windows-nt/Source/XPSP1/NT/drivers/parallel/parclass/util.h

274 lines
12 KiB
C
Raw Permalink Normal View History

2020-09-26 03:20:57 -05:00
/*++
Copyright (C) Microsoft Corporation, 1993 - 1999
Module Name:
util.h
Abstract:
This module contains utility code used by other 1284 modules.
Author:
Robbie Harris (Hewlett-Packard) 20-May-1998
Environment:
Kernel mode
Revision History :
--*/
#ifndef _UTIL_
#define _UTIL_
// Standard Maximum Timing values
#define IEEE_MAXTIME_TL 35 // Max time Tl from the IEEE spec
#define DEFAULT_RECEIVE_TIMEOUT 330
#define ParEnterCriticalSection(Xtension) xTension->bCriticalSection = TRUE
#define ParExitCriticalSection(Xtension) xTension->bCriticalSection = FALSE
// The following macros may be used to test the contents of the Device
// Status Regisger (DSR). These macros account for the hardware
// inversion of the nBusy (aka PtrBusy, PeriphAck) signal.
//////////////////////////////////////////////////////////////////////////////
#if (1 == DVRH_USE_FAST_MACROS)
#define DSR_TEST_MASK(b7,b6,b5,b4,b3) \
((UCHAR)(b7==DONT_CARE? 0: BIT_7_SET) | \
(b6==DONT_CARE? 0: BIT_6_SET) | \
(b5==DONT_CARE? 0: BIT_5_SET) | \
(b4==DONT_CARE? 0: BIT_4_SET) | \
(b3==DONT_CARE? 0: BIT_3_SET) )
#else
#define DSR_TEST_MASK(b7,b6,b5,b4,b3) \
((UCHAR)((b7==DONT_CARE?0:1)<<BIT_7) | \
((b6==DONT_CARE?0:1)<<BIT_6) | \
((b5==DONT_CARE?0:1)<<BIT_5) | \
((b4==DONT_CARE?0:1)<<BIT_4) | \
((b3==DONT_CARE?0:1)<<BIT_3) )
#endif
#if (1 == DVRH_USE_FAST_MACROS)
#define DSR_TEST_VALUE(b7,b6,b5,b4,b3) \
((UCHAR) ((b7==DONT_CARE?0:(b7==ACTIVE?0 : BIT_7_SET)) | \
(b6==DONT_CARE?0:(b6==ACTIVE? BIT_6_SET: 0)) | \
(b5==DONT_CARE?0:(b5==ACTIVE? BIT_5_SET: 0)) | \
(b4==DONT_CARE?0:(b4==ACTIVE? BIT_4_SET: 0)) | \
(b3==DONT_CARE?0:(b3==ACTIVE? BIT_3_SET: 0)) ) )
#else
#define DSR_TEST_VALUE(b7,b6,b5,b4,b3) \
((UCHAR) (((b7==DONT_CARE?0:(b7==ACTIVE?0:1))<<BIT_7) | \
((b6==DONT_CARE?0:(b6==ACTIVE?1:0))<<BIT_6) | \
((b5==DONT_CARE?0:(b5==ACTIVE?1:0))<<BIT_5) | \
((b4==DONT_CARE?0:(b4==ACTIVE?1:0))<<BIT_4) | \
((b3==DONT_CARE?0:(b3==ACTIVE?1:0))<<BIT_3) ) )
#endif
#define TEST_DSR(registerValue,b7,b6,b5,b4,b3) \
(((registerValue) & DSR_TEST_MASK(b7,b6,b5,b4,b3)) == DSR_TEST_VALUE(b7,b6,b5,b4,b3))
#define CHECK_DSR( addr, b7, b6, b5, b4, b3, msTime ) \
(TEST_DSR(READ_PORT_UCHAR(addr + OFFSET_DSR), b7, b6, b5, b4, b3 ) ? TRUE : \
CheckPort( addr + OFFSET_DSR, \
DSR_TEST_MASK( b7, b6, b5, b4, b3 ), \
DSR_TEST_VALUE( b7, b6, b5, b4, b3 ), \
msTime ) )
////////////////////////////////////////////////////////////////////////////////
// The CHECK_DSR_AND_FIFO macro may be used to invoke the CheckPort2 function,
// without having to specify the mask and value components twice.
