#![unstable] //! The `bits` module encodes binary data into raw bits used in a QR code. use std::cmp::min; #[cfg(test)] use test::Bencher; use types::{QrResult, DataTooLong, UnsupportedCharacterSet, InvalidEciDesignator, InvalidCharacter, Mode, Numeric, Alphanumeric, Byte, Kanji, ErrorCorrectionLevel, QrVersion, Version, MicroVersion}; use optimize::{Parser, Optimizer, total_encoded_len, Segment}; //------------------------------------------------------------------------------ //{{{ Bits /// The `Bits` structure stores the encoded data for a QR code. pub struct Bits { data: Vec, bit_offset: uint, version: QrVersion, } impl Bits { /// Constructs a new, empty bits structure. pub fn new(version: QrVersion) -> Bits { Bits { data: Vec::new(), bit_offset: 0, version: version } } /// Pushes an N-bit big-endian integer to the end of the bits. /// /// Note: It is up to the developer to ensure that `number` really only is /// `n` bit in size. Otherwise the excess bits may stomp on the existing /// ones. fn push_number(&mut self, n: uint, number: u16) { debug_assert!(n == 16 || n < 16 && number < (1 << n), "{} is too big as a {}-bit number", number, n); let b = self.bit_offset + n; match (self.bit_offset, b) { (0, 0..8) => { self.data.push((number << (8-b)) as u8); } (0, _) => { self.data.push((number >> (b-8)) as u8); self.data.push((number << (16-b)) as u8); } (_, 0..8) => { *self.data.last_mut().unwrap() |= (number << (8-b)) as u8; } (_, 9..16) => { *self.data.last_mut().unwrap() |= (number >> (b-8)) as u8; self.data.push((number << (16-b)) as u8); } _ => { *self.data.last_mut().unwrap() |= (number >> (b-8)) as u8; self.data.push((number >> (b-16)) as u8); self.data.push((number << (24-b)) as u8); } } self.bit_offset = b & 7; } /// Pushes an N-bit big-endian integer to the end of the bits, and check /// that the number does not overflow the bits. /// /// Returns `Err(DataTooLong)` on overflow. fn push_number_checked(&mut self, n: uint, number: uint) -> QrResult<()> { if n > 16 || number >= (1 << n) { Err(DataTooLong) } else { self.push_number(n, number as u16); Ok(()) } } /// Reserves `n` extra bits of space for pushing. fn reserve_additional(&mut self, n: uint) { let extra_bytes = (n + (8 - self.bit_offset) % 8) / 8; self.data.reserve_additional(extra_bytes); } /// Convert the bits into a bytes vector. pub fn into_bytes(self) -> Vec { self.data } /// Total number of bits. pub fn len(&self) -> uint { if self.bit_offset == 0 { self.data.len() * 8 } else { (self.data.len() - 1) * 8 + self.bit_offset } } /// Version of the QR code. pub fn version(&self) -> QrVersion { self.version } } #[test] fn test_push_number() { let mut bits = Bits::new(Version(1)); bits.push_number(3, 0b010); // 0:0 .. 0:3 bits.push_number(3, 0b110); // 0:3 .. 0:6 bits.push_number(3, 0b101); // 0:6 .. 1:1 bits.push_number(7, 0b001_1010);// 1:1 .. 2:0 bits.push_number(4, 0b1100); // 2:0 .. 2:4 bits.push_number(12, 0b1011_0110_1101); // 2:4 .. 4:0 bits.push_number(10, 0b01_1001_0001); // 4:0 .. 5:2 bits.push_number(15, 0b111_0010_1110_0011); // 5:2 .. 7:1 let bytes = bits.into_bytes(); assert_eq!