windows-nt/Source/XPSP1/NT/drivers/video/ms/modex/disp/enable.c

969 lines
31 KiB
C
Raw Permalink Normal View History

2020-09-26 03:20:57 -05:00
/******************************Module*Header*******************************\
* Module Name: enable.c
*
* The initialization guts of the portable ModeX 256 colour VGA driver.
*
* The drawing guts of a portable 256-colour ModeX driver for Windows NT.
* The implementation herein may possibly be the simplest method of bringing
* up a driver whose surface is not directly writable by GDI. One might
* use the phrase "quick and dirty" when describing it.
*
* We create a 8bpp bitmap that is the size of the screen, and simply
* have GDI do all the drawing to it. We update the screen directly
* from the bitmap, based on the bounds of the drawing (basically
* employing "dirty rectangles").
*
* In total, the only hardware-specific code we had to write was the
* initialization code, and a routine for doing aligned srccopy blts
* from a DIB to the screen.
*
* Obvious Note: This approach is definitely not recommended for decent
* driver performance.
*
* Copyright (c) 1994-1995 Microsoft Corporation
\**************************************************************************/
#include "precomp.h"
/******************************Public*Structure****************************\
* DFVFN gadrvfn[]
*
* Build the driver function table gadrvfn with function index/address
* pairs. This table tells GDI which DDI calls we support, and their
* location (GDI does an indirect call through this table to call us).
*
\**************************************************************************/
static DRVFN gadrvfn[] = {
{ INDEX_DrvEnablePDEV, (PFN) DrvEnablePDEV },
{ INDEX_DrvCompletePDEV, (PFN) DrvCompletePDEV },
{ INDEX_DrvDisablePDEV, (PFN) DrvDisablePDEV },
{ INDEX_DrvEnableSurface, (PFN) DrvEnableSurface },
{ INDEX_DrvDisableSurface, (PFN) DrvDisableSurface },
{ INDEX_DrvDitherColor, (PFN) DrvDitherColor },
{ INDEX_DrvAssertMode, (PFN) DrvAssertMode },
{ INDEX_DrvGetModes, (PFN) DrvGetModes },
{ INDEX_DrvBitBlt, (PFN) DrvBitBlt },
{ INDEX_DrvTextOut, (PFN) DrvTextOut },
{ INDEX_DrvStrokePath, (PFN) DrvStrokePath },
{ INDEX_DrvCopyBits, (PFN) DrvCopyBits },
{ INDEX_DrvPaint, (PFN) DrvPaint },
{ INDEX_DrvSetPalette, (PFN) DrvSetPalette },
{ INDEX_DrvGetDirectDrawInfo, (PFN) DrvGetDirectDrawInfo },
{ INDEX_DrvEnableDirectDraw, (PFN) DrvEnableDirectDraw },
{ INDEX_DrvDisableDirectDraw, (PFN) DrvDisableDirectDraw },
};
ULONG gcdrvfn = sizeof(gadrvfn) / sizeof(DRVFN);
/******************************Public*Structure****************************\
* GDIINFO ggdiDefault
*
* This contains the default GDIINFO fields that are passed back to GDI
* during DrvEnablePDEV.
*
* NOTE: This structure defaults to values for a 8bpp palette device.
\**************************************************************************/
GDIINFO ggdiDefault = {
GDI_DRIVER_VERSION,
DT_RASDISPLAY, // ulTechnology
0, // ulHorzSize
0, // ulVertSize
0, // ulHorzRes (filled in at initialization)
0, // ulVertRes (filled in at initialization)
8, // cBitsPixel
1, // cPlanes
20, // ulNumColors
0, // flRaster (DDI reserved field)
0, // ulLogPixelsX (filled in at initialization)
0, // ulLogPixelsY (filled in at initialization)
TC_RA_ABLE, // flTextCaps
0, // ulDACRed
0, // ulDACGree
0, // ulDACBlue
0x0024, // ulAspectX (one-to-one aspect ratio)
0x0024, // ulAspectY
0x0033, // ulAspectXY
1, // xStyleStep
1, // yStyleSte;
3, // denStyleStep
{ 0, 0 }, // ptlPhysOffset
{ 0, 0 }, // szlPhysSize
256, // ulNumPalReg (win3.1 16 color drivers say 0 too)
// These fields are for halftone initialization.
{ // ciDevice, ColorInfo
{ 6700, 3300, 0 }, // Red
{ 2100, 7100, 0 }, // Green
{ 1400, 800, 0 }, // Blue
{ 1750, 3950, 0 }, // Cyan
{ 4050, 2050, 0 }, // Magenta
{ 4400, 5200, 0 }, // Yellow
{ 3127, 3290, 0 }, // AlignmentWhite
20000, // RedGamma
20000, // GreenGamma
20000, // BlueGamma
0, 0, 0, 0, 0, 0
},
0, // ulDevicePelsDPI (filled in at initialization)
PRIMARY_ORDER_CBA, // ulPrimaryOrder
HT_PATSIZE_4x4_M, // ulHTPatternSize
HT_FORMAT_8BPP, // ulHTOutputFormat
HT_FLAG_ADDITIVE_PRIMS, // flHTFlags
0, // ulVRefresh
1, // ulBltAlignment (preferred window alignment
// for fast-text routines)
0, // ulPanningHorzRes
0, // ulPanningVertRes
};
/******************************Public*Structure****************************\
* DEVINFO gdevinfoDefault
*
* This contains the default DEVINFO fields that are passed back to GDI
* during DrvEnablePDEV.
*
* NOTE: This structure defaults to values for a 8bpp palette device.
