windows-nt/Source/XPSP1/NT/drivers/video/matrox/mga/disp/enable.c

2003 lines
68 KiB
C
Raw Permalink Normal View History

2020-09-26 03:20:57 -05:00
/******************************Module*Header*******************************\
* Module Name: enable.c
*
* This module contains the functions that enable and disable the
* driver, the pdev, and the surface.
*
* Copyright (c) 1992-1996 Microsoft Corporation
* Copyright (c) 1993-1996 Matrox Electronic Systems, Ltd.
\**************************************************************************/
#include "precomp.h"
#define DBG_MCD 0
/******************************Public*Structure****************************\
* GDIINFO ggdiDefault
*
* This contains the default GDIINFO fields that are passed back to GDI
* during DrvEnablePDEV.
*
* NOTE: This structure defaults to values for an 8bpp palette device.
* Some fields are overwritten for different colour depths.
\**************************************************************************/
GDIINFO ggdiDefault = {
GDI_DRIVER_VERSION,
DT_RASDISPLAY, // ulTechnology
0, // ulHorzSize (filled in later)
0, // ulVertSize (filled in later)
0, // ulHorzRes (filled in later)
0, // ulVertRes (filled in later)
0, // cBitsPixel (filled in later)
0, // cPlanes (filled in later)
20, // ulNumColors (palette managed)
0, // flRaster (DDI reserved field)
0, // ulLogPixelsX (filled in later)
0, // ulLogPixelsY (filled in later)
TC_RA_ABLE, // flTextCaps -- If we had wanted console windows
// to scroll by repainting the entire window,
// instead of doing a screen-to-screen blt, we
// would have set TC_SCROLLBLT (yes, the flag is
// bass-ackwards).
0, // ulDACRed (filled in later)
0, // ulDACGreen (filled in later)
0, // ulDACBlue (filled in later)
0x0024, // ulAspectX
0x0024, // ulAspectY
0x0033, // ulAspectXY (one-to-one aspect ratio)
1, // xStyleStep
1, // yStyleSte;
3, // denStyleStep -- Styles have a one-to-one aspect
// ratio, and every 'dot' is 3 pixels long
{ 0, 0 }, // ptlPhysOffset
{ 0, 0 }, // szlPhysSize
256, // ulNumPalReg
// These fields are for halftone initialization. The actual values are
// a bit magic, but seem to work well on our display.
{ // ciDevice
{ 6700, 3300, 0 }, // Red
{ 2100, 7100, 0 }, // Green
{ 1400, 800, 0 }, // Blue
{ 1750, 3950, 0 }, // Cyan
{ 4050, 2050, 0 }, // Magenta
{ 4400, 5200, 0 }, // Yellow
{ 3127, 3290, 0 }, // AlignmentWhite
20000, // RedGamma
20000, // GreenGamma
20000, // BlueGamma
0, 0, 0, 0, 0, 0 // No dye correction for raster displays
},
0, // ulDevicePelsDPI (for printers only)
PRIMARY_ORDER_CBA, // ulPrimaryOrder
HT_PATSIZE_4x4_M, // ulHTPatternSize
HT_FORMAT_8BPP, // ulHTOutputFormat
HT_FLAG_ADDITIVE_PRIMS, // flHTFlags
0, // ulVRefresh
0, // ulBltAlignment
0, // ulPanningHorzRes
0, // ulPanningVertRes
};
/******************************Public*Structure****************************\
* DEVINFO gdevinfoDefault
*
* This contains the default DEVINFO fields that are passed back to GDI
* during DrvEnablePDEV.
*
* NOTE: This structure defaults to values for an 8bpp palette device.
* Some fields are overwritten for different colour depths.
\**************************************************************************/
#define SYSTM_LOGFONT {16,7,0,0,700,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\
CLIP_DEFAULT_PRECIS,DEFAULT_QUALITY,\
VARIABLE_PITCH | FF_DONTCARE,L"System"}
#define HELVE_LOGFONT {12,9,0,0,400,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\
CLIP_STROKE_PRECIS,PROOF_QUALITY,\
VARIABLE_PITCH | FF_DONTCARE,L"MS Sans Serif"}
#define COURI_LOGFONT {12,9,0,0,400,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\
CLIP_STROKE_PRECIS,PROOF_QUALITY,\
FIXED_PITCH | FF_DONTCARE, L"Courier"}
DEVINFO gdevinfoDefault = {
(GCAPS_OPAQUERECT |
GCAPS_DITHERONREALIZE |
GCAPS_PALMANAGED |
GCAPS_ALTERNATEFILL |
GCAPS_WINDINGFILL |
GCAPS_MONO_DITHER |
GCAPS_COLOR_DITHER |
GCAPS_DIRECTDRAW |
GCAPS_ASYNCMOVE), // NOTE: Only enable ASYNCMOVE if your code
// and hardware can handle DrvMovePointer
// calls at any time, even while another
// thread is in the middle of a drawing
// call such as DrvBitBlt.
// flGraphicsCaps
SYSTM_LOGFONT, // lfDefaultFont
HELVE_LOGFONT, // lfAnsiVarFont
COURI_LOGFONT, // lfAnsiFixFont
0, // cFonts
BMF_8BPP, // iDitherFormat
8, // cxDither
8, // cyDither
0, // hpalDefault (filled in later)
GCAPS2_CHANGEGAMMARAMP // flGraphicsCaps2
};
/******************************Public*Structure****************************\
* DFVFN gadrvfn[]
*
* Build the driver function table gadrvfn with function index/address
* pairs. This table tells GDI which DDI calls we support, and their
* location (GDI does an indirect call through this table to call us).
*
* Why haven't we implemented DrvSaveScreenBits? To save code.
*
* When the driver doesn't hook DrvSaveScreenBits, USER simulates on-
* the-fly by creating a temporary device-format-bitmap, and explicitly
* calling DrvCopyBits to save/restore the bits. Since we already hook
* DrvCreateDeviceBitmap, we'll end up using off-screen memory to store
* the bits anyway (which would have been the main reason for implementing
* DrvSaveScreenBits). So we may as well save some working set.
\**************************************************************************/
#if MULTI_BOARDS
// Multi-board support has its own thunks...
DRVFN gadrvfn[] = {
{ INDEX_DrvEnablePDEV, (PFN) MulEnablePDEV },
{ INDEX_DrvCompletePDEV, (PFN) MulCompletePDEV },
{ INDEX_DrvDisablePDEV, (PFN) MulDisablePDEV },
{ INDEX_DrvEnableSurface, (PFN) MulEnableSurface },
{ INDEX_DrvDisableSurface, (PFN) MulDisableSurface },
{ INDEX_DrvAssertMode, (PFN) MulAssertMode },
{ INDEX_DrvSynchronize, (PFN) DrvSynchronize },
{ INDEX_DrvMovePointer, (PFN) MulMovePointer },
{ INDEX_DrvSetPointerShape, (PFN) MulSetPointerShape },
{ INDEX_DrvDitherColor, (PFN) MulDitherColor },
{ INDEX_DrvSetPalette, (PFN) MulSetPalette },
{ INDEX_DrvCopyBits, (PFN) MulCopyBits },
{ INDEX_DrvBitBlt, (PFN) MulBitBlt },
{ INDEX_DrvTextOut, (PFN) MulTextOut },
{ INDEX_DrvGetModes, (PFN) MulGetModes },
{ INDEX_DrvStrokePath, (PFN) MulStrokePath },
{ INDEX_DrvFillPath, (PFN) MulFillPath },
{ INDEX_DrvPaint, (PFN) MulPaint },
{ INDEX_DrvRealizeBrush, (PFN) MulRealizeBrush },
{ INDEX_DrvDestroyFont, (PFN) MulDestroyFont },
// Note that DrvStretchBlt is not supported for multi-boards
// Note that DrvCreateDeviceBitmap is not supported for multi-boards
// Note that DrvDeleteDeviceBitmap is not supported for multi-boards
// Note that DrvEscape is not supported for multi-boards
// Note that DrvLineTo is not supported for multi-boards
// Note that DrvDirectDraw functions are not supported for multi-boards
};
#elif DBG
// On Checked builds, or when we have to synchronize access, thunk
// everything through Dbg calls...