(bytes, vec![0b010__110__10, // 90 0b1__001_1010, // 154 0b1100__1011, // 203 0b0110_1101, // 109 0b01_1001_00, // 100 0b01__111_001, // 121 0b0_1110_001, // 113 0b1__0000000]); // 128 } #[bench] fn bench_push_splitted_bytes(bencher: &mut Bencher) { bencher.iter(|| { let mut bits = Bits::new(Version(40)); bits.push_number(4, 0b0101); for _ in range(0u, 1024) { bits.push_number(8, 0b10101010); } bits.into_bytes() }); } //}}} //------------------------------------------------------------------------------ //{{{ Mode indicator /// An "extended" mode indicator, includes all indicators supported by QR code /// beyond those bearing data. pub enum ExtendedMode { /// ECI mode indicator, to introduce an ECI designator. Eci, /// The normal mode to introduce data. Data(Mode), /// FNC-1 mode in the first position. Fnc1First, /// FNC-1 mode in the second position. Fnc1Second, /// Structured append. StructuredAppend, } impl Bits { /// Push the mode indicator to the end of the bits. /// /// If the mode is not supported in the provided version, this method /// returns `Err(UnsupportedCharacterSet)`. #[unstable] pub fn push_mode_indicator(&mut self, mode: ExtendedMode) -> QrResult<()> { let number = match (self.version, mode) { (MicroVersion(1), Data(Numeric)) => return Ok(()), (MicroVersion(_), Data(Numeric)) => 0, (MicroVersion(_), Data(Alphanumeric)) => 1, (MicroVersion(_), Data(Byte)) => 0b10, (MicroVersion(_), Data(Kanji)) => 0b11, (MicroVersion(_), _) => return Err(UnsupportedCharacterSet), (_, Data(Numeric)) => 0b0001, (_, Data(Alphanumeric)) => 0b0010, (_, Data(Byte)) => 0b0100, (_, Data(Kanji)) => 0b1000, (_, Eci) => 0b0111, (_, Fnc1First) => 0b0101, (_, Fnc1Second) => 0b1001, (_, StructuredAppend) => 0b0011, }; let bits = self.version.mode_bits_count(); self.push_number_checked(bits, number).or(Err(UnsupportedCharacterSet)) } } //}}} //------------------------------------------------------------------------------ //{{{ ECI impl Bits { /// Push an ECI (Extended Channel Interpretation) designator to the bits. /// /// An ECI designator is a 6-digit number to specify the character set of /// the following binary data. After calling this method, one could call /// `.push_byte_data()` or similar methods to insert the actual data, e.g. /// /// #![allow(unused_must_use)] /// /// use qrcode::bits::Bits; /// use qrcode::types::Version; /// /// let mut bits = Bits::new(Version(1)); /// bits.push_eci_designator(9); // 9 = ISO-8859-7 (Greek). /// bits.push_byte_data(b"\xa1\xa2\xa3\xa4\xa5"); // ΑΒΓΔΕ /// /// /// The full list of ECI designator values can be found from /// http://strokescribe.com/en/ECI.html. Some example values are: /// /// ECI # | Character set /// ------|------------------------------------- /// 3 | ISO-8859-1 (Western European) /// 20 | Shift JIS (Japanese) /// 23 | Windows 1252 (Latin 1) (Western European) /// 25 | UTF-16 Big Endian /// 26 | UTF-8 /// 28 | Big 5 (Traditional Chinese) /// 29 | GB-18030 (Simplified Chinese) /// 30 | EUC-KR (Korean) /// /// If the QR code version does not support ECI, this method will return /// `Err(UnsupportedCharacterSet)`. /// /// If the designator is outside of the expected range, this method will /// return `Err(InvalidECIDesignator)`. pub fn push_eci_designator(&mut self, eci_designator: u32) -> QrResult<()> { self.reserve_additional(12); // assume the common case that eci_designator <= 127. try!