// CHECK_DSR_AND_FIFO does quick tests of the DSR and ECR ports first.
// If the peripheral has already responded with either of the
// desired values, CheckPort2 need not be called.
////////////////////////////////////////////////////////////////////////////////
#define CHECK_DSR_WITH_FIFO( addr, b7, b6, b5, b4, b3, ecr_mask, ecr_value, msTime ) \
( TEST_DSR( READ_PORT_UCHAR( addr + OFFSET_DSR ), b7, b6, b5, b4, b3 ) ? TRUE : \
CheckTwoPorts( addr + OFFSET_DSR, \
DSR_TEST_MASK( b7, b6, b5, b4, b3 ), \
DSR_TEST_VALUE( b7, b6, b5, b4, b3 ), \
addr + ECR_OFFSET, \
ecr_mask, \
ecr_value, \
msTime) )
//////////////////////////////////////////////////////////////////////////////
// The following defines and macros may be used to set, test, and
// update the Device Control Register (DCR).
//////////////////////////////////////////////////////////////////////////////
// The DCR_AND_MASK macro generates a byte constant that is used by
// the UPDATE_DCR macro.
#if (1 == DVRH_USE_FAST_MACROS)
#define DCR_AND_MASK(b5,b4,b3,b2,b1,b0) \
((UCHAR)((b5==DONT_CARE? BIT_5_SET:(b5==ACTIVE? BIT_5_SET: 0)) | \
(b4==DONT_CARE? BIT_4_SET:(b4==ACTIVE? BIT_4_SET: 0)) | \
(b3==DONT_CARE? BIT_3_SET:(b3==ACTIVE? 0: BIT_3_SET)) | \
(b2==DONT_CARE? BIT_2_SET:(b2==ACTIVE? BIT_2_SET: 0)) | \
(b1==DONT_CARE? BIT_1_SET:(b1==ACTIVE? 0: BIT_1_SET)) | \
(b0==DONT_CARE? BIT_0_SET:(b0==ACTIVE? 0: BIT_0_SET)) ) )
#else
#define DCR_AND_MASK(b5,b4,b3,b2,b1,b0) \
((UCHAR)(((b5==DONT_CARE?1:(b5==ACTIVE?1:0))<<BIT_5) | \
((b4==DONT_CARE?1:(b4==ACTIVE?1:0))<<BIT_4) | \
((b3==DONT_CARE?1:(b3==ACTIVE?0:1))<<BIT_3) | \
((b2==DONT_CARE?1:(b2==ACTIVE?1:0))<<BIT_2) | \
((b1==DONT_CARE?1:(b1==ACTIVE?0:1))<<BIT_1) | \
((b0==DONT_CARE?1:(b0==ACTIVE?0:1))<<BIT_0) ) )
#endif
// The DCR_OR_MASK macro generates a byte constant that is used by
// the UPDATE_DCR macro.
