elements of type X.
This is implemented by defining templated conversion operator.
Apart from initializing containers, values of List_initializer<> type can
be iterated using a range loop:
for(X &el : foo()) { ... }
Otherwise, user should not be able to use List_initializer<> values directly.
*/
namespace internal {
/*
Iterator template.
It defines an STL input iterator which is implemented using an
implementation object of some type Impl. It is assumed that Impl
has the following methods:
void iterator_start() - puts iterator in "before begin" position;
bool iterator_next() - moves iterator to next position, returns
false if it was not possible;
Value_type iterator_get() - gets current value.
An implementation object must be passed to iterator constructor. Iterator
stores only a pointer to this implementation (so it must exist as long as
iterator is used).
*/
template<
typename Impl,
typename T = typename std::iterator_traits<Impl>::value_type,
typename Distance = typename std::iterator_traits<T*>::difference_type,
typename Pointer = typename std::iterator_traits<T*>::pointer,
typename Reference = typename std::iterator_traits<T*>::reference
>
struct Iterator
: std::iterator < std::input_iterator_tag, T, Distance, Pointer, Reference >
{
protected:
typename std::remove_reference<Impl>::type *m_impl = NULL;
bool m_at_end = false;
public:
Iterator(Impl& impl)
: m_impl(&impl)
{
m_impl->iterator_start();
m_at_end = !m_impl->iterator_next();
}
Iterator()
: m_at_end(true)
{}
bool operator==(const Iterator &other) const
{
return (m_at_end && other.m_at_end);
}
bool operator !=(const Iterator &other) const
{
/*
Compares only if both iterators are at the end
of the sequence.
*/
return !(m_at_end && other.m_at_end);
}
Iterator& operator++()
{
try {
if (m_impl && !m_at_end)
m_at_end = !m_impl->iterator_next();
return *this;
}
CATCH_AND_WRAP
}
T operator*() const
{
if (!m_impl || m_at_end)
THROW("Attempt to dereference null iterator");
try {
return m_impl->iterator_get();
}
CATCH_AND_WRAP
}
friend Impl;
};
/*
List_initializer object can be used to initialize a container of
arbitrary type U with list of items taken from a source object.
It is assumed that the source object type Source defines iterator
type and that std::begin/end() return iterators to the beginning
and end of the sequence. The container type U is assumed to have
a constructor from begin/end iterator.
List_iterator defines begin/end() methods, so it is possible to
iterate over the sequence without storing it in any container.
*/
template <class Source>
class List_initializer
{
protected:
Source m_src;
friend Source;
public:
/*
Arguments given to the constructor are passed to the internal
m_src object.
*/
template <typename... Ty>
List_initializer(Ty&&... args)
: m_src(std::forward<Ty>(args)...)
{}
/*
Narrow the set of types for which this template is instantiated
to avoid ambiguous conversion errors. It is important to disallow
conversion to std::initializer_list<> because this conversion path
is considered when assigning to STL containers.
*/
template <
typename U
, typename std::enable_if<
!std::is_same< U, std::initializer_list<typename U::value_type> >::value
>::type* = nullptr
>
operator U()
{
try {
return U(std::begin(m_src), std::end(m_src));
}
CATCH_AND_WRAP
}
auto begin() -> decltype(std::begin(m_src))
{
try {
return std::begin(m_src);
}
CATCH_AND_WRAP
}
auto end() const -> decltype(std::end(m_src))
{
try {
return std::end(m_src);
}
CATCH_AND_WRAP
}
};
template <typename T>
struct iterator_traits
{
using value_type = typename std::remove_reference<T>::type;
using difference_type
= typename std::iterator_traits<value_type*>::difference_type;
using pointer
= typename std::iterator_traits<value_type*>::pointer;
using reference
= typename std::iterator_traits<value_type*>::reference;
};
/*
This helper template adapts class Impl to be used as a source for
List_initializer<> template.
Class Impl should be suitable for the Iterator<> template which is used to
build iterators required by List_initializer<>. That is, Impl should
implement iterator_start(), iteratore_next() etc (see Iterator<>).
*/
template<
typename Impl,
typename Value_type = typename Impl::Value,
typename Distance = typename iterator_traits<Value_type>::difference_type,
typename Pointer = typename iterator_traits<Value_type>::pointer,
typename Reference = typename iterator_traits<Value_type>::reference
>
class List_source
{
protected:
Impl m_impl;
public:
template <typename... Ty>
List_source(Ty&&... args)
: m_impl(std::forward<Ty>(args)...)
{}
using iterator = Iterator<Impl, Value_type, Distance, Pointer, Reference>;
iterator begin()
{
return iterator(m_impl);
}
iterator end() const
{
return iterator();
}
};
/*
A template used to adapt an object of class Impl that represents an array of
values accessed via operator[] to be used as source for List_initializer<>
template. This template uses instance of Impl to implement the iterator
methods iterator_start(), so that it can be used with Iterator<> template.
*/
template <typename Impl, typename Value_type = typename Impl::Value>
class Array_src_impl
{
protected:
Impl m_impl;
size_t m_pos = 0;
bool m_at_begin = true;
public:
template <typename... Ty>
Array_src_impl(Ty&&... args)
: m_impl(std::forward<Ty>(args)...)