(self.push_mode_indicator(Eci)); match eci_designator { 0..127 => { self.push_number(8, eci_designator as u16); } 128..16383 => { self.push_number(2, 0b10); self.push_number(14, eci_designator as u16); } 16384..999999 => { self.push_number(3, 0b110); self.push_number(5, (eci_designator >> 16) as u16); self.push_number(16, (eci_designator & 0xffff) as u16); } _ => return Err(InvalidEciDesignator), } Ok(()) } } #[cfg(test)] mod eci_tests { use bits::Bits; use types::{MicroVersion, Version, InvalidEciDesignator, UnsupportedCharacterSet}; #[test] fn test_9() { let mut bits = Bits::new(Version(1)); assert_eq!(bits.push_eci_designator(9), Ok(())); assert_eq!(bits.into_bytes(), vec![0b0111__0000, 0b1001__0000]); } #[test] fn test_899() { let mut bits = Bits::new(Version(1)); assert_eq!(bits.push_eci_designator(899), Ok(())); assert_eq!(bits.into_bytes(), vec![0b0111__10_00, 0b00111000, 0b0011__0000]); } #[test] fn test_999999() { let mut bits = Bits::new(Version(1)); assert_eq!(bits.push_eci_designator(999999), Ok(())); assert_eq!(bits.into_bytes(), vec![0b0111__110_0, 0b11110100, 0b00100011, 0b1111__0000]); } #[test] fn test_invalid_designator() { let mut bits = Bits::new(Version(1)); assert_eq!(bits.push_eci_designator(1000000), Err(InvalidEciDesignator)); } #[test] fn test_unsupported_character_set() { let mut bits = Bits::new(MicroVersion(4)); assert_eq!(bits.push_eci_designator(9), Err(UnsupportedCharacterSet)); } } //}}} //------------------------------------------------------------------------------ //{{{ Numeric mode impl Bits { fn push_header(&mut self, mode: Mode, raw_data_len: uint) -> QrResult<()> { let length_bits = mode.length_bits_count(self.version); self.reserve_additional(length_bits + 4 + mode.data_bits_count(raw_data_len)); try!(self.push_mode_indicator(Data(mode))); try!(self.push_number_checked(length_bits, raw_data_len)); Ok(()) } /// Encodes a numeric string to the bits. /// /// The data should only contain the characters 0 to 9. #[unstable] pub fn push_numeric_data(&mut self, data: &[u8]) -> QrResult<()> { try!(self.push_header(Numeric, data.len())); for chunk in data.chunks(3) { let number = chunk.iter().map(|b| (b - b'0') as u16).fold(0, |a, b| a*10 + b); let length = chunk.len() * 3 + 1; self.push_number(length, number); } Ok(()) } } #[cfg(test)] mod numeric_tests { use bits::Bits; use types::{Version, MicroVersion, DataTooLong}; #[test] fn test_iso_18004_2006_example_1() { let mut bits = Bits::new(Version(1)); assert_eq!(bits.push_numeric_data(b"01234567"), Ok(())); assert_eq!(bits.into_bytes(), vec![0b0001_0000, 0b001000_00, 0b00001100, 0b01010110, 0b01_100001, 0b1__0000000]); } #[test] fn test_iso_18004_2000_example_2() { let mut bits = Bits::new(Version(1)); assert_eq!(bits.push_numeric_data(b"0123456789012345"), Ok(())); assert_eq!(bits.into_bytes(), vec![0b0001_0000, 0b010000_00, 0b00001100, 0b01010110, 0b01_101010, 0b0110_1110, 0b000101_00, 0b11101010, 0b0101__0000]); } #[test] fn test_iso_18004_2006_example_2() { let mut bits = Bits::new(MicroVersion(3)); assert_eq!(bits.push_numeric_data(b"0123456789012345"), Ok(())); assert_eq!(bits.into_bytes(), vec![0b00_10000_0, 0b00000110, 0b0_0101011, 0b001_10101, 0b00110_111, 0b0000101_0, 0b01110101, 0b00101__000]); } #[test] fn test_data_too_long_error() { let mut bits = Bits::new(MicroVersion(1)); assert_eq!