windows-nt/Source/XPSP1/NT/base/ntos/config/i386/init386.c

1637 lines
42 KiB
C
Raw Permalink Normal View History

2020-09-26 03:20:57 -05:00
//depot/Lab01_N/base/ntos/config/i386/init386.c#4 - edit change 6794 (text)
/*++
Copyright (c) 1990, 1991 Microsoft Corporation
Module Name:
init386.c
Abstract:
This module is responsible to build any x86 specific entries in
the hardware tree of registry.
Author:
Ken Reneris (kenr) 04-Aug-1992
Environment:
Kernel mode.
Revision History:
shielint - add BIOS date and version detection.
--*/
#include "cmp.h"
#include "stdio.h"
#include "acpitabl.h"
#include "ntacpi.h"
#include "rules.h"
#ifdef _WANT_MACHINE_IDENTIFICATION
#include "string.h"
#include "stdlib.h"
#include "ntverp.h"
#endif
typedef struct _ACPI_BIOS_INFORMATION {
ULONG BootArchitecture;
ULONG PreferredProfile;
ULONG Capabilities;
} ACPI_BIOS_INFORMATION, *PACPI_BIOS_INFORMATION;
//
// Title Index is set to 0.
// (from ..\cmconfig.c)
//
#define TITLE_INDEX_VALUE 0
extern const PCHAR SearchStrings[];
extern PCHAR BiosBegin;
extern PCHAR Start;
extern PCHAR End;
extern const UCHAR CmpID1[];
extern const UCHAR CmpID2[];
extern const WCHAR CmpVendorID[];
extern const WCHAR CmpProcessorNameString[];
extern const WCHAR CmpFeatureBits[];
extern const WCHAR CmpMHz[];
extern const WCHAR CmpUpdateSignature[];
extern const WCHAR CmPhysicalAddressExtension[];
#if !defined(_AMD64_)
extern const UCHAR CmpCyrixID[];
#endif
extern const UCHAR CmpIntelID[];
extern const UCHAR CmpAmdID[];
//
// Bios date and version definitions
//
#define BIOS_DATE_LENGTH 11
#define MAXIMUM_BIOS_VERSION_LENGTH 128
#define SYSTEM_BIOS_START 0xF0000
#define SYSTEM_BIOS_LENGTH 0x10000
#define INT10_VECTOR 0x10
#define VIDEO_BIOS_START 0xC0000
#define VIDEO_BIOS_LENGTH 0x8000
#define VERSION_DATA_LENGTH PAGE_SIZE
//
// Extended CPUID function definitions
//
#define CPUID_PROCESSOR_NAME_STRING_SZ 49
#define CPUID_EXTFN_BASE 0x80000000
#define CPUID_EXTFN_PROCESSOR_NAME 0x80000002
//
// CPU Stepping mismatch.
//
UCHAR CmProcessorMismatch;
#define CM_PROCESSOR_MISMATCH_VENDOR 0x01
#define CM_PROCESSOR_MISMATCH_STEPPING 0x02
#define CM_PROCESSOR_MISMATCH_L2 0x04
extern ULONG CmpConfigurationAreaSize;
extern PCM_FULL_RESOURCE_DESCRIPTOR CmpConfigurationData;
BOOLEAN
CmpGetBiosVersion (
PCHAR SearchArea,
ULONG SearchLength,
PCHAR VersionString
);
BOOLEAN
CmpGetAcpiBiosVersion(
PCHAR VersionString
);
BOOLEAN
CmpGetBiosDate (
PCHAR SearchArea,
ULONG SearchLength,
PCHAR DateString,
BOOLEAN SystemBiosDate
);
BOOLEAN
CmpGetAcpiBiosInformation(
PACPI_BIOS_INFORMATION AcpiBiosInformation
);
ULONG
Ke386CyrixId (
VOID
);
#ifdef _WANT_MACHINE_IDENTIFICATION
VOID
CmpPerformMachineIdentification(
IN PLOADER_PARAMETER_BLOCK LoaderBlock
);
#endif
#ifdef ALLOC_PRAGMA
#pragma alloc_text(INIT,CmpGetBiosDate)
#pragma alloc_text(INIT,CmpGetBiosVersion)
#pragma alloc_text(INIT,CmpGetAcpiBiosVersion)
#pragma alloc_text(INIT,CmpGetAcpiBiosInformation)
#pragma alloc_text(INIT,CmpInitializeMachineDependentConfiguration)
#ifdef _WANT_MACHINE_IDENTIFICATION
#pragma alloc_text(INIT,CmpPerformMachineIdentification)
#endif
#endif
#if defined(_AMD64_)
#define KeI386NpxPresent TRUE
VOID
__inline
CPUID (
ULONG InEax,
PULONG OutEax,
PULONG OutEbx,
PULONG OutEcx,
PULONG OutEdx
)
{
CPU_INFO cpuInfo;
KiCpuId (InEax, &cpuInfo);
*OutEax = cpuInfo.Eax;
*OutEbx = cpuInfo.Ebx;
*OutEcx = cpuInfo.Ecx;
*OutEdx = cpuInfo.Edx;
}
#endif
BOOLEAN
CmpGetBiosDate (
PCHAR SearchArea,
ULONG SearchLength,
PCHAR DateString,
BOOLEAN SystemBiosDate
)
/*++
Routine Description:
This routine finds the most recent date in the computer/video
card's ROM. When GetRomDate encounters a datae, it checks the
previously found date to see if the new date is more recent.
