/* * Cubemark, a microbenchmark which renders a very large number of * very simple objects. This stresses the throughput of the SVGA3D * command pipeline and API layers. * * Half of the cubes are rendered using fixed-function, and half of * them are rendered using shaders. This helps hilight any performance * differences between per-draw setup for FFP vs. for shaders. * * Copyright (C) 2008-2009 VMware, Inc. Licensed under the MIT * License, please see the README.txt. All rights reserved. */ #include "svga3dutil.h" #include "svga3dtext.h" #include "matrix.h" #include "math.h" typedef uint32 DWORD; #include "cube_vs.h" #include "cube_ps.h" #define MY_VSHADER_ID 0 #define MY_PSHADER_ID 0 #define CONST_MAT_VIEW 0 #define CONST_MAT_PROJ 4 typedef struct { float position[3]; uint32 color; } MyVertex; /* * Two colors for the cubes, so we can see them rotate more easily. */ #define COLOR1 0x8080FF #define COLOR2 0x000080 /* * This defines the grid spacing, as well as the total number of cubes we draw. */ #define GRID_X_MIN (-35) #define GRID_X_MAX 35 #define GRID_Y_MIN (-20) #define GRID_Y_MAX 20 #define GRID_STEP 2 static const MyVertex vertexData[] = { { {-1, -1, -1}, COLOR1 }, { {-1, -1, 1}, COLOR1 }, { {-1, 1, -1}, COLOR1 }, { {-1, 1, 1}, COLOR1 }, { { 1, -1, -1}, COLOR2 }, { { 1, -1, 1}, COLOR2 }, { { 1, 1, -1}, COLOR2 }, { { 1, 1, 1}, COLOR2 }, }; #define QUAD(a,b,c,d) a, b, d, d, c, a static const uint16 indexData[] = { QUAD(0,1,2,3), // -X QUAD(4,5,6,7), // +X QUAD(0,1,4,5), // -Y QUAD(2,3,6,7), // +Y QUAD(0,2,4,6), // -Z QUAD(1,3,5,7), // +Z }; #undef QUAD const uint32 numTriangles = sizeof indexData / sizeof indexData[0] / 3; uint32 vertexSid, indexSid; Matrix perspectiveMat; FPSCounterState gFPS; VMMousePacket lastMouseState; /* * render -- * * Set up common render state and matrices, then enter a loop * drawing many cubes with individual draw commands. * * This render state only needs to be set each frame because * SVGA3DText_Draw() changes it. */ void render(void) { SVGA3dTextureState *ts; SVGA3dRenderState *rs; SVGA3dVertexDecl *decls; SVGA3dPrimitiveRange *ranges; static Matrix view, instance; float x, y; Bool useShaders = FALSE; Matrix_Copy(view, gIdentityMatrix); Matrix_Scale(view, 0.5, 0.5, 0.5, 1.0); Matrix_RotateX(view, 30.0 * M_PI / 180.0); Matrix_RotateY(view, gFPS.frame * 0.1f); Matrix_Translate(view, 0, 0, 75); SVGA3D_SetTransform(CID, SVGA3D_TRANSFORM_WORLD, gIdentityMatrix); SVGA3D_SetTransform(CID, SVGA3D_TRANSFORM_PROJECTION, perspectiveMat); SVGA3DUtil_SetShaderConstMatrix(CID, CONST_MAT_PROJ, SVGA3D_SHADERTYPE_VS, perspectiveMat); SVGA3D_BeginSetRenderState(CID, &rs, 4); { rs[0].state = SVGA3D_RS_BLENDENABLE; rs[0].uintValue = FALSE; rs[1].state = SVGA3D_RS_ZENABLE; rs[1].uintValue = TRUE; rs[2].state = SVGA3D_RS_ZWRITEENABLE; rs[2].uintValue = TRUE; rs[3].state = SVGA3D_RS_ZFUNC; rs[3].uintValue = SVGA3D_CMP_LESS; } SVGA_FIFOCommitAll(); SVGA3D_BeginSetTextureState(CID, &ts, 