DRVFN gadrvfn[] = {
{ INDEX_DrvEnablePDEV, (PFN) DbgEnablePDEV },
{ INDEX_DrvCompletePDEV, (PFN) DbgCompletePDEV },
{ INDEX_DrvDisablePDEV, (PFN) DbgDisablePDEV },
{ INDEX_DrvEnableSurface, (PFN) DbgEnableSurface },
{ INDEX_DrvDisableSurface, (PFN) DbgDisableSurface },
{ INDEX_DrvAssertMode, (PFN) DbgAssertMode },
{ INDEX_DrvSynchronize, (PFN) DrvSynchronize },
{ INDEX_DrvOffset, (PFN) DbgOffset },
{ INDEX_DrvMovePointer, (PFN) DbgMovePointer },
{ INDEX_DrvSetPointerShape, (PFN) DbgSetPointerShape },
{ INDEX_DrvDitherColor, (PFN) DbgDitherColor },
{ INDEX_DrvSetPalette, (PFN) DbgSetPalette },
{ INDEX_DrvCopyBits, (PFN) DbgCopyBits },
{ INDEX_DrvBitBlt, (PFN) DbgBitBlt },
{ INDEX_DrvTextOut, (PFN) DbgTextOut },
{ INDEX_DrvGetModes, (PFN) DbgGetModes },
{ INDEX_DrvStrokePath, (PFN) DbgStrokePath },
{ INDEX_DrvLineTo, (PFN) DbgLineTo },
{ INDEX_DrvFillPath, (PFN) DbgFillPath },
{ INDEX_DrvPaint, (PFN) DbgPaint },
{ INDEX_DrvRealizeBrush, (PFN) DbgRealizeBrush },
{ INDEX_DrvCreateDeviceBitmap, (PFN) DbgCreateDeviceBitmap },
{ INDEX_DrvDeleteDeviceBitmap, (PFN) DbgDeleteDeviceBitmap },
{ INDEX_DrvDestroyFont, (PFN) DbgDestroyFont },
{ INDEX_DrvStretchBlt, (PFN) DbgStretchBlt },
{ INDEX_DrvGetDirectDrawInfo, (PFN) DbgGetDirectDrawInfo },
{ INDEX_DrvEnableDirectDraw, (PFN) DbgEnableDirectDraw },
{ INDEX_DrvDisableDirectDraw, (PFN) DbgDisableDirectDraw },
{ INDEX_DrvEscape, (PFN) DbgEscape },
{ INDEX_DrvResetPDEV, (PFN) DbgResetPDEV },
{ INDEX_DrvIcmSetDeviceGammaRamp, (PFN) DbgIcmSetDeviceGammaRamp },
{ INDEX_DrvDeriveSurface, (PFN) DrvDeriveSurface },
};
#else
// On Free builds, directly call the appropriate functions...
DRVFN gadrvfn[] = {
{ INDEX_DrvEnablePDEV, (PFN) DrvEnablePDEV },
{ INDEX_DrvCompletePDEV, (PFN) DrvCompletePDEV },
{ INDEX_DrvDisablePDEV, (PFN) DrvDisablePDEV },
{ INDEX_DrvEnableSurface, (PFN) DrvEnableSurface },
{ INDEX_DrvDisableSurface, (PFN) DrvDisableSurface },
{ INDEX_DrvAssertMode, (PFN) DrvAssertMode },
{ INDEX_DrvSynchronize, (PFN) DrvSynchronize },
{ INDEX_DrvOffset, (PFN) DrvOffset },
{ INDEX_DrvMovePointer, (PFN) DrvMovePointer },
{ INDEX_DrvSetPointerShape, (PFN) DrvSetPointerShape },
{ INDEX_DrvDitherColor, (PFN) DrvDitherColor },
{ INDEX_DrvSetPalette, (PFN) DrvSetPalette },
{ INDEX_DrvCopyBits, (PFN) DrvCopyBits },
{ INDEX_DrvBitBlt, (PFN) DrvBitBlt },
{ INDEX_DrvTextOut, (PFN) DrvTextOut },
{ INDEX_DrvGetModes, (PFN) DrvGetModes },
{ INDEX_DrvStrokePath, (PFN) DrvStrokePath },
{ INDEX_DrvLineTo, (PFN) DrvLineTo },
{ INDEX_DrvFillPath, (PFN) DrvFillPath },
{ INDEX_DrvPaint, (PFN) DrvPaint },
{ INDEX_DrvRealizeBrush, (PFN) DrvRealizeBrush },
{ INDEX_DrvCreateDeviceBitmap, (PFN) DrvCreateDeviceBitmap },
{ INDEX_DrvDeleteDeviceBitmap, (PFN) DrvDeleteDeviceBitmap },
{ INDEX_DrvDestroyFont, (PFN) DrvDestroyFont },
{ INDEX_DrvStretchBlt, (PFN) DrvStretchBlt },
{ INDEX_DrvGetDirectDrawInfo, (PFN) DrvGetDirectDrawInfo },
{ INDEX_DrvEnableDirectDraw, (PFN) DrvEnableDirectDraw },
{ INDEX_DrvDisableDirectDraw, (PFN) DrvDisableDirectDraw },
{ INDEX_DrvEscape, (PFN) DrvEscape },
{ INDEX_DrvResetPDEV, (PFN) DrvResetPDEV },
{ INDEX_DrvIcmSetDeviceGammaRamp, (PFN) DrvIcmSetDeviceGammaRamp },
{ INDEX_DrvDeriveSurface, (PFN) DrvDeriveSurface },
};
#endif
ULONG gcdrvfn = sizeof(gadrvfn) / sizeof(DRVFN);
/******************************Public*Routine******************************\
* ULONG GetDisplayUniqueness(PDEV *ppdev)
*
* Returns the display uniqueness.
*
\**************************************************************************/
ULONG GetDisplayUniqueness(PDEV *ppdev)
{
return ppdev->iUniqueness;
}
/******************************Public*Routine******************************\
* BOOL DrvResetPDEV
*
* Notifies the driver of a dynamic mode change.
*
\**************************************************************************/
BOOL DrvResetPDEV(
DHPDEV dhpdevOld,
DHPDEV dhpdevNew)
{
PDEV* ppdevNew = (PDEV*) dhpdevNew;
PDEV* ppdevOld = (PDEV*) dhpdevOld;
ppdevNew->iUniqueness = ppdevOld->iUniqueness + 1;
return(TRUE);
}
/******************************Public*Routine******************************\
* BOOL DrvEnableDriver
*
* Enables the driver by retrieving the drivers function table and version.
*
\**************************************************************************/
BOOL DrvEnableDriver(
ULONG iEngineVersion,
ULONG cj,
DRVENABLEDATA* pded)
{
// Engine Version is passed down so future drivers can support previous
// engine versions. A next generation driver can support both the old
// and new engine conventions if told what version of engine it is
// working with. For the first version the driver does nothing with it.
// Fill in as much as we can.
if (cj >= sizeof(DRVENABLEDATA))
pded->pdrvfn = gadrvfn;
if (cj >= (sizeof(ULONG) * 2))
pded->c = gcdrvfn;
// DDI version this driver was targeted for is passed back to engine.
// Future graphic's engine may break calls down to old driver format.
if (cj >= sizeof(ULONG))
pded->iDriverVersion = DDI_DRIVER_VERSION_NT4;
return(TRUE);
}
/******************************Public*Routine******************************\
* VOID DrvDisableDriver
*
* Tells the driver it is being disabled. Release any resources allocated in
* DrvEnableDriver.
*
\**************************************************************************/
VOID DrvDisableDriver(VOID)
{
return;
}
/******************************Public*Routine******************************\
* DHPDEV DrvEnablePDEV
*
* Initializes a bunch of fields for GDI, based on the mode we've been asked
* to do. This is the first thing called after DrvEnableDriver, when GDI
* wants to get some information about us.
*
* (This function mostly returns back information; DrvEnableSurface is used
* for initializing the hardware and driver components.)