Arguments:
SearchArea - the area to search for a date.
SearchLength - Length of search.
DateString - Supplies a pointer to a fixed length memory to receive
the date string.
Return Value:
NT_SUCCESS if a date is found.
--*/
{
CHAR prevDate[BIOS_DATE_LENGTH]; // Newest date found so far (CCYY/MM/DD)
CHAR currDate[BIOS_DATE_LENGTH]; // Date currently being examined (CCYY/MM/DD)
PCHAR start; // Start of the current search area.
PCHAR end; // End of the search area.
ULONG year; // YY
ULONG month; // MM
ULONG day; // DD
ULONG count;
#define IS_DIGIT(c) ((c) >= '0' && (c) <= '9')
//
// Initialize previous date
//
RtlZeroMemory(prevDate, BIOS_DATE_LENGTH);
//
// We need to look ahead 5 characters to determine the
// validity of the date pattern.
//
start = SearchArea + 2;
end = SearchArea + SearchLength - 5;
//
// Process the entire search area.
//
while (start < end) {
//
// We consider the following byte pattern as a potential date.
// We are assuming the following date pattern Month/Day/Year.
// "n/nn/nn" where n is any digit. We allow month to be single
// digit only.
//
if ( start[0] == '/' && start[3] == '/' &&
IS_DIGIT(*(start - 1)) &&
IS_DIGIT(start[1]) && IS_DIGIT(start[2]) &&
IS_DIGIT(start[4]) && IS_DIGIT(start[5])) {
//
// Copy MM/DD part into the currDate.
//
RtlMoveMemory(&currDate[5], start - 2, 5);
//
// Handle single digit month correctly.
//
if (!IS_DIGIT(currDate[5])) {
currDate[5] = '0';
}
//
// Copy the year YY into currDate
//
currDate[2] = start[4];
currDate[3] = start[5];
currDate[4] = currDate[7] = currDate[10] = '\0';
//
// Do basic validation for the date.
// Only one field (YY) can be 0.
// Only one field (YY) can be greater than 31.
// We assume the ROM date to be in the format MM/DD/YY.
//
year = strtoul(&currDate[2], NULL, 16);
month = strtoul(&currDate[5], NULL, 16);
day = strtoul(&currDate[8], NULL, 16);
//
// Count the number of fields that are 0.
//
count = ((day == 0)? 1 : 0) + ((month == 0)? 1 : 0) + ((year == 0)? 1 : 0);
if (count <= 1) {
//
// Count number of field that are greater than 31.
//
count = ((day > 0x31)? 1 : 0) + ((month > 0x31)? 1 : 0) + ((year > 0x31)? 1 : 0);
if (count <= 1) {
//
// See if the ROM already has a 4 digit date. We do this only for System ROM
// since they have a consistent date format.
//
if (SystemBiosDate && IS_DIGIT(start[6]) && IS_DIGIT(start[7]) &&
(memcmp(&start[4], "19", 2) == 0 || memcmp(&start[4], "20", 2) == 0)) {
currDate[0] = start[4];
currDate[1] = start[5];
currDate[2] = start[6];
currDate[3] = start[7];
} else {
//
// Internally, we treat year as a 4 digit quantity
// for comparison to determine the newest date.
// We treat year YY < 80 as 20YY, otherwise 19YY.
//
if (year < 0x80) {
currDate[0] = '2';
currDate[1] = '0';
} else {
currDate[0] = '1';
currDate[1] = '9';
}
}
//
// Add the '/' delimiters into the date.
//
currDate[4] = currDate[7] = '/';
//
// Compare the dates, and save the newer one.
//
if (memcmp (prevDate, currDate, BIOS_DATE_LENGTH - 1) < 0) {
RtlMoveMemory(prevDate, currDate, BIOS_DATE_LENGTH - 1);
}
//
// Next search should start at the second '/'.
//
start += 2;
}
}
}
start++;
}
if (prevDate[0] != '\0') {
//
// Convert from the internal CCYY/MM/DD format to
// return MM/DD//YY format.
//
RtlMoveMemory(DateString, &prevDate[5], 5);
DateString[5] = '/';
DateString[6] = prevDate[2];
DateString[7] = prevDate[3];
DateString[8] = '\0';
return (TRUE);
}
//
// If we did not find a date, return an empty string.