(bits.push_numeric_data(b"12345678"), Err(DataTooLong)); } } //}}} //------------------------------------------------------------------------------ //{{{ Alphanumeric mode /// In QR code "Alphanumeric" mode, a pair of alphanumeric characters will be /// encoded as a base-45 integer. `alphanumeric_digit` converts each character /// into its corresponding base-45 digit. /// /// The conversion is specified in ISO/IEC 18004:2006, §8.4.3, Table 5. #[inline] fn alphanumeric_digit(character: u8) -> u16 { match character { b'0' .. b'9' => (character - b'0') as u16, b'A' .. b'Z' => (character - b'A') as u16 + 10, b' ' => 36, b'$' => 37, b'%' => 38, b'*' => 39, b'+' => 40, b'-' => 41, b'.' => 42, b'/' => 43, b':' => 44, _ => 0, } } impl Bits { /// Encodes an alphanumeric string to the bits. /// /// The data should only contain the charaters A to Z (excluding lowercase), /// 0 to 9, space, `$`, `%`, `*`, `+`, `-`, `.`, `/` or `:`. #[unstable] pub fn push_alphanumeric_data(&mut self, data: &[u8]) -> QrResult<()> { try!(self.push_header(Alphanumeric, data.len())); for chunk in data.chunks(2) { let number = chunk.iter().map(|b| alphanumeric_digit(*b)).fold(0, |a, b| a*45 + b); let length = chunk.len() * 5 + 1; self.push_number(length, number); } Ok(()) } } #[cfg(test)] mod alphanumeric_tests { use bits::Bits; use types::{Version, MicroVersion, UnsupportedCharacterSet, DataTooLong}; #[test] fn test_iso_18004_2006_example() { let mut bits = Bits::new(Version(1)); assert_eq!(bits.push_alphanumeric_data(b"AC-42"), Ok(())); assert_eq!(bits.into_bytes(), vec![0b0010_0000, 0b00101_001, 0b11001110, 0b11100111, 0b001_00001, 0b0__0000000]); } #[test] fn test_micro_qr_unsupported() { let mut bits = Bits::new(MicroVersion(1)); assert_eq!(bits.push_alphanumeric_data(b"A"), Err(UnsupportedCharacterSet)); } #[test] fn test_data_too_long() { let mut bits = Bits::new(MicroVersion(2)); assert_eq!(bits.push_alphanumeric_data(b"ABCDEFGH"), Err(DataTooLong)); } } //}}} //------------------------------------------------------------------------------ //{{{ Byte mode impl Bits { /// Encodes 8-bit byte data to the bits. #[unstable] pub fn push_byte_data(&mut self, data: &[u8]) -> QrResult<()> { try!(self.push_header(Byte, data.len())); for b in data.iter() { self.push_number(8, *b as u16); } Ok(()) } } #[cfg(test)] mod byte_tests { use bits::Bits; use types::{Version, MicroVersion, UnsupportedCharacterSet, DataTooLong}; #[test] fn test() { let mut bits = Bits::new(Version(1)); assert_eq!(bits.push_byte_data(b"\x12\x34\x56\x78\x9a\xbc\xde\xf0"), Ok(())); assert_eq!(bits.into_bytes(), vec![0b0100_0000, 0b1000_0001, 0b0010_0011, 0b0100_0101, 0b0110_0111, 0b1000_1001, 0b1010_1011, 0b1100_1101, 0b1110_1111, 0b0000__0000]); } #[test] fn test_micro_qr_unsupported() { let mut bits = Bits::new(MicroVersion(2)); assert_eq!(bits.push_byte_data(b"?"), Err(UnsupportedCharacterSet)); } #[test] fn test_data_too_long() { let mut bits = Bits::new(MicroVersion(3)); assert_eq!(bits.push_byte_data(b"0123456701234567"), Err(DataTooLong)); } } //}}} //------------------------------------------------------------------------------ //{{{ Kanji mode impl Bits { /// Encodes Shift JIS double-byte data to the bits. #[unstable] pub fn push_kanji_data(&mut self, data: &[u8]) -> QrResult<()> { try!(self.push_header(Kanji, data.len()/2)); for kanji in data.chunks(2) { if kanji.len() != 2 { return Err(InvalidCharacter); } let cp = (kanji[0] as u16) * 256 + (kanji[1] as u16); let bytes = if cp < 0xe040 { cp - 0x8140 } else { cp - 0xc140 }; let number = (bytes >> 8) * 0xc0 + (bytes & 0xff); self.push_number(13, number); } Ok(()) } } #[cfg(test)] mod kanji_tests { use bits::Bits; use types::{Version, MicroVersion, UnsupportedCharacterSet, DataTooLong}; #[test] fn test_iso_18004_example() { let mut bits = Bits::new(Version(1)); assert_eq!