*
\**************************************************************************/
DHPDEV DrvEnablePDEV(
DEVMODEW* pdm, // Contains data pertaining to requested mode
PWSTR pwszLogAddr, // Logical address
ULONG cPat, // Count of standard patterns
HSURF* phsurfPatterns, // Buffer for standard patterns
ULONG cjCaps, // Size of buffer for device caps 'pdevcaps'
ULONG* pdevcaps, // Buffer for device caps, also known as 'gdiinfo'
ULONG cjDevInfo, // Number of bytes in device info 'pdi'
DEVINFO* pdi, // Device information
HDEV hdev, // HDEV, used for callbacks
PWSTR pwszDeviceName, // Device name
HANDLE hDriver) // Kernel driver handle
{
PDEV* ppdev;
DISPDBG((1, "DrvEnablePDEV - Entry"));
// Future versions of NT had better supply 'devcaps' and 'devinfo'
// structures that are the same size or larger than the current
// structures:
if ((cjCaps < sizeof(GDIINFO)) || (cjDevInfo < sizeof(DEVINFO)))
{
DISPDBG((0, "DrvEnablePDEV - Buffer size too small"));
goto ReturnFailure0;
}
// Allocate a physical device structure. Note that we definitely
// rely on the zero initialization:
ppdev = (PDEV*) EngAllocMem(FL_ZERO_MEMORY, sizeof(PDEV), ALLOC_TAG);
if (ppdev == NULL)
{
DISPDBG((0, "DrvEnablePDEV - Failed EngAllocMem"));
goto ReturnFailure0;
}
ppdev->hDriver = hDriver;
// Get the current screen mode information. Set up device caps and
// devinfo:
if (!bInitializeModeFields(ppdev, (GDIINFO*) pdevcaps, pdi, pdm))
{
DISPDBG((0, "DrvEnablePDEV - Failed bInitializeModeFields"));
goto ReturnFailure1;
}
// Initialize palette information.
if (!bInitializePalette(ppdev, pdi))
{
DISPDBG((0, "DrvEnablePDEV - Failed bInitializePalette"));
goto ReturnFailure1;
}
return((DHPDEV) ppdev);
ReturnFailure1:
DrvDisablePDEV((DHPDEV) ppdev);
ReturnFailure0:
DISPDBG((0, "Failed DrvEnablePDEV"));
return(0);
}
/******************************Public*Routine******************************\
* VOID DrvDisablePDEV
*
* Release the resources allocated in DrvEnablePDEV. If a surface has been
* enabled DrvDisableSurface will have already been called.
*
* Note that this function will be called when previewing modes in the
* Display Applet, but not at system shutdown. If you need to reset the
* hardware at shutdown, you can do it in the miniport by providing a
* 'HwResetHw' entry point in the VIDEO_HW_INITIALIZATION_DATA structure.
*
* Note: In an error, we may call this before DrvEnablePDEV is done.
*
\**************************************************************************/
VOID DrvDisablePDEV(
DHPDEV dhpdev)
{
PDEV* ppdev;
ppdev = (PDEV*) dhpdev;
vUninitializePalette(ppdev);
EngFreeMem(ppdev);
}
/******************************Public*Routine******************************\
* VOID DrvCompletePDEV
*
* Store the HPDEV, the engines handle for this PDEV, in the DHPDEV.
*
\**************************************************************************/
VOID DrvCompletePDEV(
DHPDEV dhpdev,
HDEV hdev)
{
((PDEV*) dhpdev)->hdevEng = hdev;
}
/******************************Public*Routine******************************\
* HSURF DrvEnableSurface
*
* Creates the drawing surface, initializes the hardware, and initializes
* driver components. This function is called after DrvEnablePDEV, and
* performs the final device initialization.
*
\**************************************************************************/
HSURF DrvEnableSurface(
DHPDEV dhpdev)
{
PDEV* ppdev;
HSURF hsurf;
SIZEL sizl;
DSURF* pdsurf;
VOID* pvTmpBuffer;
SURFOBJ* pso;
ppdev = (PDEV*) dhpdev;
/////////////////////////////////////////////////////////////////////
// First enable all the subcomponents.
//
// Note that the order in which these 'Enable' functions are called
// may be significant in low off-screen memory conditions, because
// the off-screen heap manager may fail some of the later
// allocations...
if (!bEnableHardware(ppdev))
goto ReturnFailure;
if (!bEnableOffscreenHeap(ppdev))
goto ReturnFailure;
if (!bEnablePointer(ppdev))
goto ReturnFailure;
if (!bEnableText(ppdev))
goto ReturnFailure;
if (!bEnableBrushCache(ppdev))
goto ReturnFailure;
if (!bEnablePalette(ppdev))
goto ReturnFailure;
if (!bEnableDirectDraw(ppdev))
goto ReturnFailure;
if (!bEnableMCD(ppdev))
goto ReturnFailure;
/////////////////////////////////////////////////////////////////////
// Now create our private surface structure.
//
// Whenever we get a call to draw directly to the screen, we'll get
// passed a pointer to a SURFOBJ whose 'dhpdev' field will point
// to our PDEV structure, and whose 'dhsurf' field will point to the
// following DSURF structure.
//
// Every device bitmap we create in DrvCreateDeviceBitmap will also
// have its own unique DSURF structure allocated (but will share the
// same PDEV). To make our code more polymorphic for handling drawing
// to either the screen or an off-screen bitmap, we have the same
// structure for both.
pdsurf = EngAllocMem(FL_ZERO_MEMORY, sizeof(DSURF), ALLOC_TAG);
if (pdsurf == NULL)
{
DISPDBG((0, "DrvEnableSurface - Failed pdsurf EngAllocMem"));
goto ReturnFailure;
}
ppdev->pdsurfScreen = pdsurf; // Remember it for clean-up
pdsurf->poh = ppdev->pohScreen; // The screen is a surface, too
pdsurf->dt = DT_SCREEN; // Not to be confused with a DIB
pdsurf->sizl.cx = ppdev->cxScreen;
pdsurf->sizl.cy = ppdev->cyScreen;
pdsurf->ppdev = ppdev;
/////////////////////////////////////////////////////////////////////
// Next, have GDI create the actual SURFOBJ.
//
// Since we can map the entire framebuffer linearly into main memory
// (i.e., we didn't have to go through a 64k aperture), it is
// beneficial to create the surface via EngCreateBitmap, giving GDI a
// pointer to the framebuffer bits.
sizl.cx = ppdev->cxScreen;
sizl.cy = ppdev->cyScreen;
if (ppdev->ulBoardId == MGA_STORM) {
// We should have a linear frame buffer, so create an
// engine managed surface.
hsurf = (HSURF) EngCreateBitmap(sizl,
ppdev->lDelta,
ppdev->iBitmapFormat,
BMF_TOPDOWN,
ppdev->pjScreen +
(ppdev->ulYDstOrg * ppdev->cjPelSize));
if (hsurf == 0)
{
DISPDBG((0, "DrvEnableSurface - Failed EngCreateBitmap"));
goto ReturnFailure;
}
// Set it up so that the when we are passed a SURFOBJ for the
// screen, the 'dhsurf' will point to the screen's surface structure:
// !!! Grody?
pso = EngLockSurface(hsurf);
if (pso == NULL)
{
DISPDBG((0, "DrvEnableSurface - Couldn't lock our surface"));
goto ReturnFailure;
}
pso->dhsurf = (DHSURF) pdsurf;
EngUnlockSurface(pso);
if (!EngAssociateSurface(hsurf, ppdev->hdevEng, ppdev->flHooks))
{
DISPDBG((0, "DrvEnableSurface - Failed EngAssociateSurface"));
goto ReturnFailure;
}
} else {
// Device-managed surface:
hsurf = EngCreateDeviceSurface((DHSURF) pdsurf, sizl, ppdev->iBitmapFormat);
if (hsurf == 0)
{
DISPDBG((0, "DrvEnableSurface - Failed EngCreateDeviceSurface"));
goto ReturnFailure;
}
/////////////////////////////////////////////////////////////////////
// Now associate the surface and the PDEV.
//
// We have to associate the surface we just created with our physical
// device so that GDI can get information related to the PDEV when
// it's drawing to the surface (such as, for example, the length of
// styles on the device when simulating styled lines).
if (!EngAssociateSurface(hsurf, ppdev->hdevEng, ppdev->flHooks))
{
DISPDBG((0, "DrvEnableSurface - Failed EngAssociateSurface"));
goto ReturnFailure;
}
}
ppdev->hsurfScreen = hsurf; // Remember it for clean-up
ppdev->bEnabled = TRUE; // We'll soon be in graphics mode
// Create our generic temporary buffer, which may be used by any
// component.
pvTmpBuffer = EngAllocMem(0, TMP_BUFFER_SIZE, ALLOC_TAG);
if (pvTmpBuffer == NULL)
{
DISPDBG((0, "DrvEnableSurface - Failed EngAllocMem"));
goto ReturnFailure;
}
ppdev->pvTmpBuffer = pvTmpBuffer;
DISPDBG((5, "Passed DrvEnableSurface"));
return(hsurf);
ReturnFailure:
DrvDisableSurface((DHPDEV) ppdev);
DISPDBG((0, "Failed DrvEnableSurface"));
return(0);
}
/******************************Public*Routine******************************\
* VOID DrvDisableSurface
*
* Free resources allocated by DrvEnableSurface. Release the surface.