#if (1 == DVRH_USE_FAST_MACROS)
#define DCR_OR_MASK(b5,b4,b3,b2,b1,b0) \
((UCHAR)((b5==DONT_CARE? 0:(b5==ACTIVE? BIT_5_SET: 0)) | \
(b4==DONT_CARE? 0:(b4==ACTIVE? BIT_4_SET: 0)) | \
(b3==DONT_CARE? 0:(b3==ACTIVE? 0: BIT_3_SET)) | \
(b2==DONT_CARE? 0:(b2==ACTIVE? BIT_2_SET: 0)) | \
(b1==DONT_CARE? 0:(b1==ACTIVE? 0: BIT_1_SET)) | \
(b0==DONT_CARE? 0:(b0==ACTIVE? 0: BIT_0_SET)) ) )
#else
#define DCR_OR_MASK(b5,b4,b3,b2,b1,b0) \
((UCHAR)(((b5==DONT_CARE?0:(b5==ACTIVE?1:0))<<BIT_5) | \
((b4==DONT_CARE?0:(b4==ACTIVE?1:0))<<BIT_4) | \
((b3==DONT_CARE?0:(b3==ACTIVE?0:1))<<BIT_3) | \
((b2==DONT_CARE?0:(b2==ACTIVE?1:0))<<BIT_2) | \
((b1==DONT_CARE?0:(b1==ACTIVE?0:1))<<BIT_1) | \
((b0==DONT_CARE?0:(b0==ACTIVE?0:1))<<BIT_0) ) )
#endif
// The UPDATE_DCR macro generates provides a selective update of specific bits
// in the DCR. Any bit positions specified as DONT_CARE will be left
// unchanged. The macro accounts for the hardware inversion of
// certain signals.
#define UPDATE_DCR(registerValue,b5,b4,b3,b2,b1,b0) \
((UCHAR)(((registerValue) & DCR_AND_MASK(b5,b4,b3,b2,b1,b0)) | DCR_OR_MASK(b5,b4,b3,b2,b1,b0)))
// The DCR_TEST_MASK macro generates a byte constant which may be used
// to mask of DCR bits that we don't care about
#if (1 == DVRH_USE_FAST_MACROS)
#define DCR_TEST_MASK(b5,b4,b3,b2,b1,b0) \
((UCHAR)((b5==DONT_CARE?0:BIT_5_SET) | \
(b4==DONT_CARE?0:BIT_4_SET) | \
(b3==DONT_CARE?0:BIT_3_SET) | \
(b2==DONT_CARE?0:BIT_2_SET) | \
(b1==DONT_CARE?0:BIT_1_SET) | \
(b0==DONT_CARE?0:BIT_0_SET) ) )
#else
#define DCR_TEST_MASK(b5,b4,b3,b2,b1,b0) \
((UCHAR)( ((b5==DONT_CARE?0:1)<<BIT_5) | \
((b4==DONT_CARE?0:1)<<BIT_4) | \
((b3==DONT_CARE?0:1)<<BIT_3) | \
((b2==DONT_CARE?0:1)<<BIT_2) | \
((b1==DONT_CARE?0:1)<<BIT_1) | \
((b0==DONT_CARE?0:1)<<BIT_0) ) )
#endif
// The DCR_TEST_VALUE macro generates a byte constant that may be used
// to compare against a masked DCR value. This macro takes into
// account which signals are inverted by hardware before driving the
// signal line.
#if (1 == DVRH_USE_FAST_MACROS)
#define DCR_TEST_VALUE(b5,b4,b3,b2,b1,b0) \
((UCHAR)((b5==DONT_CARE?0:(b5==ACTIVE? BIT_5_SET: 0)) | \
(b4==DONT_CARE?0:(b4==ACTIVE? BIT_4_SET: 0)) | \
(b3==DONT_CARE?0:(b3==ACTIVE? 0: BIT_3_SET)) | \
(b2==DONT_CARE?0:(b2==ACTIVE? BIT_2_SET: 0)) | \
(b1==DONT_CARE?0:(b1==ACTIVE? 0: BIT_1_SET)) | \
(b0==DONT_CARE?0:(b0==ACTIVE? 0: BIT_0_SET)) ) )
#else
#define DCR_TEST_VALUE(b5,b4,b3,b2,b1,b0) \
((UCHAR)(((b5==DONT_CARE?0:(b5==ACTIVE?1:0))<<BIT_5) | \
((b4==DONT_CARE?0:(b4==ACTIVE?1:0))<<BIT_4) | \
((b3==DONT_CARE?0:(b3==ACTIVE?0:1))<<BIT_3) | \
((b2==DONT_CARE?0:(b2==ACTIVE?1:0))<<BIT_2) | \
((b1==DONT_CARE?0:(b1==ACTIVE?0:1))<<BIT_1) | \
((b0==DONT_CARE?0:(b0==ACTIVE?0:1))<<BIT_0) ) )
#endif
// The TEST_DCR macro may be used to generate a boolean result that is
// TRUE if the DCR value matches the specified signal levels and FALSE
// otherwise.