(bits.push_kanji_data(b"\x93\x5f\xe4\xaa"), Ok(())); assert_eq!(bits.into_bytes(), vec![0b1000_0000, 0b0010_0110, 0b11001111, 0b1_1101010, 0b101010__00]); } #[test] fn test_micro_qr_unsupported() { let mut bits = Bits::new(MicroVersion(2)); assert_eq!(bits.push_kanji_data(b"?"), Err(UnsupportedCharacterSet)); } #[test] fn test_data_too_long() { let mut bits = Bits::new(MicroVersion(3)); assert_eq!(bits.push_kanji_data(b"\x93_\x93_\x93_\x93_\x93_\x93_\x93_\x93_"), Err(DataTooLong)); } } //}}} //------------------------------------------------------------------------------ //{{{ FNC1 mode impl Bits { /// Encodes an indicator that the following data are formatted according to /// the UCC/EAN Application Identifiers standard. /// /// #![allow(unused_must_use)] /// /// use qrcode::bits::Bits; /// use qrcode::types::Version; /// /// let mut bits = Bits::new(Version(1)); /// bits.push_fnc1_first_position(); /// bits.push_numeric_data(b"01049123451234591597033130128"); /// bits.push_alphanumeric_data(b"%10ABC123"); /// /// In QR code, the character `%` is used as the data field separator (0x1D). pub fn push_fnc1_first_position(&mut self) -> QrResult<()> { self.push_mode_indicator(Fnc1First) } /// Encodes an indicator that the following data are formatted in accordance /// with specific industry or application specifications previously agreed /// with AIM International. /// /// #![allow(unused_must_use)] /// /// use qrcode::bits::Bits; /// use qrcode::types::Version; /// /// let mut bits = Bits::new(Version(1)); /// bits.push_fnc1_second_position(37); /// bits.push_alphanumeric_data(b"AA1234BBB112"); /// bits.push_byte_data(b"text text text text\r"); /// /// If the application indicator is a single Latin alphabet (a–z / A–Z), /// please pass in its ASCII value + 100: /// /// ```ignore /// bits.push_fnc1_second_position(b'A' + 100); /// ``` pub fn push_fnc1_second_position(&mut self, application_indicator: u8) -> QrResult<()> { try!(self.push_mode_indicator(Fnc1Second)); self.push_number(8, application_indicator as u16); Ok(()) } } //}}} //------------------------------------------------------------------------------ //{{{ Finish // This table is copied from ISO/IEC 18004:2006 §6.4.10, Table 7. static DATA_LENGTHS: [[uint, ..4], ..44] = [ // Normal versions [152, 128, 104, 72], [272, 224, 176, 128], [440, 352, 272, 208], [640, 512, 384, 288], [864, 688, 496, 368], [1088, 864, 608, 480], [1248, 992, 704, 528], [1552, 1232, 880, 688], [1856, 1456, 1056, 800], [2192, 1728, 1232, 976], [2592, 2032, 1440, 1120], [2960, 2320, 1648, 1264], [3424, 2672, 1952, 1440], [3688, 2920, 2088, 1576], [4184, 3320, 2360, 1784], [4712, 3624, 2600, 2024], [5176, 4056, 2936, 2264], [5768, 4504, 3176, 2504], [6360, 5016, 3560, 2728], [6888, 5352, 3880, 3080], [7456, 5712, 4096, 3248], [8048, 6256, 4544, 3536], [8752, 6880, 4912, 3712], [9392, 7312, 5312, 4112], [10208, 8000, 5744, 4304], [10960, 8496, 6032, 4768], [11744, 9024, 6464, 5024], [12248, 9544, 6968, 5288], [13048, 10136, 7288, 5608], [13880, 10984, 7880, 5960], [14744, 11640, 8264, 6344], [15640, 12328, 8920, 6760], [16568, 13048, 9368, 7208], [17528, 13800, 9848, 7688], [18448, 14496, 10288, 7888], [19472, 15312, 10832, 8432], [20528, 15936, 11408, 8768], [21616, 16816, 12016, 9136], [22496, 17728, 12656, 9776], [23648, 18672, 13328, 10208], // Micro versions [20, 0, 0, 0], [40, 32, 0, 0], [84, 68, 0, 0], [128, 112, 80, 0], ]; impl Bits { /// Pushes the ending bits to indicate no more data. #[unstable] pub fn push_terminator(&mut self, ec_level: ErrorCorrectionLevel) -> QrResult<()> { let terminator_size = match self.version { MicroVersion(a) => (a as uint) * 2 + 1, _ => 4, }; let cur_length = self.len(); let data_length = try!