*
* Note that this function will be called when previewing modes in the
* Display Applet, but not at system shutdown. If you need to reset the
* hardware at shutdown, you can do it in the miniport by providing a
* 'HwResetHw' entry point in the VIDEO_HW_INITIALIZATION_DATA structure.
*
* Note: In an error case, we may call this before DrvEnableSurface is
* completely done.
*
\**************************************************************************/
VOID DrvDisableSurface(
DHPDEV dhpdev)
{
PDEV* ppdev;
ppdev = (PDEV*) dhpdev;
// Note: In an error case, some of the following relies on the
// fact that the PDEV is zero-initialized, so fields like
// 'hsurfScreen' will be zero unless the surface has been
// sucessfully initialized, and makes the assumption that
// EngDeleteSurface can take '0' as a parameter.
vDisableMCD(ppdev);
vDisableDirectDraw(ppdev);
vDisablePalette(ppdev);
vDisableBrushCache(ppdev);
vDisableText(ppdev);
vDisablePointer(ppdev);
vDisableOffscreenHeap(ppdev);
vDisableHardware(ppdev);
EngFreeMem(ppdev->pvTmpBuffer);
EngDeleteSurface(ppdev->hsurfScreen);
EngFreeMem(ppdev->pdsurfScreen);
}
/******************************Public*Routine******************************\
* VOID DrvOffset
*
* DescriptionText
*
\**************************************************************************/
BOOL DrvOffset(
SURFOBJ* pso,
LONG x,
LONG y,
FLONG flReserved)
{
PDEV* ppdev = (PDEV*) pso->dhpdev;
OH* poh = ppdev->pohScreen;
LONG dx = x - poh->x;
LONG dy = y - poh->y;
poh->x -= dx;
poh->y -= dy;
(BYTE*)poh->pvScan0 -= ((dy * ppdev->lDelta) +
(dx * ppdev->cjPelSize));
return(TRUE);
}
/******************************Public*Routine******************************\
* VOID DrvAssertMode
*
* This asks the device to reset itself to the mode of the pdev passed in.
*
\**************************************************************************/
BOOL DrvAssertMode(
DHPDEV dhpdev,
BOOL bEnable)
{
PDEV* ppdev;
ppdev = (PDEV*) dhpdev;
if (!bEnable)
{
//////////////////////////////////////////////////////////////
// Disable - Switch to full-screen mode
vAssertModeMCD(ppdev, FALSE);
vAssertModeDirectDraw(ppdev, FALSE);
vAssertModePalette(ppdev, FALSE);
vAssertModeBrushCache(ppdev, FALSE);
vAssertModeText(ppdev, FALSE);
vAssertModePointer(ppdev, FALSE);
if (bAssertModeOffscreenHeap(ppdev, FALSE))
{
if (bAssertModeHardware(ppdev, FALSE))
{
ppdev->bEnabled = FALSE;
return(TRUE);
}
//////////////////////////////////////////////////////////
// We failed to switch to full-screen. So undo everything:
bAssertModeOffscreenHeap(ppdev, TRUE); // We don't need to check
} // return code with TRUE
vAssertModePointer(ppdev, TRUE);
vAssertModeText(ppdev, TRUE);
vAssertModeBrushCache(ppdev, TRUE);
vAssertModePalette(ppdev, TRUE);
vAssertModeDirectDraw(ppdev, TRUE);
vAssertModeMCD(ppdev, TRUE);
}
else
{
//////////////////////////////////////////////////////////////
// Enable - Switch back to graphics mode
// We have to enable every subcomponent in the reverse order
// in which it was disabled:
if (bAssertModeHardware(ppdev, TRUE))
{
bAssertModeOffscreenHeap(ppdev, TRUE); // We don't need to check
// return code with TRUE
vAssertModePointer(ppdev, TRUE);
vAssertModeText(ppdev, TRUE);
vAssertModeBrushCache(ppdev, TRUE);
vAssertModePalette(ppdev, TRUE);
vAssertModeDirectDraw(ppdev, TRUE);
vAssertModeMCD(ppdev, TRUE);
ppdev->bEnabled = TRUE;
return(TRUE);
}
}
return(FALSE);
}
/******************************Public*Routine******************************\
* ULONG DrvGetModes
*
* Returns the list of available modes for the device.
*
\**************************************************************************/
ULONG DrvGetModes(
HANDLE hDriver,
ULONG cjSize,
DEVMODEW* pdm)
{
DWORD cModes;
DWORD cbOutputSize;
PVIDEO_MODE_INFORMATION pVideoModeInformation;
PVIDEO_MODE_INFORMATION pVideoTemp;
DWORD cOutputModes = cjSize / (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE);
DWORD cbModeSize;
VIDEO_MODE_INFORMATION DefaultMode;
cModes = getAvailableModes(hDriver,
(PVIDEO_MODE_INFORMATION *) &pVideoModeInformation,
&cbModeSize);
if (cModes == 0)
{
DISPDBG((0, "DrvGetModes failed to get mode information"));
return(0);
}
if (pdm == NULL)
{
cbOutputSize = cModes * (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE);
}
else
{
//
// Now copy the information for the supported modes back into the
// output buffer
//
cbOutputSize = 0;
pVideoTemp = pVideoModeInformation;
do
{
if (pVideoTemp->Length != 0)
{
if (cOutputModes == 0)
{
break;
}
//
// Zero the entire structure to start off with.
//
memset(pdm, 0, sizeof(DEVMODEW));
//
// Set the name of the device to the name of the DLL.
//
memcpy(pdm->dmDeviceName, DLL_NAME, sizeof(DLL_NAME));
pdm->dmSpecVersion = DM_SPECVERSION;
pdm->dmDriverVersion = DM_SPECVERSION;
pdm->dmSize = sizeof(DEVMODEW);
pdm->dmDriverExtra = DRIVER_EXTRA_SIZE;
pdm->dmBitsPerPel = pVideoTemp->NumberOfPlanes *
pVideoTemp->BitsPerPlane;
pdm->dmPelsWidth = pVideoTemp->VisScreenWidth;
pdm->dmPelsHeight = pVideoTemp->VisScreenHeight;
pdm->dmDisplayFrequency = pVideoTemp->Frequency;
pdm->dmDisplayFlags = 0;
pdm->dmFields = DM_BITSPERPEL |
DM_PELSWIDTH |
DM_PELSHEIGHT |
DM_DISPLAYFREQUENCY |
DM_DISPLAYFLAGS ;
//
// Fill in some DriverExtra information if necessary
//
// *((PDWORD)(pdm+1)) = 0x11111111;
// *(((PDWORD)(pdm+1))+1) = 0x22222222;
// *(((PDWORD)(pdm+1))+2) = 0x33333333;
// *(((PDWORD)(pdm+1))+3) = 0x44444444;
//
// Go to the next DEVMODE entry in the buffer.
//
cOutputModes--;
pdm = (LPDEVMODEW) ( ((ULONG_PTR)pdm) + sizeof(DEVMODEW) +
DRIVER_EXTRA_SIZE);
cbOutputSize += (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE);
}
pVideoTemp = (PVIDEO_MODE_INFORMATION)
(((PUCHAR)pVideoTemp) + cbModeSize);
} while (--cModes);
}
EngFreeMem(pVideoModeInformation);
return(cbOutputSize);
}
/******************************Public*Routine******************************\
* BOOL bSetModeAndWarmupHardware
*
* Sets the requested actual mode and initializes the hardware to a known
* state.
*
\**************************************************************************/
BOOL bSetModeAndWarmupHardware(
PDEV* ppdev)
{
BYTE* pjBase;
DWORD ReturnedDataLength;
ULONG ulReturn;
HW_DATA HwData;
pjBase = ppdev->pjBase;
// Call the miniport via a public IOCTL to set the graphics mode.
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_SET_CURRENT_MODE,
&ppdev->ulMode, // Input
sizeof(DWORD),
NULL, // Output
0,
&ReturnedDataLength))
{
DISPDBG((0, "bSetModeAndWarmupHardware - Failed VIDEO_SET_CURRENT_MODE"));
goto ReturnFalse;
}
if (ppdev->ulBoardId == MGA_STORM)
{
// There might be multiple MGA boards installed in the system. Since
// we're here only when a single board is required by the selected
// resolution, we should make sure that the miniport knows that the
// current board is board 0.