#define TEST_DCR(registerValue,b5,b4,b3,b2,b1,b0) \
(((registerValue) & DCR_TEST_MASK(b5,b4,b3,b2,b1,b0)) == DCR_TEST_VALUE(b5,b4,b3,b2,b1,b0))
// mask all but AckDataReq, XFlag, and nDataAvail to validate if it is still NIBBLE mode
// 00111000b
//#define DSR_NIBBLE_VALIDATION (0x38)
#define DSR_NIBBLE_VALIDATION (0x30)
// AckDataReq high, XFlag low, nDataAvail high
// 00101000b
//#define DSR_NIBBLE_TEST_RESULT (0x28)
#define DSR_NIBBLE_TEST_RESULT (0x20)
// mask all but AckDataReq, XFlag, and nDataAvail to validate if it is still BYTE mode
// 00111000b
#define DSR_BYTE_VALIDATION (0x38)
// AckDataReq high, XFlag high, nDataAvail high
// 00111000b
#define DSR_BYTE_TEST_RESULT (0x38)
#define DVRH_LOGIC_ANALYZER_START(CNT) \
int DVRH_temp; \
int DVRH_max = CNT; \
int DVRH_cnt = 0; \
UCHAR DVRH_dsr; \
UCHAR DVRH_Statedsr[CNT]; \
LARGE_INTEGER DVRH_Statetime[CNT];
#define DVRH_LOGIC_ANALYZER_READ_TIMER(DSR) \
DVRH_dsr = READ_PORT_UCHAR(DSR); \
KeQuerySystemTime(&DVRH_Statetime[DVRH_cnt]); \
DVRH_Statedsr[DVRH_cnt++] = DVRH_dsr;
#define DVRH_LOGIC_ANALYZER_READ_STATE(DSR) \
DVRH_dsr = READ_PORT_UCHAR(DSR); \
KeQuerySystemTime(&DVRH_Statetime[DVRH_cnt]); \
DVRH_Statedsr[DVRH_cnt ? ((DVRH_dsr != DVRH_Statedsr[DVRH_cnt-1]) ? DVRH_cnt++ : DVRH_cnt) : 0] = DVRH_dsr;
#define DVRH_LOGIC_ANALYZER_END \
KdPrint("0. %10u-%10u dsr [%x]\n", \
DVRH_Statetime[0].HighPart, \
DVRH_Statetime[0].LowPart/10, \
DVRH_Statedsr[0]); \
for (DVRH_temp=1; DVRH_temp<DVRH_cnt; DVRH_temp++) \
{ \
KdPrint("%d. %10u-%10u diff [%10u]us dsr [%x]\n", \
DVRH_temp, \
DVRH_Statetime[DVRH_temp].HighPart, \
DVRH_Statetime[DVRH_temp].LowPart/10, \
((DVRH_Statetime[DVRH_temp].LowPart/10) - (DVRH_Statetime[DVRH_temp-1].LowPart/10)), \
DVRH_Statedsr[DVRH_temp]); \
}
void BusReset(
IN PUCHAR DCRController
);
BOOLEAN CheckPort(IN PUCHAR offset_Controller,
IN UCHAR dsrMask,
IN UCHAR dsrValue,
IN USHORT msTimeDelay);
BOOLEAN
CheckTwoPorts(
PUCHAR pPortAddr1,
UCHAR bMask1,
UCHAR bValue1,
PUCHAR pPortAddr2,
UCHAR bMask2,
UCHAR bValue2,
USHORT msTimeDelay
);
#if (1 == DVRH_DELAY_THEORY)
void DVRH_Diagnostic_Delay();
#endif
#endif