4); { ts[0].stage = 0; ts[0].name = SVGA3D_TS_BIND_TEXTURE; ts[0].value = SVGA3D_INVALID_ID; ts[1].stage = 0; ts[1].name = SVGA3D_TS_COLOROP; ts[1].value = SVGA3D_TC_SELECTARG1; ts[2].stage = 0; ts[2].name = SVGA3D_TS_COLORARG1; ts[2].value = SVGA3D_TA_DIFFUSE; ts[3].stage = 0; ts[3].name = SVGA3D_TS_ALPHAARG1; ts[3].value = SVGA3D_TA_DIFFUSE; } SVGA_FIFOCommitAll(); for (x = GRID_X_MIN; x <= GRID_X_MAX; x += GRID_STEP) { for (y = GRID_Y_MIN; y <= GRID_Y_MAX; y += GRID_STEP) { Matrix_Copy(instance, view); Matrix_Translate(instance, x, y, 0); if (useShaders) { SVGA3D_SetShader(CID, SVGA3D_SHADERTYPE_VS, MY_VSHADER_ID); SVGA3D_SetShader(CID, SVGA3D_SHADERTYPE_PS, MY_PSHADER_ID); SVGA3DUtil_SetShaderConstMatrix(CID, CONST_MAT_VIEW, SVGA3D_SHADERTYPE_VS, instance); } else { SVGA3D_SetShader(CID, SVGA3D_SHADERTYPE_VS, SVGA3D_INVALID_ID); SVGA3D_SetShader(CID, SVGA3D_SHADERTYPE_PS, SVGA3D_INVALID_ID); SVGA3D_SetTransform(CID, SVGA3D_TRANSFORM_VIEW, instance); } SVGA3D_BeginDrawPrimitives(CID, &decls, 2, &ranges, 1); { decls[0].identity.type = SVGA3D_DECLTYPE_FLOAT3; decls[0].identity.usage = SVGA3D_DECLUSAGE_POSITION; decls[0].array.surfaceId = vertexSid; decls[0].array.stride = sizeof(MyVertex); decls[0].array.offset = offsetof(MyVertex, position); decls[1].identity.type = SVGA3D_DECLTYPE_D3DCOLOR; decls[1].identity.usage = SVGA3D_DECLUSAGE_COLOR; decls[1].array.surfaceId = vertexSid; decls[1].array.stride = sizeof(MyVertex); decls[1].array.offset = offsetof(MyVertex, color); ranges[0].primType = SVGA3D_PRIMITIVE_TRIANGLELIST; ranges[0].primitiveCount = numTriangles; ranges[0].indexArray.surfaceId = indexSid; ranges[0].indexArray.stride = sizeof(uint16); ranges[0].indexWidth = sizeof(uint16); } SVGA_FIFOCommitAll(); } useShaders = !useShaders; } SVGA3D_SetShader(CID, SVGA3D_SHADERTYPE_VS, SVGA3D_INVALID_ID); SVGA3D_SetShader(CID, SVGA3D_SHADERTYPE_PS, SVGA3D_INVALID_ID); } /* * main -- * * Our example's entry point, invoked directly by the bootloader. */ int main(void) { SVGA3DUtil_InitFullscreen(CID, 800, 600); SVGA3DText_Init(); vertexSid = SVGA3DUtil_DefineStaticBuffer(vertexData, sizeof vertexData); indexSid = SVGA3DUtil_DefineStaticBuffer(indexData, sizeof indexData); SVGA3D_DefineShader(CID, MY_VSHADER_ID, SVGA3D_SHADERTYPE_VS, g_vs20_MyVertexShader, sizeof g_vs20_MyVertexShader); SVGA3D_DefineShader(CID, MY_PSHADER_ID, SVGA3D_SHADERTYPE_PS, g_ps20_MyPixelShader, sizeof g_ps20_MyPixelShader); Matrix_Perspective(perspectiveMat, 45.0f, gSVGA.width / (float)gSVGA.height, 10.0f, 100.0f); while (1) { if (SVGA3DUtil_UpdateFPSCounter(&gFPS)) { Console_Clear(); Console_Format("Cubemark microbenchmark\n\n%s", gFPS.text); SVGA3DText_Update(); VMBackdoor_VGAScreenshot(); } SVGA3DUtil_ClearFullscreen(CID, SVGA3D_CLEAR_COLOR | SVGA3D_CLEAR_DEPTH, 0x000000, 1.0f, 0); render(); SVGA3DText_Draw(); SVGA3DUtil_PresentFullscreen(); } return 0; }