LONG lHwBoard;
lHwBoard = 0;
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_MTX_MAKE_BOARD_CURRENT,
&lHwBoard, // input buffer
sizeof(LONG),
NULL, // output buffer
0,
&ReturnedDataLength))
{
DISPDBG((0, "bSetModeAndWarmupHardware - Failed MTX_MAKE_BOARD_CURRENT"));
goto ReturnFalse;
}
}
// Get the MGA's linear offset using a private IOCTL:
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_MTX_QUERY_HW_DATA,
NULL, // Input
0,
&HwData, // Output
sizeof(HW_DATA),
&ReturnedDataLength))
{
DISPDBG((0, "bSetModeAndWarmupHardware -- failed MTX_QUERY_HW_DATA"));
goto ReturnFalse;
}
ppdev->ulYDstOrg = HwData.YDstOrg;
ppdev->flFeatures = HwData.Features;
if (ppdev->ulBoardId == MGA_STORM)
{
ppdev->cjMemAvail = HwData.MemAvail;
// Floor((4M-(ulYDstOrg*cBpp))/(1600*3)) == scan where 4M break occurs.
// This array would be stored on pdev or at least calculated in a temp
if (ppdev->flFeatures & INTERLEAVE_MODE)
{
DISPDBG((1, "This mode is interleaved"));
ppdev->ayBreak[0] = (0x400000 - ppdev->ulYDstOrg)/(ppdev->lDelta);
if ((HwData.MemAvail == 0x200000)||
(HwData.MemAvail == 0x400000))
{
ppdev->cyBreak = 0;
}
else
{
ASSERTDD (HwData.MemAvail == 0x800000, "HwData.MemAvail is invalid");
ppdev->cyBreak = 1;
}
}
else
{
DISPDBG((1,"This mode is non-interleaved"));
ppdev->ayBreak[0] = (0x200000 - ppdev->ulYDstOrg)/(ppdev->lDelta);
ppdev->ayBreak[1] = (0x400000 - ppdev->ulYDstOrg)/(ppdev->lDelta);
ppdev->ayBreak[2] = (0x600000 - ppdev->ulYDstOrg)/(ppdev->lDelta);
if (HwData.MemAvail == 0x200000)
{
ppdev->cyBreak = 0;
}
else if (HwData.MemAvail == 0x400000)
{
ppdev->cyBreak = 1;
}
else
{
ASSERTDD (HwData.MemAvail == 0x800000, "HwData.MemAvail is invalid");
ppdev->cyBreak = 3;
}
}
DISPDBG((1, "cyBreak = %d", ppdev->cyBreak));
}
else
{
//
// This field is uninitliazed on non-storm boards.
//
ppdev->cjMemAvail = HwData.MemAvail;
}
ppdev->HopeFlags = 0;
CHECK_FIFO_SPACE(pjBase, 5);
CP_WRITE(pjBase, DWG_MACCESS, ppdev->ulAccess);
CP_WRITE(pjBase, DWG_SHIFT, 0);
CP_WRITE(pjBase, DWG_YDSTORG, ppdev->ulYDstOrg);
CP_WRITE(pjBase, DWG_PLNWT, ppdev->ulPlnWt);
CP_WRITE(pjBase, DWG_PITCH, ppdev->cxMemory);
if (ppdev->ulBoardId != MGA_STORM)
{
CP_WRITE_REGISTER(pjBase + HST_OPMODE,
CP_READ_REGISTER(pjBase + HST_OPMODE) | 0x01000000);
}
vResetClipping(ppdev);
// At this point, the RAMDAC should be okay, but it looks
// like it's not quite ready to accept data, particularly
// on VL boards. Adding a delay seems to fix things.
// Sleep(100);
return(TRUE);
ReturnFalse:
return(FALSE);
}
VOID
DrvSynchronize(
IN DHPDEV dhpdev,
IN RECTL *prcl
)
{
PDEV *ppdev = (PDEV *) dhpdev;
//
// We need to do a wait for blt complete before we
// let the engine party on our frame buffer
//
WAIT_NOT_BUSY(ppdev->pjBase)
}
/******************************Public*Routine******************************\
* BOOL bAssertModeHardware
*
* Sets the appropriate hardware state when entering or leaving graphics
* mode or full-screen.
*
\**************************************************************************/
BOOL bAssertModeHardware(
PDEV* ppdev,
BOOL bEnable)
{
ULONG ulNewFileSize;
DWORD ReturnedDataLength;
ULONG ulReturn;
if (bEnable)
{
// The MGA miniport requires that the screen must be reenabled
// and reinitialized to a clean state. This should not be done
// for more than one board when supporting multiple boards:
if (IBOARD(ppdev) == 0)
{
// Re-enable the MGA's screen via a private IOCTL:
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_MTX_INITIALIZE_MGA,
NULL,
0,
&ulNewFileSize,
sizeof(ULONG),
&ReturnedDataLength))
{
DISPDBG((0, "bAssertModeHardware - Failed VIDEO_MTX_INITAILIZE_MGA"));
goto ReturnFalse;
}
// The miniport should also build a new mode table, via a
// private IOCTL:
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_MTX_INIT_MODE_LIST,
NULL,
0,
NULL,
0,
&ReturnedDataLength))
{
DISPDBG((0, "bAssertModeHardware - Failed VIDEO_MTX_INIT_MODE_LIST"));
goto ReturnFalse;
}
}
if (!bSetModeAndWarmupHardware(ppdev))
{
DISPDBG((0, "bAssertModeHardware - Failed bSetModeAndWarmupHardware"));
goto ReturnFalse;
}
}
else
{
// Wait for all pending accelerator operations to finish:
CHECK_FIFO_SPACE(ppdev->pjBase, FIFOSIZE);
// Call the kernel driver to reset the device to a known state.
// NTVDM will take things from there. One reset will affect
// all boards:
if (IBOARD(ppdev) == 0)
{
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_RESET_DEVICE,
NULL,
0,
NULL,
0,
&ulReturn))
{
DISPDBG((0, "bAssertModeHardware - Failed reset IOCTL"));
return(FALSE);
}
}
}
DISPDBG((5, "Passed bAssertModeHardware"));
return(TRUE);
ReturnFalse:
DISPDBG((0, "Failed bAssertModeHardware"));
return(FALSE);
}
/******************************Public*Routine******************************\
* BOOL bEnableHardware
*
* Puts the hardware in the requested mode and initializes it.
*
* Note: Should be called before any access is done to the hardware from
* the display driver.
*
\**************************************************************************/
BOOL bEnableHardware(
PDEV* ppdev)
{
VIDEO_PUBLIC_ACCESS_RANGES VideoPublicAccessRanges;
VIDEO_MEMORY VideoMemory;
VIDEO_MEMORY_INFORMATION VideoMemoryInfo;
ULONG ReturnedDataLength;
// Get the coprocessor address range using a public IOCTL:
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_QUERY_PUBLIC_ACCESS_RANGES,
NULL, // Input
0,
(VOID*) &VideoPublicAccessRanges, // Output
sizeof(VideoPublicAccessRanges),
&ReturnedDataLength))
{
DISPDBG((0, "bEnableHardware -- failed QUERY_PUBLIC_ACESS_RANGES"));
return(FALSE);
}
ppdev->pjBase = (BYTE*) VideoPublicAccessRanges.VirtualAddress;
if (ppdev->ulBoardId == MGA_STORM)
{
// Get an address for our frame buffer.
VideoMemory.RequestedVirtualAddress = NULL;
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_MAP_VIDEO_MEMORY,
&VideoMemory, // Input
sizeof(VIDEO_MEMORY),
&VideoMemoryInfo, // Output
sizeof(VideoMemoryInfo),
&ReturnedDataLength))
{
DISPDBG(( 0, "bEnableHardware - Failed VIDEO_MAP_VIDEO_MEMORY"));
return(FALSE);
}
// Record the mapped location of the MGA registers.
// We can now access the board!
ppdev->pjScreen = VideoMemoryInfo.FrameBufferBase;
}
else
{
// This should probably just be done in the IOCTL call
DISPDBG((2, "Video chip is not an MGA_STORM"));
ppdev->pjScreen = NULL;
}
DISPDBG((1, "bEnableHardware -- pjScreen = %x", ppdev->pjScreen));
///////////////////////////////////////////////////////////////////
// Now we can set the mode, unlock the accelerator, and reset the
// clipping:
if (!bSetModeAndWarmupHardware(ppdev))
goto ReturnFalse;
DISPDBG((0, "Memory: %lix%li YDstOrg: %li",
ppdev->cxMemory, ppdev->cyMemory, ppdev->ulYDstOrg));
DISPDBG((5, "Passed bEnableHardware"));
return(TRUE);
ReturnFalse:
DISPDBG((0, "Failed bEnableHardware"));
return(FALSE);
}
/******************************Public*Routine******************************\
* VOID vDisableHardware
*
* Undoes anything done in bEnableHardware.