//
DateString[0] = '\0';
return (FALSE);
}
BOOLEAN
CmpGetBiosVersion (
PCHAR SearchArea,
ULONG SearchLength,
PCHAR VersionString
)
/*++
Routine Description:
This routine finds the version number stored in ROM, if any.
Arguments:
SearchArea - the area to search for the version.
SearchLength - Length of search
VersionString - Supplies a pointer to a fixed length memory to receive
the version string.
Return Value:
TRUE if a version number is found. Else a value of FALSE is returned.
--*/
{
PCHAR String;
USHORT Length;
USHORT i;
CHAR Buffer[MAXIMUM_BIOS_VERSION_LENGTH];
PCHAR BufferPointer;
if (SearchArea != NULL) {
//
// If caller does not specify the search area, we will search
// the area left from previous search.
//
BiosBegin = SearchArea;
Start = SearchArea + 1;
End = SearchArea + SearchLength - 2;
}
while (1) {
//
// Search for a period with a digit on either side
//
String = NULL;
while (Start <= End) {
if (*Start == '.' && *(Start+1) >= '0' && *(Start+1) <= '9' &&
*(Start-1) >= '0' && *(Start-1) <= '9') {
String = Start;
break;
} else {
Start++;
}
}
if (Start > End) {
return(FALSE);
} else {
Start += 2;
}
Length = 0;
Buffer[MAXIMUM_BIOS_VERSION_LENGTH - 1] = '\0';
BufferPointer = &Buffer[MAXIMUM_BIOS_VERSION_LENGTH - 1];
//
// Search for the beginning of the string
//
String--;
while (Length < MAXIMUM_BIOS_VERSION_LENGTH - 8 &&
String >= BiosBegin &&
*String >= ' ' && *String <= 127 &&
*String != '$') {
--BufferPointer;
*BufferPointer = *String;
--String, ++Length;
}
++String;
//
// Can one of the search strings be found
//
for (i = 0; SearchStrings[i]; i++) {
if (strstr(BufferPointer, SearchStrings[i])) {
goto Found;
}
}
}
Found:
//
// Skip leading white space
//
for (; *String == ' '; ++String)
;
//
// Copy the string to user supplied buffer
//
for (i = 0; i < MAXIMUM_BIOS_VERSION_LENGTH - 1 &&
String <= (End + 1) &&
*String >= ' ' && *String <= 127 && *String != '$';
++i, ++String) {
VersionString[i] = *String;
}
VersionString[i] = '\0';
return (TRUE);
}
BOOLEAN
CmpGetAcpiBiosVersion(
PCHAR VersionString
)
{
ULONG length;
PDESCRIPTION_HEADER header;
ULONG i;
header = CmpFindACPITable(RSDT_SIGNATURE, &length);
if (header) {
for (i = 0; i < 6 && header->OEMID[i]; i++) {
*VersionString++ = header->OEMID[i];
}
sprintf(VersionString, " - %x", header->OEMRevision);
//
// Unmap the table
//
MmUnmapIoSpace(header, length );
return TRUE;
}
return FALSE;
}
BOOLEAN
CmpGetAcpiBiosInformation(
PACPI_BIOS_INFORMATION AcpiBiosInformation
)
{
ULONG length;
PFADT fadt;
BOOLEAN result;
AcpiBiosInformation->BootArchitecture = 0;
AcpiBiosInformation->Capabilities = 0;
AcpiBiosInformation->PreferredProfile = 0;
fadt = (PFADT)CmpFindACPITable(FADT_SIGNATURE, &length);
if (fadt) {
//
// Information is valid only for ACPI version > 1.0
//
if (fadt->Header.Revision > 1) {
AcpiBiosInformation->BootArchitecture = fadt->boot_arch;
AcpiBiosInformation->Capabilities = fadt->flags;
AcpiBiosInformation->PreferredProfile = fadt->pm_profile;
}
result = (fadt->Header.Revision > 1)? TRUE : FALSE;
//
// Unmap the table
//
MmUnmapIoSpace(fadt, length);
return result;
}
return FALSE;
}
NTSTATUS
CmpInitializeMachineDependentConfiguration(
IN PLOADER_PARAMETER_BLOCK LoaderBlock
)
/*++
Routine Description:
This routine creates x86 specific entries in the registry.
Arguments:
LoaderBlock - supplies a pointer to the LoaderBlock passed in from the
OS Loader.
Returns:
NTSTATUS code for sucess or reason of failure.