(self.version.fetch(ec_level, DATA_LENGTHS.as_slice())); if cur_length > data_length { return Err(DataTooLong); } let terminator_size = min(terminator_size, data_length - cur_length); if terminator_size > 0 { self.push_number(terminator_size, 0); } if self.len() < data_length { self.bit_offset = 0; let data_bytes_length = data_length / 8; let padding_bytes_count = data_bytes_length - self.data.len(); self.data.grow_fn(padding_bytes_count, |i| if i % 2 == 0 { 0b11101100 } else { 0b00010001 }); } if self.len() < data_length { self.data.push(0); } Ok(()) } } #[cfg(test)] mod finish_tests { use bits::Bits; use types::{Version, MicroVersion, L, Q, DataTooLong}; #[test] fn test_hello_world() { let mut bits = Bits::new(Version(1)); assert_eq!(bits.push_alphanumeric_data(b"HELLO WORLD"), Ok(())); assert_eq!(bits.push_terminator(Q), Ok(())); assert_eq!(bits.into_bytes(), vec![0b00100000, 0b01011011, 0b00001011, 0b01111000, 0b11010001, 0b01110010, 0b11011100, 0b01001101, 0b01000011, 0b01000000, 0b11101100, 0b00010001, 0b11101100]); } #[test] fn test_too_long() { let mut bits = Bits::new(MicroVersion(1)); assert_eq!(bits.push_numeric_data(b"9999999"), Ok(())); assert_eq!(bits.push_terminator(L), Err(DataTooLong)); } #[test] fn test_no_terminator() { let mut bits = Bits::new(MicroVersion(1)); assert_eq!(bits.push_numeric_data(b"99999"), Ok(())); assert_eq!(bits.push_terminator(L), Ok(())); assert_eq!(bits.into_bytes(), vec![0b101_11111, 0b00111_110, 0b0011__0000]); } #[test] fn test_no_padding() { let mut bits = Bits::new(MicroVersion(1)); assert_eq!(bits.push_numeric_data(b"9999"), Ok(())); assert_eq!(bits.push_terminator(L), Ok(())); assert_eq!(bits.into_bytes(), vec![0b100_11111, 0b00111_100, 0b1_000__0000]); } #[test] fn test_micro_version_1_half_byte_padding() { let mut bits = Bits::new(MicroVersion(1)); assert_eq!(bits.push_numeric_data(b"999"), Ok(())); assert_eq!(bits.push_terminator(L), Ok(())); assert_eq!(bits.into_bytes(), vec![0b011_11111, 0b00111_000, 0b0000__0000]); } #[test] fn test_micro_version_1_full_byte_padding() { let mut bits = Bits::new(MicroVersion(1)); assert_eq!(bits.push_numeric_data(b""), Ok(())); assert_eq!(bits.push_terminator(L), Ok(())); assert_eq!(bits.into_bytes(), vec![0b000_000_00, 0b11101100, 0]); } } //}}} //------------------------------------------------------------------------------ //{{{ Front end. impl Bits { /// Push a segmented data to the bits, and then terminate it. pub fn push_segments>(&mut self, data: &[u8], mut segments_iter: I) -> QrResult<()> { for segment in segments_iter { let slice = data.slice(segment.begin, segment.end); try!(match segment.mode { Numeric => self.push_numeric_data(slice), Alphanumeric => self.push_alphanumeric_data(slice), Byte => self.push_byte_data(slice), Kanji => self.push_kanji_data(slice), }); } Ok(()) } /// Pushes the data the bits, using the optimal encoding. pub fn push_optimal_data(&mut self, data: &[u8]) -> QrResult<()> { let segments = Parser::new(data).optimize(self.version); self.push_segments(data, segments) } } #[cfg(test)] mod encode_tests { use bits::Bits; use types::{QrVersion, Version, MicroVersion, DataTooLong, QrResult, L, Q, H, ErrorCorrectionLevel}; fn encode(data: &[u8], version: QrVersion, ec_level: ErrorCorrectionLevel) -> QrResult> { let mut bits = Bits::new(version); try!