*
* Note: In an error case, we may call this before bEnableHardware is
* completely done.
*
\**************************************************************************/
VOID vDisableHardware(
PDEV* ppdev)
{
VIDEO_MEMORY VideoMemory;
ULONG ReturnedDataLength;
VideoMemory.RequestedVirtualAddress = ppdev->pjScreen;
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_UNMAP_VIDEO_MEMORY,
&VideoMemory,
sizeof(VideoMemory),
NULL,
0,
&ReturnedDataLength))
{
DISPDBG((0, "vDisableHardware failed IOCTL_VIDEO_UNMAP_VIDEO"));
}
VideoMemory.RequestedVirtualAddress = ppdev->pjBase;
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_FREE_PUBLIC_ACCESS_RANGES,
&VideoMemory, // Input
sizeof(VideoMemory),
NULL, // Output
0,
&ReturnedDataLength))
{
DISPDBG((0, "vDisableHardware -- failed FREE_PUBLIC_ACCESS_RANGES"));
}
}
/******************************Public*Routine******************************\
* BOOL bInitializeOffscreenFields
*
\**************************************************************************/
BOOL bInitializeOffscreenFields(
PDEV* ppdev,
VIDEO_MODE_INFORMATION* pVideoModeInformation)
{
VIDEO_NUM_OFFSCREEN_BLOCKS NumOffscreenBlocks;
OFFSCREEN_BLOCK* pOffscreenBlock;
OFFSCREEN_BLOCK* pBuffer;
ULONG ReturnedDataLength;
ULONG cjOffscreenBlock;
LONG i;
// Ask the MGA miniport about the number of offscreen areas available
// for our selected mode, using a private IOCTL:
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_MTX_QUERY_NUM_OFFSCREEN_BLOCKS,
pVideoModeInformation, // Input
sizeof(VIDEO_MODE_INFORMATION),
&NumOffscreenBlocks, // Output
sizeof(VIDEO_NUM_OFFSCREEN_BLOCKS),
&ReturnedDataLength))
{
DISPDBG((0, "bInitializeOffscreenFields -- failed QUERY_NUM_OFFSCREEN_BLOCKS"));
goto ReturnFalse;
}
cjOffscreenBlock = NumOffscreenBlocks.NumBlocks
* NumOffscreenBlocks.OffscreenBlockLength;
pBuffer = pOffscreenBlock = (OFFSCREEN_BLOCK*) EngAllocMem(FL_ZERO_MEMORY,
cjOffscreenBlock, ALLOC_TAG);
if (pOffscreenBlock == NULL)
{
DISPDBG((0, "bInitializeOffscreenFields -- failed pOffscreenBlock EngAllocMem"));
goto ReturnFalse;
}
// Ask the MGA miniport to fill in the available offscreen areas using
// a private IOCTL:
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_MTX_QUERY_OFFSCREEN_BLOCKS,
pVideoModeInformation, // Input
sizeof(VIDEO_MODE_INFORMATION),
pOffscreenBlock, // Output
cjOffscreenBlock,
&ReturnedDataLength))
{
DISPDBG((0, "bInitializeOffscreenFields -- failed QUERY_OFFSCREEN_BLOCKS"));
EngFreeMem(pOffscreenBlock);
goto ReturnFalse;
}
ppdev->cyMemory = ppdev->cyScreen;
for (i = NumOffscreenBlocks.NumBlocks; i != 0; i--, pOffscreenBlock++)
{
// We are just looking to add the offscreen block that immediately follows
// the screen block.
DISPDBG((1, "Offscreen blocks:"));
DISPDBG((1, " (%li, %li) at (%li, %li) Type: %li Planes: %lx ZOffset: %li",
pOffscreenBlock->Width, pOffscreenBlock->Height,
pOffscreenBlock->XStart, pOffscreenBlock->YStart,
pOffscreenBlock->Type, pOffscreenBlock->SafePlanes,
pOffscreenBlock->ZOffset));
// The miniport seems to be giving us garbage for some fields:
if ((pOffscreenBlock->YStart == (ULONG) ppdev->cyScreen) &&
(pOffscreenBlock->Width >= (ULONG) ppdev->cxScreen))
{
// Found the right one.
ppdev->cyMemory = ppdev->cyScreen + pOffscreenBlock->Height;
}
}
EngFreeMem(pBuffer);
// u The MGA miniport should be changed to never reserve space for 'Z'
// or the back buffer -- we want to do that ourselves. Right now,
// it does so for the only 3d enabled mode it thinks we can do,
// namely 5-5-5 on a 4MB Impression Plus:
if ((ppdev->ulBoardId == MGA_PCI_4M) &&
(ppdev->flGreen == 0x3e0))
{
// The total count of scans is the floor of 4MB divided by the
// screen stride, less one to account for a possible ulYDstOrg that
// we don't yet know:
ppdev->cyMemory = (4096 * 1024) / (ppdev->cxMemory * 2);
}
// On an Impression Lite (Atlas) card, we found that we couldn't use
// the last scan for keeping brush caches. We'll assume this is the
// same for other operations, as well, and simply decrease the amount of
// available off-screen by that many scans:
if (ppdev->cyMemory > ppdev->cyScreen)
{
ppdev->cyMemory--;
}
return(TRUE);
ReturnFalse:
return(FALSE);
}
/******************************Public*Routine******************************\
* BOOL bSelectMode
*
* Negotiates the video mode with the miniport.
*
\**************************************************************************/
BOOL bSelectMode(
HANDLE hDriver,
DEVMODEW* pdm, // Requested mode
VIDEO_MODE_INFORMATION* pVideoModeInformation, // Returns requested mode
ULONG* pulBoardId) // Returns MGA board ID
{
ULONG cModes;
PVIDEO_MODE_INFORMATION pVideoBuffer;
PVIDEO_MODE_INFORMATION pVideoModeSelected;
PVIDEO_MODE_INFORMATION pVideoTemp;
BOOL bSelectDefault;
VIDEO_MODE_INFORMATION VideoModeInformation;
VIDEO_PUBLIC_ACCESS_RANGES VideoPublicAccessRanges;
ULONG cbModeSize;
DWORD ReturnedDataLength;
ULONG ulBoardId;
ULONG cDefaultBitsPerPel;
if (EngDeviceIoControl(hDriver,
IOCTL_VIDEO_MTX_QUERY_BOARD_ID,
NULL, // Input
0,
&ulBoardId,
sizeof(ULONG),
&ReturnedDataLength))
{
DISPDBG((0, "bSelectMode -- failed MTX_QUERY_BOARD_ID"));
goto ReturnFailure0;
}
// Use the driver's lowest pixel depth for the default mode:
*pulBoardId = ulBoardId;
DISPDBG((2, "ulBoardId = %x", ulBoardId));
if ((ulBoardId == MGA_PRO_4M5) || (ulBoardId == MGA_PRO_4M5_Z))
{
cDefaultBitsPerPel = 24;
}
else
{
cDefaultBitsPerPel = 8;
}
// Call the miniport to get mode information:
cModes = getAvailableModes(hDriver, &pVideoBuffer, &cbModeSize);
if (cModes == 0)
goto ReturnFailure0;
// Now see if the requested mode has a match in that table.
pVideoModeSelected = NULL;
pVideoTemp = pVideoBuffer;
if ((pdm->dmPelsWidth == 0) &&
(pdm->dmPelsHeight == 0) &&
(pdm->dmBitsPerPel == 0) &&
(pdm->dmDisplayFrequency == 0))
{
DISPDBG((1, "Default mode requested"));
bSelectDefault = TRUE;
}
else
{
DISPDBG((1, "Requested mode..."));
DISPDBG((1, " Screen width -- %li", pdm->dmPelsWidth));
DISPDBG((1, " Screen height -- %li", pdm->dmPelsHeight));
DISPDBG((1, " Bits per pel -- %li", pdm->dmBitsPerPel));
DISPDBG((1, " Frequency -- %li", pdm->dmDisplayFrequency));
bSelectDefault = FALSE;
}
while (cModes--)
{
if (pVideoTemp->Length != 0)
{
DISPDBG((2, " Checking against miniport mode:"));
DISPDBG((2, " Screen width -- %li", pVideoTemp->VisScreenWidth));
DISPDBG((2, " Screen height -- %li", pVideoTemp->VisScreenHeight));
DISPDBG((2, " Bits per pel -- %li", pVideoTemp->BitsPerPlane *
pVideoTemp->NumberOfPlanes));
DISPDBG((2, " Frequency -- %li", pVideoTemp->Frequency));
if (((bSelectDefault) &&
(pVideoTemp->BitsPerPlane == cDefaultBitsPerPel)) ||
((pVideoTemp->VisScreenWidth == pdm->dmPelsWidth) &&
(pVideoTemp->VisScreenHeight == pdm->dmPelsHeight) &&
(pVideoTemp->BitsPerPlane *
pVideoTemp->NumberOfPlanes == pdm->dmBitsPerPel) &&
(pVideoTemp->Frequency == pdm->dmDisplayFrequency)))
{
pVideoModeSelected = pVideoTemp;
DISPDBG((1, "...Found a mode match!"));
break;
}
}
pVideoTemp = (PVIDEO_MODE_INFORMATION)
(((PUCHAR)pVideoTemp) + cbModeSize);
}
// If no mode has been found, return an error:
if (pVideoModeSelected == NULL)
{
DISPDBG((1, "...Couldn't find a mode match!"));
goto ReturnFailure1;
}
// We have chosen the one we want. Save it in a stack buffer and
// get rid of allocated memory before we forget to free it.