--*/
{
NTSTATUS Status;
ULONG VideoBiosStart;
UNICODE_STRING KeyName;
UNICODE_STRING ValueName;
UNICODE_STRING ValueData;
ANSI_STRING AnsiString;
OBJECT_ATTRIBUTES ObjectAttributes;
ULONG Disposition;
HANDLE ParentHandle;
HANDLE BaseHandle, NpxHandle;
HANDLE CurrentControlSet;
CONFIGURATION_COMPONENT_DATA CurrentEntry;
UCHAR const* VendorID;
UCHAR Buffer[MAXIMUM_BIOS_VERSION_LENGTH];
PKPRCB Prcb;
ULONG i, Junk;
ULONG VersionsLength = 0, Length;
PCHAR VersionStrings, VersionPointer;
UNICODE_STRING SectionName;
SIZE_T ViewSize;
LARGE_INTEGER ViewBase;
PVOID BaseAddress;
HANDLE SectionHandle;
USHORT DeviceIndexTable[NUMBER_TYPES];
ULONG CpuIdFunction;
ULONG MaxExtFn;
PULONG NameString = NULL;
ULONG P0L2Size = 0;
ULONG ThisProcessorL2Size;
struct {
union {
UCHAR Bytes[CPUID_PROCESSOR_NAME_STRING_SZ];
ULONG DWords[1];
} u;
} ProcessorNameString;
ULONG VersionPass;
ACPI_BIOS_INFORMATION AcpiBiosInformation;
#ifdef _WANT_MACHINE_IDENTIFICATION
HANDLE BiosInfo;
#endif
for (i = 0; i < NUMBER_TYPES; i++) {
DeviceIndexTable[i] = 0;
}
InitializeObjectAttributes( &ObjectAttributes,
&CmRegistryMachineSystemCurrentControlSetControlSessionManagerMemoryManagement,
OBJ_CASE_INSENSITIVE,
NULL,
NULL
);
Status = NtOpenKey( &BaseHandle,
KEY_READ | KEY_WRITE,
&ObjectAttributes
);
if (NT_SUCCESS(Status)) {
ULONG paeEnabled;
if (SharedUserData->ProcessorFeatures[PF_PAE_ENABLED] == FALSE) {
paeEnabled = 0;
} else {
paeEnabled = 1;
}
RtlInitUnicodeString( &ValueName,
CmPhysicalAddressExtension );
NtSetValueKey( BaseHandle,
&ValueName,
TITLE_INDEX_VALUE,
REG_DWORD,
&paeEnabled,
sizeof(paeEnabled) );
NtClose( BaseHandle );
}
InitializeObjectAttributes( &ObjectAttributes,
&CmRegistryMachineHardwareDescriptionSystemName,
OBJ_CASE_INSENSITIVE,
NULL,
NULL
);
Status = NtCreateKey( &ParentHandle,
KEY_READ,
&ObjectAttributes,
0,
NULL,
0,
NULL);
if (!NT_SUCCESS(Status)) {
// Something is really wrong...
return Status;
}
#ifdef _WANT_MACHINE_IDENTIFICATION
InitializeObjectAttributes( &ObjectAttributes,
&CmRegistryMachineSystemCurrentControlSetControlBiosInfo,
OBJ_CASE_INSENSITIVE,
NULL,
NULL
);
Status = NtCreateKey( &BiosInfo,
KEY_ALL_ACCESS,
&ObjectAttributes,
0,
NULL,
REG_OPTION_NON_VOLATILE,
&Disposition
);
if (!NT_SUCCESS(Status)) {
// Something is really wrong...
return Status;
}
#endif
//
// On an ARC machine the processor(s) are included in the hardware
// configuration passed in from bootup. Since there's no standard
// way to get all the ARC information for each processor in an MP
// machine via pc-ROMs the information will be added here (if it's
// not already present).
//
RtlInitUnicodeString( &KeyName,
L"CentralProcessor"
);
InitializeObjectAttributes(
&ObjectAttributes,
&KeyName,
0,
ParentHandle,
NULL
);
ObjectAttributes.Attributes |= OBJ_CASE_INSENSITIVE;
Status = NtCreateKey(
&BaseHandle,
KEY_READ | KEY_WRITE,
&ObjectAttributes,
0,
NULL,
0,
&Disposition
);
NtClose (BaseHandle);
if (Disposition == REG_CREATED_NEW_KEY) {
//
// The ARC rom didn't add the processor(s) into the registry.
// Do it now.
//
CmpConfigurationData = (PCM_FULL_RESOURCE_DESCRIPTOR)ExAllocatePool(
PagedPool,
CmpConfigurationAreaSize
);
//
// if (CmpConfigurationData == 0) {
// <do something useful>
// Note: we don't actually use it so it doesn't matter for now
// since it isn't used until the free. go figure.