{}
void iterator_start()
{
m_pos = 0;
m_at_begin = true;
}
bool iterator_next()
{
if (m_at_begin)
m_at_begin = false;
else
m_pos++;
return m_pos < size();
}
Value_type iterator_get()
{
return operator[](m_pos);
}
Value_type operator[](size_t pos)
{
return m_impl[pos];
}
size_t size() const
{
return m_impl.size();
}
};
/*
This template adapts an object of type Impl holding an array of values as
a source for List_initializer<> template. It combines List_source<> and
Array_src_impl<> adapters.
*/
template<
typename Impl,
typename Value_type = typename Impl::Value,
typename Distance = typename iterator_traits<Value_type>::difference_type,
typename Pointer = typename iterator_traits<Value_type>::pointer,
typename Reference = typename iterator_traits<Value_type>::reference
>
class Array_source
: public List_source<
Array_src_impl<Impl, Value_type>,
Value_type,
Distance,
Pointer,
Reference
>
{
using Base = List_source<
Array_src_impl<Impl, Value_type>,
Value_type,
Distance,
Pointer,
Reference
>;
using Base::m_impl;
public:
using
List_source<
Array_src_impl<Impl, Value_type>,
Value_type,
Distance,
Pointer,
Reference
>::List_source;
Value_type operator[](size_t pos)
{
return m_impl[pos];
}
size_t size() const
{
return m_impl.size();
}
};
} // internal
/*
Infrastructure for handling variable argument lists
===================================================
See documentation of Args_processor<> template.
*/
namespace internal {
/*
Type trait which checks if std::begin()/end() work on objects of given
class C, so that it can be used as a range to iterate over.
TODO: Make it work also with user-defined begin()/end() functions.
TODO: Make it work with plain C arrays. For example:
int vals[] = { 1, 2, 3 }
process_args(data, vals)
*/
template <class C>
class is_range
{
/*
Note: This overload is taken into account only if std::begin(X) and
std::end(X) expressions are valid.
*/
template <class X>
static std::true_type
test(
decltype(std::begin(*((X*)nullptr)))*,
decltype(std::end(*((X*)nullptr)))*
);
template <class X>
static std::false_type test(...);
public:
static const bool value = std::is_same<
std::true_type,
decltype(test<C>(nullptr, nullptr))
>::value;
};
/*
Class template to be used for uniform processing of variable argument lists
in public API methods. This template handles the cases where arguments
are specified directly as a list:
method(arg1, arg2, ..., argN)
or they are taken from a container such as std::list:
method(container)
or they are taken from a range of items described by two iterators:
method(begin, end)
A class B that is using this template to define a varargs method 'foo'
should define it as follows:
template <typename... T>
X foo(T... args)
{
Args_processor<B>::process_args(m_impl, args...);
return ...;
}
Process_args() is a static method of Args_processor<> and therefore
additional context data is passed to it as the first argument. By default
this context is a pointer to internal implementation object, as defined
by the base class B. The process_args() methods does all the necessary
processing of the variable argument list, passing the resulting items
one-by-one to B::process_one() method. Base class B must define this
static method, which takes the context and one data item as arguments.
B::process_one() method can have overloads that handle different types
of data items.
See devapi/detail/crud.h for usage examples.
*/
template <class Base, class D = typename Base::Impl*>
class Args_processor
{
public:
/*
Check if item of type T can be passed to Base::process_one()
*/
template <typename T>
class can_process
{
template <typename X>
static std::true_type
test(decltype(Base::process_one(*(D*)nullptr, *(X*)nullptr))*);
template <typename X>
static std::false_type test(...);
public:
static const bool value
= std::is_same< std::true_type, decltype(test<T>(nullptr)) >::value;
};
public:
/*
Process items from a container.
*/
template <
typename C,
typename std::enable_if<is_range<C>::value>::type* = nullptr,
typename std::enable_if<!can_process<C>::value>::type* = nullptr
>
static void process_args(D data, C container)
{
// TODO: use (const) reference to avoid copying instances?
for (auto el : container)
{
Base::process_one(data, el);
}
}
/*
If process_args(data, a, b) is called and a,b are of the same type It
which can not be passed to Base::process_one() then we assume that a and
b are iterators that describe a range of elements to process.
*/
template <
typename It,
typename std::enable_if<!can_process<It>::value>::type* = nullptr
>
static void process_args(D data, const It &begin, const It &end)
{
for (It it = begin; it != end; ++it)
{
Base::process_one(data, *it);
}
}
/*
Process elements given as a varargs list.
*/
template <
typename T,
typename... R,
typename std::enable_if<can_process<T>::value>::type* = nullptr
>
static void process_args(D data, T first, R&&... rest)
{
process_args1(data, first, std::forward<R>(rest)...);
}
private:
template <
typename T,
typename... R,
typename std::enable_if<can_process<T>::value>::type* = nullptr
>
static void process_args1(D data, T first, R&&... rest)
{
Base::process_one(data, first);
process_args1(data, std::forward<R>(rest)...);
}
static void process_args1(D)
{}
};
} // internal namespace
MYSQLX_ABI_END(2,0)
} // mysqlx
#endif