*pVideoModeInformation = *pVideoModeSelected;
EngFreeMem(pVideoBuffer);
return(TRUE);
ReturnFailure1:
EngFreeMem(pVideoBuffer);
ReturnFailure0:
DISPDBG((0, "Failed bSelectMode"));
return(FALSE);
}
/******************************Public*Routine******************************\
* BOOL bInitializeModeFields
*
* Initializes a bunch of fields in the pdev, devcaps (aka gdiinfo), and
* devinfo based on the requested mode.
*
\**************************************************************************/
BOOL bInitializeModeFields(
PDEV* ppdev,
GDIINFO* pgdi,
DEVINFO* pdi,
DEVMODEW* pdm)
{
ULONG cModes;
PVIDEO_MODE_INFORMATION pVideoBuffer;
PVIDEO_MODE_INFORMATION pVideoModeSelected;
PVIDEO_MODE_INFORMATION pVideoTemp;
BOOL bSelectDefault;
VIDEO_MODE_INFORMATION VideoModeInformation;
VIDEO_PUBLIC_ACCESS_RANGES VideoPublicAccessRanges;
ULONG cbModeSize;
DWORD ReturnedDataLength;
ULONG ulBoardId;
ULONG cDefaultBitsPerPel;
// Tell the miniport what mode we want:
if (!bSelectMode(ppdev->hDriver,
pdm,
&VideoModeInformation,
&ppdev->ulBoardId))
{
DISPDBG((0, "bInitializeModeFields -- failed bSelectMode"));
goto ReturnFalse;
}
ppdev->ulMode = VideoModeInformation.ModeIndex;
ppdev->cxScreen = VideoModeInformation.VisScreenWidth;
ppdev->cyScreen = VideoModeInformation.VisScreenHeight;
ppdev->cxMemory = VideoModeInformation.VideoMemoryBitmapWidth;
ppdev->flRed = VideoModeInformation.RedMask;
ppdev->flGreen = VideoModeInformation.GreenMask;
ppdev->flBlue = VideoModeInformation.BlueMask;
ppdev->flHooks = (HOOK_BITBLT |
HOOK_TEXTOUT |
HOOK_FILLPATH |
HOOK_COPYBITS |
HOOK_STROKEPATH |
HOOK_LINETO |
HOOK_PAINT |
HOOK_STRETCHBLT |
HOOK_SYNCHRONIZE);
if (!bInitializeOffscreenFields(ppdev, &VideoModeInformation))
{
DISPDBG((0, "bInitializeModeFields -- failed bInitializeOffscreenFields"));
goto ReturnFalse;
}
#if DBG_MCD
if ((VideoModeInformation.VisScreenWidth == 1024) &&
(VideoModeInformation.BitsPerPlane > 16))
{
VideoModeInformation.VisScreenHeight = 256;
ppdev->cyScreen = VideoModeInformation.VisScreenHeight;
}
#endif
// Fill in the GDIINFO data structure with the default 8bpp values:
*pgdi = ggdiDefault;
// Now overwrite the defaults with the relevant information returned
// from the kernel driver:
pgdi->ulHorzSize = VideoModeInformation.XMillimeter;
pgdi->ulVertSize = VideoModeInformation.YMillimeter;
pgdi->ulHorzRes = VideoModeInformation.VisScreenWidth;
pgdi->ulVertRes = VideoModeInformation.VisScreenHeight;
pgdi->ulPanningHorzRes = VideoModeInformation.VisScreenWidth;
pgdi->ulPanningVertRes = VideoModeInformation.VisScreenHeight;
pgdi->cBitsPixel = VideoModeInformation.BitsPerPlane;
pgdi->cPlanes = VideoModeInformation.NumberOfPlanes;
pgdi->ulVRefresh = VideoModeInformation.Frequency;
pgdi->ulDACRed = VideoModeInformation.NumberRedBits;
pgdi->ulDACGreen = VideoModeInformation.NumberGreenBits;
pgdi->ulDACBlue = VideoModeInformation.NumberBlueBits;
pgdi->ulLogPixelsX = pdm->dmLogPixels;
pgdi->ulLogPixelsY = pdm->dmLogPixels;
// Fill in the devinfo structure with the default 8bpp values:
*pdi = gdevinfoDefault;
ppdev->ulRefresh = pgdi->ulVRefresh;
if (VideoModeInformation.BitsPerPlane == 8)
{
ppdev->cjPelSize = 1;
ppdev->cjHwPel = 1;
ppdev->lDelta = ppdev->cxMemory;
ppdev->iBitmapFormat = BMF_8BPP;
ppdev->ulWhite = 0xff;
ppdev->ulPlnWt = plnwt_MASK_8BPP;
ppdev->ulAccess = pwidth_PW8;
ppdev->ulBrushSize = (TOTAL_BRUSH_SIZE * 1);
if (ppdev->ulBoardId == MGA_STORM)
{
ppdev->pfnFillPatNative = vMilFillPat;
ppdev->pfnFillSolid = vMilFillSolid;
}
else
{
ppdev->pfnFillPatNative = vMgaFillPat8bpp;
ppdev->pfnFillSolid = vMgaFillSolid;
}
ppdev->cPaletteShift = 8 - pgdi->ulDACRed;
ppdev->lPatSrcAdd = 2;
// Device GammaRamp can not be changed on 8bpp mode
pdi->flGraphicsCaps2 &= ~GCAPS2_CHANGEGAMMARAMP;
}
else if ((VideoModeInformation.BitsPerPlane == 16) ||
(VideoModeInformation.BitsPerPlane == 15))
{
ppdev->cjPelSize = 2;
ppdev->cjHwPel = 2;
ppdev->lDelta = 2 * ppdev->cxMemory;
ppdev->iBitmapFormat = BMF_16BPP;
ppdev->ulWhite = (VideoModeInformation.BitsPerPlane == 16)
? 0xffff : 0x7fff;
pgdi->ulNumColors = (ULONG) -1;
pgdi->ulNumPalReg = 0;
pgdi->ulHTOutputFormat = HT_FORMAT_16BPP;
ppdev->ulPlnWt = plnwt_MASK_16BPP;
ppdev->ulAccess = pwidth_PW16;
ppdev->ulBrushSize = (TOTAL_BRUSH_SIZE * 2);
if (ppdev->ulBoardId == MGA_STORM)
{
ppdev->pfnFillPatNative = vMilFillPat;
ppdev->pfnFillSolid = vMilFillSolid;
if (ppdev->flGreen != 0x7e0) // not 565
ppdev->ulAccess |= dither_555;
}
else
{
ppdev->pfnFillPatNative = vMgaFillPat16bpp;
ppdev->pfnFillSolid = vMgaFillSolid;
// Device GammaRamp can not be changed on non-Millenium board
pdi->flGraphicsCaps2 &= ~GCAPS2_CHANGEGAMMARAMP;
}
pdi->iDitherFormat = BMF_16BPP;
pdi->flGraphicsCaps &= ~(GCAPS_PALMANAGED | GCAPS_COLOR_DITHER);
ppdev->lPatSrcAdd = 4;
}
else if (ppdev->ulBoardId == MGA_STORM)
{
if (VideoModeInformation.BitsPerPlane == 24)
{
ppdev->cjPelSize = 3;
ppdev->cjHwPel = 3;
ppdev->lDelta = 3 * ppdev->cxMemory;
ppdev->iBitmapFormat = BMF_24BPP;
ppdev->ulWhite = 0xffffff;
pgdi->ulNumColors = (ULONG) -1;
pgdi->ulNumPalReg = 0;
pgdi->ulHTOutputFormat = HT_FORMAT_24BPP;
ppdev->ulPlnWt = plnwt_MASK_24BPP;
ppdev->ulAccess = pwidth_PW24;
ppdev->ulBrushSize = (TOTAL_BRUSH_SIZE * 6);
ppdev->pfnFillPatNative = vMilFillPat24bpp;
ppdev->pfnFillSolid = vMilFillSolid;
pdi->iDitherFormat = BMF_24BPP;
pdi->flGraphicsCaps &= ~(GCAPS_PALMANAGED | GCAPS_COLOR_DITHER);
ppdev->lPatSrcAdd = 7;
}
else
{
ASSERTDD((VideoModeInformation.BitsPerPlane == 32),
"This driver supports only 8, 16, 24, and 32bpp");
ppdev->cjPelSize = 4;
ppdev->cjHwPel = 4;
ppdev->lDelta = 4 * ppdev->cxMemory;
ppdev->iBitmapFormat = BMF_32BPP;
ppdev->ulWhite = 0xffffff;
pgdi->ulNumColors = (ULONG) -1;
pgdi->ulNumPalReg = 0;
pgdi->ulHTOutputFormat = HT_FORMAT_32BPP;
ppdev->ulPlnWt = plnwt_MASK_32BPP;
ppdev->ulAccess = pwidth_PW32;
ppdev->ulBrushSize = (TOTAL_BRUSH_SIZE * 4);
ppdev->pfnFillPatNative = vMilFillPat;
ppdev->pfnFillSolid = vMilFillSolid;
pdi->iDitherFormat = BMF_32BPP;
pdi->flGraphicsCaps &= ~(GCAPS_PALMANAGED | GCAPS_COLOR_DITHER);
ppdev->lPatSrcAdd = 6;
}
}
else
{
ASSERTDD((VideoModeInformation.BitsPerPlane == 32) ||
(VideoModeInformation.BitsPerPlane == 24),
"This driver supports only 8, 16, 24, and 32bpp");
// The miniport may think it's 32bpp, but we're going to tell GDI
// that it's 24bpp. We do this so that out bitmap transfers will
// be more efficient, and compatible bitmaps will be smaller.