// }
//
for (i=0; i < (ULONG)KeNumberProcessors; i++) {
Prcb = KiProcessorBlock[i];
RtlZeroMemory (&CurrentEntry, sizeof CurrentEntry);
CurrentEntry.ComponentEntry.Class = ProcessorClass;
CurrentEntry.ComponentEntry.Type = CentralProcessor;
CurrentEntry.ComponentEntry.Key = i;
CurrentEntry.ComponentEntry.AffinityMask = AFFINITY_MASK(i);
CurrentEntry.ComponentEntry.Identifier = Buffer;
if (Prcb->CpuID == 0) {
//
// Old style stepping format
//
sprintf (Buffer, CmpID1,
Prcb->CpuType,
(Prcb->CpuStep >> 8) + 'A',
Prcb->CpuStep & 0xff
);
} else {
//
// New style stepping format
//
sprintf (Buffer, CmpID2,
Prcb->CpuType,
(Prcb->CpuStep >> 8),
Prcb->CpuStep & 0xff
);
}
CurrentEntry.ComponentEntry.IdentifierLength =
strlen (Buffer) + 1;
Status = CmpInitializeRegistryNode(
&CurrentEntry,
ParentHandle,
&BaseHandle,
-1,
(ULONG)-1,
DeviceIndexTable
);
if (!NT_SUCCESS(Status)) {
return(Status);
}
if (KeI386NpxPresent) {
RtlZeroMemory (&CurrentEntry, sizeof CurrentEntry);
CurrentEntry.ComponentEntry.Class = ProcessorClass;
CurrentEntry.ComponentEntry.Type = FloatingPointProcessor;
CurrentEntry.ComponentEntry.Key = i;
CurrentEntry.ComponentEntry.AffinityMask = AFFINITY_MASK(i);
CurrentEntry.ComponentEntry.Identifier = Buffer;
if (Prcb->CpuType == 3) {
//
// 386 processors have 387's installed, else
// use processor identifier as the NPX identifier
//
strcpy (Buffer, "80387");
}
CurrentEntry.ComponentEntry.IdentifierLength =
strlen (Buffer) + 1;
Status = CmpInitializeRegistryNode(
&CurrentEntry,
ParentHandle,
&NpxHandle,
-1,
(ULONG)-1,
DeviceIndexTable
);
if (!NT_SUCCESS(Status)) {
NtClose(BaseHandle);
return(Status);
}
NtClose(NpxHandle);
}
//
// If processor supports Cpu Indentification then
// go obtain that information for the registry
//
VendorID = Prcb->CpuID ? Prcb->VendorString : NULL;
//
// Move to target processor and get other related
// processor information for the registery
//
KeSetSystemAffinityThread(Prcb->SetMember);
#if !defined(_AMD64_)
if (!Prcb->CpuID) {
//
// Test for Cyrix processor
//
if (Ke386CyrixId ()) {
VendorID = CmpCyrixID;
}
} else
#endif
{
//
// If this processor has extended CPUID functions, get
// the ProcessorNameString. Although the Intel books
// say that for CpuID functions > than the valued
// returned for function 0 will return undefined results,
// we have a guarantee from Intel that that result will
// never have the highest order bit set. This enables
// us to determine if the extended functions are supported
// by issuing CpuID function 0x80000000.
//
// Note: It is not known that this is true for all x86
// clones. If/when we find exceptions we will support
// them. In the mean time we are asking the clone makers
// to guarantee this behavior.
//
CPUID(CPUID_EXTFN_BASE, &MaxExtFn, &Junk, &Junk, &Junk);
if (MaxExtFn >= (CPUID_EXTFN_PROCESSOR_NAME + 2)) {
//
// This processor supports extended CPUID functions
// up to and (at least) including processor name string.
//
// Each CPUID call for the processor name string will
// return 16 bytes, 48 bytes in all, zero terminated.
//
NameString = &ProcessorNameString.u.DWords[0];
for (CpuIdFunction = CPUID_EXTFN_PROCESSOR_NAME;
CpuIdFunction <= (CPUID_EXTFN_PROCESSOR_NAME+2);
CpuIdFunction++) {
CPUID(CpuIdFunction,
NameString,
NameString + 1,
NameString + 2,
NameString + 3);
NameString += 4;
}
//
// Enforce 0 byte terminator.