(bits.push_optimal_data(data)); try!(bits.push_terminator(ec_level)); Ok(bits.into_bytes()) } #[test] fn test_alphanumeric() { let res = encode(b"HELLO WORLD", Version(1), Q); assert_eq!(res, Ok(vec![0b00100000, 0b01011011, 0b00001011, 0b01111000, 0b11010001, 0b01110010, 0b11011100, 0b01001101, 0b01000011, 0b01000000, 0b11101100, 0b00010001, 0b11101100])); } #[test] fn test_auto_mode_switch() { let res = encode(b"123A", MicroVersion(2), L); assert_eq!(res, Ok(vec![0b0_0011_000, 0b1111011_1, 0b001_00101, 0b0_00000__00, 0b11101100])); } #[test] fn test_too_long() { let res = encode(b">>>>>>>>", Version(1), H); assert_eq!(res, Err(DataTooLong)); } } //}}} //------------------------------------------------------------------------------ //{{{ Auto version minimization /// Automatically determines the minimum version to store the data, and encode /// the result. /// /// This method will not consider any Micro QR code versions. pub fn encode_auto(data: &[u8], ec_level: ErrorCorrectionLevel) -> QrResult { let segments = Parser::new(data).collect::>(); for version in [Version(9), Version(26), Version(40)].iter() { let opt_segments = Optimizer::new(segments.iter().map(|s| *s), *version).collect::>(); let total_len = total_encoded_len(opt_segments.as_slice(), *version); let data_capacity = version.fetch(ec_level, DATA_LENGTHS.as_slice()).unwrap(); if total_len <= data_capacity { let min_version = find_min_version(total_len, ec_level); let mut bits = Bits::new(min_version); bits.reserve_additional(total_len); try!(bits.push_segments(data, opt_segments.into_iter())); try!(bits.push_terminator(ec_level)); return Ok(bits); } } Err(DataTooLong) } /// Finds the smallest version (QR code only) that can store N bits of data /// in the given error correction level. #[unstable] fn find_min_version(length: uint, ec_level: ErrorCorrectionLevel) -> QrVersion { let mut min = 0u; let mut max = 39u; while min < max { let half = (min + max) / 2; if DATA_LENGTHS[half][ec_level as uint] < length { min = half + 1; } else { max = half; } } Version((min + 1) as i16) } #[cfg(test)] mod encode_auto_tests { use bits::{find_min_version, encode_auto}; use types::{Version, L, Q, H}; #[test] fn test_find_min_version() { assert_eq!(find_min_version(60, L), Version(1)); assert_eq!(find_min_version(200, L), Version(2)); assert_eq!(find_min_version(200, H), Version(3)); assert_eq!(find_min_version(20000, L), Version(37)); assert_eq!(find_min_version(640, L), Version(4)); assert_eq!(find_min_version(641, L), Version(5)); assert_eq!(find_min_version(999999, H), Version(40)); } #[test] fn test_alpha_q() { let bits = encode_auto(b"HELLO WORLD", Q).unwrap(); assert_eq!(bits.version(), Version(1)); } #[test] fn test_alpha_h() { let bits = encode_auto(b"HELLO WORLD", H).unwrap(); assert_eq!(bits.version(), Version(2)); } #[test] fn test_mixed() { let bits = encode_auto(b"This is a mixed data test. 1234567890", H).unwrap(); assert_eq!(bits.version(), Version(4)); } } //}}} //------------------------------------------------------------------------------