//
// Note that we also have to fudge the results returned from
// 'GetModes' if we're going to do this.
pgdi->cBitsPixel = 24;
ppdev->cjPelSize = 3;
ppdev->cjHwPel = 4;
ppdev->lDelta = 4 * ppdev->cxMemory;
ppdev->iBitmapFormat = BMF_24BPP;
ppdev->ulWhite = 0xffffff;
pgdi->ulNumColors = (ULONG) -1;
pgdi->ulNumPalReg = 0;
pgdi->ulHTOutputFormat = HT_FORMAT_24BPP;
ppdev->ulPlnWt = plnwt_MASK_24BPP;
ppdev->ulAccess = pwidth_PW32;
ppdev->ulBrushSize = (TOTAL_BRUSH_SIZE * 3);
ppdev->pfnFillPatNative = vMgaFillPat24bpp;
ppdev->pfnFillSolid = vMgaFillSolid;
pdi->iDitherFormat = BMF_24BPP;
pdi->flGraphicsCaps &= ~(GCAPS_PALMANAGED | GCAPS_COLOR_DITHER);
// Device GammaRamp can not be changed on non-Millenium board.
pdi->flGraphicsCaps2 &= ~GCAPS2_CHANGEGAMMARAMP;
ppdev->lPatSrcAdd = 0; // not used for old MGA cards
}
// Several MIPS machines are broken in that 64 bit accesses to the
// framebuffer don't work.
if (VideoModeInformation.AttributeFlags & VIDEO_MODE_NO_64_BIT_ACCESS)
{
DISPDBG((0, "Disable 64 bit access on this device !\n"));
pdi->flGraphicsCaps |= GCAPS_NO64BITMEMACCESS;
}
// The following are the same for all color depths
if (ppdev->ulBoardId == MGA_STORM)
{
ppdev->pfnXfer1bpp = vMilXfer1bpp;
ppdev->pfnCopyBlt = vMilCopyBlt;
ppdev->pfnPuntBlt = bMilPuntBlt;
}
else
{
ppdev->pfnXfer1bpp = vMgaXfer1bpp;
ppdev->pfnCopyBlt = vMgaCopyBlt;
ppdev->pfnPuntBlt = bMgaPuntBlt;
}
DISPDBG((1, "Current mode: %dx%d %dbpp %dHz", ppdev->cxScreen,
ppdev->cyScreen,
ppdev->cjPelSize * 8,
ppdev->ulRefresh));
DISPDBG((5, "Passed bInitializeModeFields"));
return(TRUE);
ReturnFalse:
DISPDBG((0, "Failed bInitializeModeFields"));
return(FALSE);
}
/******************************Public*Routine******************************\
* DWORD getAvailableModes
*
* Calls the miniport to get the list of modes supported by the kernel driver,
* and returns the list of modes supported by the diplay driver among those
*
* returns the number of entries in the videomode buffer.
* 0 means no modes are supported by the miniport or that an error occured.
*
* NOTE: the buffer must be freed up by the caller.
*
\**************************************************************************/
DWORD getAvailableModes(
HANDLE hDriver,
PVIDEO_MODE_INFORMATION* modeInformation, // Must be freed by caller
DWORD* cbModeSize)
{
ULONG ulTemp;
VIDEO_NUM_MODES modes;
PVIDEO_MODE_INFORMATION pVideoTemp;
//
// Get the number of modes supported by the mini-port
//
if (EngDeviceIoControl(hDriver,
IOCTL_VIDEO_QUERY_NUM_AVAIL_MODES,
NULL,
0,
&modes,
sizeof(VIDEO_NUM_MODES),
&ulTemp))
{
DISPDBG((0, "getAvailableModes - Failed VIDEO_QUERY_NUM_AVAIL_MODES"));
return(0);
}
*cbModeSize = modes.ModeInformationLength;
//
// Allocate the buffer for the mini-port to write the modes in.
//
*modeInformation = (PVIDEO_MODE_INFORMATION)
EngAllocMem(FL_ZERO_MEMORY,
modes.NumModes *
modes.ModeInformationLength, ALLOC_TAG);
if (*modeInformation == (PVIDEO_MODE_INFORMATION) NULL)
{
DISPDBG((0, "getAvailableModes - Failed EngAllocMem"));
return 0;
}
//
// Ask the mini-port to fill in the available modes.
//
if (EngDeviceIoControl(hDriver,
IOCTL_VIDEO_QUERY_AVAIL_MODES,
NULL,
0,
*modeInformation,
modes.NumModes * modes.ModeInformationLength,
&ulTemp))
{
DISPDBG((0, "getAvailableModes - Failed VIDEO_QUERY_AVAIL_MODES"));
EngFreeMem(*modeInformation);
*modeInformation = (PVIDEO_MODE_INFORMATION) NULL;
return(0);
}
//
// Now see which of these modes are supported by the display driver.
// As an internal mechanism, set the length to 0 for the modes we
// DO NOT support.
//
ulTemp = modes.NumModes;
pVideoTemp = *modeInformation;
//
// Mode is rejected if it is not one plane, or not graphics, or is not
// one of 8, 15, 16, 24, or 32 bits per pel.
//
while (ulTemp--)
{
if ((pVideoTemp->NumberOfPlanes != 1 ) ||
!(pVideoTemp->AttributeFlags & VIDEO_MODE_GRAPHICS) ||
((pVideoTemp->BitsPerPlane != 8) &&
(pVideoTemp->BitsPerPlane != 15) &&
(pVideoTemp->BitsPerPlane != 16) &&
(pVideoTemp->BitsPerPlane != 24) &&
(pVideoTemp->BitsPerPlane != 32)))
{
DISPDBG((2, "Rejecting miniport mode:"));
DISPDBG((2, " Screen width -- %li", pVideoTemp->VisScreenWidth));
DISPDBG((2, " Screen height -- %li", pVideoTemp->VisScreenHeight));
DISPDBG((2, " Bits per pel -- %li", pVideoTemp->BitsPerPlane *
pVideoTemp->NumberOfPlanes));
DISPDBG((2, " Frequency -- %li", pVideoTemp->Frequency));
pVideoTemp->Length = 0;
}
pVideoTemp = (PVIDEO_MODE_INFORMATION)
(((PUCHAR)pVideoTemp) + modes.ModeInformationLength);
}
return(modes.NumModes);
}