//
ProcessorNameString.u.Bytes[CPUID_PROCESSOR_NAME_STRING_SZ-1] = 0;
}
}
ThisProcessorL2Size = KeGetPcr()->SecondLevelCacheSize;
//
// Restore thread's affinity to all processors
//
KeRevertToUserAffinityThread();
if (NameString) {
//
// Add Processor Name String to the registery
//
RtlInitUnicodeString(
&ValueName,
CmpProcessorNameString
);
RtlInitAnsiString(
&AnsiString,
ProcessorNameString.u.Bytes
);
RtlAnsiStringToUnicodeString(
&ValueData,
&AnsiString,
TRUE
);
Status = NtSetValueKey(
BaseHandle,
&ValueName,
TITLE_INDEX_VALUE,
REG_SZ,
ValueData.Buffer,
ValueData.Length + sizeof( UNICODE_NULL )
);
RtlFreeUnicodeString(&ValueData);
}
if (VendorID) {
//
// Add Vendor Indentifier to the registery
//
RtlInitUnicodeString(
&ValueName,
CmpVendorID
);
RtlInitAnsiString(
&AnsiString,
VendorID
);
RtlAnsiStringToUnicodeString(
&ValueData,
&AnsiString,
TRUE
);
Status = NtSetValueKey(
BaseHandle,
&ValueName,
TITLE_INDEX_VALUE,
REG_SZ,
ValueData.Buffer,
ValueData.Length + sizeof( UNICODE_NULL )
);
RtlFreeUnicodeString(&ValueData);
}
if (Prcb->FeatureBits) {
//
// Add processor feature bits to the registery
//
RtlInitUnicodeString(
&ValueName,
CmpFeatureBits
);
Status = NtSetValueKey(
BaseHandle,
&ValueName,
TITLE_INDEX_VALUE,
REG_DWORD,
&Prcb->FeatureBits,
sizeof (Prcb->FeatureBits)
);
}
if (Prcb->MHz) {
//
// Add processor MHz to the registery
//
RtlInitUnicodeString(
&ValueName,
CmpMHz
);
Status = NtSetValueKey(
BaseHandle,
&ValueName,
TITLE_INDEX_VALUE,
REG_DWORD,
&Prcb->MHz,
sizeof (Prcb->MHz)
);
}
if (Prcb->UpdateSignature.QuadPart) {
//
// Add processor MHz to the registery
//
RtlInitUnicodeString(
&ValueName,
CmpUpdateSignature
);
Status = NtSetValueKey(
BaseHandle,
&ValueName,
TITLE_INDEX_VALUE,
REG_BINARY,
&Prcb->UpdateSignature,
sizeof (Prcb->UpdateSignature)
);
}
NtClose(BaseHandle);
//
// Check processor steppings.
//
if (i == 0) {
P0L2Size = ThisProcessorL2Size;
} else {
//
// Check all processors against processor 0. Compare
// CPUID supported,
// Vendor ID String
// Family and Stepping
// L2 cache size.
//
if (Prcb->CpuID) {
if (strcmp(Prcb->VendorString,
KiProcessorBlock[0]->VendorString)) {
CmProcessorMismatch |= CM_PROCESSOR_MISMATCH_VENDOR;
}
if (ThisProcessorL2Size != P0L2Size) {
CmProcessorMismatch |= CM_PROCESSOR_MISMATCH_L2;
}
if ((Prcb->CpuType != KiProcessorBlock[0]->CpuType) ||
(Prcb->CpuStep != KiProcessorBlock[0]->CpuStep)) {
CmProcessorMismatch |= CM_PROCESSOR_MISMATCH_STEPPING;
}
} else {
//
// If this processor doesn't support CPUID, P0
// shouldn't support it either.
//
if (KiProcessorBlock[0]->CpuID) {
CmProcessorMismatch |= CM_PROCESSOR_MISMATCH_STEPPING;
}
}
}
}
if (0 != CmpConfigurationData) {
ExFreePool((PVOID)CmpConfigurationData);
}
}
//
// Next we try to collect System BIOS date and version strings.
//
//
// Open a physical memory section to map in physical memory.
//
RtlInitUnicodeString(
&SectionName,
L"\\Device\\PhysicalMemory"
);
InitializeObjectAttributes(
&ObjectAttributes,
&SectionName,
OBJ_CASE_INSENSITIVE,
(HANDLE) NULL,
(PSECURITY_DESCRIPTOR) NULL
);
Status = ZwOpenSection(
&SectionHandle,
SECTION_ALL_ACCESS,
&ObjectAttributes
);
if (!NT_SUCCESS(Status)) {
//
// If fail, forget the bios data and version
//
goto AllDone;
}
//
// Examine the first page of physical memory for int 10 segment
// address.
//
BaseAddress = 0;
ViewSize = 0x1000;
ViewBase.LowPart = 0;
ViewBase.HighPart = 0;
Status =ZwMapViewOfSection(
SectionHandle,
NtCurrentProcess(),
&BaseAddress,
0,
ViewSize,
&ViewBase,
&ViewSize,
ViewUnmap,
MEM_DOS_LIM,
PAGE_READWRITE
);
if (!NT_SUCCESS(Status)) {
VideoBiosStart = VIDEO_BIOS_START;
} else {
VideoBiosStart = (*((PULONG)BaseAddress + INT10_VECTOR) & 0xFFFF0000) >> 12;
VideoBiosStart += (*((PULONG)BaseAddress + INT10_VECTOR) & 0x0000FFFF);
VideoBiosStart &= 0xffff8000;
if (VideoBiosStart < VIDEO_BIOS_START) {
VideoBiosStart = VIDEO_BIOS_START;
}
Status = ZwUnmapViewOfSection(
NtCurrentProcess(),
BaseAddress
);
}
VersionStrings = ExAllocatePool(PagedPool, VERSION_DATA_LENGTH);
BaseAddress = 0;
ViewSize = SYSTEM_BIOS_LENGTH;
ViewBase.LowPart = SYSTEM_BIOS_START;
ViewBase.HighPart = 0;
Status =ZwMapViewOfSection(
SectionHandle,
NtCurrentProcess(),
&BaseAddress,
0,
ViewSize,
&ViewBase,
&ViewSize,
ViewUnmap,
MEM_DOS_LIM,
PAGE_READWRITE
);
if (NT_SUCCESS(Status)) {
if (CmpGetBiosDate(BaseAddress, SYSTEM_BIOS_LENGTH, Buffer, TRUE)) {
//
// Convert ascii date string to unicode string and
// store it in registry.
//
RtlInitUnicodeString(
&ValueName,
L"SystemBiosDate"
);
RtlInitAnsiString(
&AnsiString,
Buffer
);
RtlAnsiStringToUnicodeString(
&ValueData,
&AnsiString,
TRUE
);
Status = NtSetValueKey(
ParentHandle,
&ValueName,
TITLE_INDEX_VALUE,
REG_SZ,
ValueData.Buffer,
ValueData.Length + sizeof( UNICODE_NULL )
);
RtlFreeUnicodeString(&ValueData);
#ifdef _WANT_MACHINE_IDENTIFICATION
memcpy(Buffer, (PCHAR)BaseAddress + 0xFFF5, 8);
Buffer[8] = '\0';
RtlInitAnsiString(
&AnsiString,
Buffer
);
Status = RtlAnsiStringToUnicodeString(
&ValueData,
&AnsiString,
TRUE
);
if (NT_SUCCESS(Status)) {
Status = NtSetValueKey(
BiosInfo,
&ValueName,
TITLE_INDEX_VALUE,
REG_SZ,
ValueData.Buffer,
ValueData.Length + sizeof( UNICODE_NULL )
);
RtlFreeUnicodeString(&ValueData);
}
NtClose (BiosInfo);
#endif
}
if ((VersionPointer = VersionStrings) != NULL) {
//
// Try to detect ALL the possible BIOS version strings.
//
for (VersionPass = 0; ; VersionPass++) {
if (VersionPass == 0) {
//
// First try to get the version from ACPI tables.
//
if (!CmpGetAcpiBiosVersion(Buffer)) {
//
// This is a non-ACPI system.
//
continue;
}
} else {
if (!CmpGetBiosVersion((VersionPass == 1)? BaseAddress : NULL, (VersionPass == 1)? SYSTEM_BIOS_LENGTH : 0, Buffer)) {
break;
}
}
//
// Convert to unicode strings and copy them to our
// VersionStrings buffer.
//
RtlInitAnsiString(
&AnsiString,
Buffer
);
RtlAnsiStringToUnicodeString(
&ValueData,
&AnsiString,
TRUE
);
Length = ValueData.Length + sizeof(UNICODE_NULL);
RtlCopyMemory(VersionPointer,
ValueData.Buffer,
Length
);
VersionsLength += Length;
RtlFreeUnicodeString(&ValueData);
if (VersionsLength + (MAXIMUM_BIOS_VERSION_LENGTH +
sizeof(UNICODE_NULL)) * 2 > PAGE_SIZE) {
break;
}
VersionPointer += Length;
}
//
// If we found any version string, write it to the registry.
//
if (VersionsLength != 0) {
//
// Append a UNICODE_NULL to the end of VersionStrings
//
*(PWSTR)VersionPointer = UNICODE_NULL;
VersionsLength += sizeof(UNICODE_NULL);
//
// If any version string is found, we set up a ValueName and
// initialize its value to the string(s) we found.
//
RtlInitUnicodeString(
&ValueName,
L"SystemBiosVersion"
);
Status = NtSetValueKey(
ParentHandle,
&ValueName,
TITLE_INDEX_VALUE,
REG_MULTI_SZ,
VersionStrings,
VersionsLength
);
}
}
ZwUnmapViewOfSection(NtCurrentProcess(), BaseAddress);
}
//
// Get system information like SealedCaseSystem, LegacyFreeSystem etc from
// the BIOS.
//
if (CmpGetAcpiBiosInformation(&AcpiBiosInformation)) {
RtlInitUnicodeString(
&ValueName,
L"BootArchitecture"
);
NtSetValueKey(
ParentHandle,
&ValueName,
TITLE_INDEX_VALUE,
REG_DWORD,
&AcpiBiosInformation.BootArchitecture,
sizeof(ULONG)
);
RtlInitUnicodeString(
&ValueName,
L"PreferredProfile"
);
NtSetValueKey(
ParentHandle,
&ValueName,
TITLE_INDEX_VALUE,
REG_DWORD,
&AcpiBiosInformation.PreferredProfile,
sizeof(ULONG)
);
RtlInitUnicodeString(
&ValueName,
L"Capabilities"
);
NtSetValueKey(
ParentHandle,
&ValueName,
TITLE_INDEX_VALUE,
REG_DWORD,
&AcpiBiosInformation.Capabilities,
sizeof(ULONG)
);
}
//
// Next we try to collect Video BIOS date and version strings.
//
BaseAddress = 0;
ViewSize = VIDEO_BIOS_LENGTH;
ViewBase.LowPart = VideoBiosStart;
ViewBase.HighPart = 0;
Status =ZwMapViewOfSection(
SectionHandle,
NtCurrentProcess(),
&BaseAddress,
0,
ViewSize,
&ViewBase,
&ViewSize,
ViewUnmap,
MEM_DOS_LIM,
PAGE_READWRITE
);
if (NT_SUCCESS(Status)) {
if (CmpGetBiosDate(BaseAddress, VIDEO_BIOS_LENGTH, Buffer, FALSE)) {
RtlInitUnicodeString(
&ValueName,
L"VideoBiosDate"
);
RtlInitAnsiString(
&AnsiString,
Buffer
);
RtlAnsiStringToUnicodeString(
&ValueData,
&AnsiString,
TRUE
);
Status = NtSetValueKey(
ParentHandle,
&ValueName,
TITLE_INDEX_VALUE,
REG_SZ,
ValueData.Buffer,
ValueData.Length + sizeof( UNICODE_NULL )
);
RtlFreeUnicodeString(&ValueData);
}
if (VersionStrings && CmpGetBiosVersion(BaseAddress, VIDEO_BIOS_LENGTH, Buffer)) {
VersionPointer = VersionStrings;
do {
//
// Try to detect ALL the possible BIOS version strings.
// Convert them to unicode strings and copy them to our
// VersionStrings buffer.
//
RtlInitAnsiString(
&AnsiString,
Buffer
);
RtlAnsiStringToUnicodeString(
&ValueData,
&AnsiString,
TRUE
);
Length = ValueData.Length + sizeof(UNICODE_NULL);
RtlCopyMemory(VersionPointer,
ValueData.Buffer,
Length
);
VersionsLength += Length;
RtlFreeUnicodeString(&ValueData);
if (VersionsLength + (MAXIMUM_BIOS_VERSION_LENGTH +
sizeof(UNICODE_NULL)) * 2 > PAGE_SIZE) {
break;
}
VersionPointer += Length;
} while (CmpGetBiosVersion(NULL, 0, Buffer));
if (VersionsLength != 0) {
//
// Append a UNICODE_NULL to the end of VersionStrings
//
*(PWSTR)VersionPointer = UNICODE_NULL;
VersionsLength += sizeof(UNICODE_NULL);
RtlInitUnicodeString(
&ValueName,
L"VideoBiosVersion"
);
Status = NtSetValueKey(
ParentHandle,
&ValueName,
TITLE_INDEX_VALUE,
REG_MULTI_SZ,
VersionStrings,
VersionsLength
);
}
}
ZwUnmapViewOfSection(NtCurrentProcess(), BaseAddress);
}
ZwClose(SectionHandle);
if (VersionStrings) {
ExFreePool((PVOID)VersionStrings);
}
AllDone:
NtClose (ParentHandle);
//
// Add any other x86 specific code here...
//
#ifdef _WANT_MACHINE_IDENTIFICATION
//
// Do machine identification.
//
CmpPerformMachineIdentification(LoaderBlock);
#endif
return STATUS_SUCCESS;
}
#ifdef _WANT_MACHINE_IDENTIFICATION
VOID
CmpPerformMachineIdentification(
IN PLOADER_PARAMETER_BLOCK LoaderBlock
)
{
ULONG majorVersion;
ULONG minorVersion;
CHAR versionBuffer[64];
PCHAR major;
PCHAR minor;
ULONG minSize;
major = strcpy(versionBuffer, VER_PRODUCTVERSION_STR);
minor = strchr(major, '.');
majorVersion = atoi(major);
if( minor != NULL ) {
*minor++ = '\0';
minorVersion = atoi(minor);
} else {
minorVersion = 0;
}
if ( LoaderBlock->Extension->MajorVersion > majorVersion ||
(LoaderBlock->Extension->MajorVersion == majorVersion &&
LoaderBlock->Extension->MinorVersion >= minorVersion)) {
minSize = FIELD_OFFSET(LOADER_PARAMETER_EXTENSION, InfFileSize) + sizeof(ULONG);
if (LoaderBlock->Extension && LoaderBlock->Extension->Size >= minSize) {
if (LoaderBlock->Extension->InfFileImage && LoaderBlock->Extension->InfFileSize) {
CmpMatchInfList(
LoaderBlock->Extension->InfFileImage,
LoaderBlock->Extension->InfFileSize,
"MachineDescription"
);
}
}
}
}
#endif