\**************************************************************************/
#define SYSTM_LOGFONT {16,7,0,0,700,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS, \
CLIP_DEFAULT_PRECIS,DEFAULT_QUALITY, \
VARIABLE_PITCH | FF_DONTCARE,L"System"}
#define HELVE_LOGFONT {12,9,0,0,400,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS, \
CLIP_STROKE_PRECIS,PROOF_QUALITY, \
VARIABLE_PITCH | FF_DONTCARE, L"MS Sans Serif"}
#define COURI_LOGFONT {12,9,0,0,400,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS, \
CLIP_STROKE_PRECIS,PROOF_QUALITY, \
FIXED_PITCH | FF_DONTCARE, L"Courier"}
DEVINFO gdevinfoDefault =
{
(GCAPS_MONO_DITHER |
GCAPS_COLOR_DITHER |
GCAPS_DIRECTDRAW |
GCAPS_PALMANAGED),
// Graphics capabilities
SYSTM_LOGFONT, // Default font description
HELVE_LOGFONT, // ANSI variable font description
COURI_LOGFONT, // ANSI fixed font description
0, // Count of device fonts
BMF_8BPP, // preferred DIB format
8, // Width of color dither
8, // Height of color dither
0 // Default palette to use for this device
};
/******************************Public*Data*Struct*************************\
* VGALOGPALETTE logPalVGA
*
* This is the palette for the VGA.
*
\**************************************************************************/
typedef struct _VGALOGPALETTE
{
USHORT ident;
USHORT NumEntries;
PALETTEENTRY palPalEntry[16];
} VGALOGPALETTE;
const VGALOGPALETTE logPalVGA =
{
0x400, // Driver version
16, // Number of entries
{
{ 0, 0, 0, 0 }, // 0
{ 0x80,0, 0, 0 }, // 1
{ 0, 0x80,0, 0 }, // 2
{ 0x80,0x80,0, 0 }, // 3
{ 0, 0, 0x80,0 }, // 4
{ 0x80,0, 0x80,0 }, // 5
{ 0, 0x80,0x80,0 }, // 6
{ 0x80,0x80,0x80,0 }, // 7
{ 0xC0,0xC0,0xC0,0 }, // 8
{ 0xFF,0, 0, 0 }, // 9
{ 0, 0xFF,0, 0 }, // 10
{ 0xFF,0xFF,0, 0 }, // 11
{ 0, 0, 0xFF,0 }, // 12
{ 0xFF,0, 0xFF,0 }, // 13
{ 0, 0xFF,0xFF,0 }, // 14
{ 0xFF,0xFF,0xFF,0 } // 15
}
};
/******************************Public*Routine******************************\
* BOOL DrvEnableDriver
*
* Enables the driver by retrieving the drivers function table and version.
*
\**************************************************************************/
BOOL DrvEnableDriver(
ULONG iEngineVersion,
ULONG cj,
DRVENABLEDATA* pded)
{
// Engine Version is passed down so future drivers can support previous
// engine versions. A next generation driver can support both the old
// and new engine conventions if told what version of engine it is
// working with. For the first version the driver does nothing with it.
// Fill in as much as we can.
if (cj >= sizeof(DRVENABLEDATA))
pded->pdrvfn = gadrvfn;
if (cj >= (sizeof(ULONG) * 2))
pded->c = gcdrvfn;
// DDI version this driver was targeted for is passed back to engine.
// Future graphic's engine may break calls down to old driver format.
if (cj >= sizeof(ULONG))
pded->iDriverVersion = DDI_DRIVER_VERSION_NT4;
return(TRUE);
}
/******************************Public*Routine******************************\
* VOID DrvDisableDriver
*
* Tells the driver it is being disabled. Release any resources allocated in
* DrvEnableDriver.
*
\**************************************************************************/
VOID DrvDisableDriver(VOID)
{
return;
}
/******************************Public*Routine******************************\
* DWORD getAvailableModes
*
* Calls the miniport to get the list of modes supported by the kernel driver,
* and returns the list of modes supported by the diplay driver among those
*
* returns the number of entries in the videomode buffer.
* 0 means no modes are supported by the miniport or that an error occured.
*
* NOTE: the buffer must be freed up by the caller.
*
\**************************************************************************/
DWORD getAvailableModes(
HANDLE hDriver,
PVIDEO_MODE_INFORMATION* modeInformation,
DWORD* cbModeSize)
{
ULONG ulTemp;
VIDEO_NUM_MODES modes;
PVIDEO_MODE_INFORMATION pVideoTemp;
DWORD status;
//
// Get the number of modes supported by the mini-port
//
if (status = EngDeviceIoControl(hDriver,
IOCTL_VIDEO_QUERY_NUM_AVAIL_MODES,
NULL,
0,
&modes,
sizeof(VIDEO_NUM_MODES),
&ulTemp))
{
DISPDBG((0, "getAvailableModes failed VIDEO_QUERY_NUM_AVAIL_MODES"));
DISPDBG((0, "Win32 Status = %x", status));
return(0);
}
*cbModeSize = modes.ModeInformationLength;
//
// Allocate the buffer for the mini-port to write the modes in.
//
*modeInformation = (PVIDEO_MODE_INFORMATION)
EngAllocMem(FL_ZERO_MEMORY,
modes.NumModes *
modes.ModeInformationLength, ALLOC_TAG);
if (*modeInformation == (PVIDEO_MODE_INFORMATION) NULL)
{
DISPDBG((0, "getAvailableModes failed EngAllocMem"));
return(0);
}
//
// Ask the mini-port to fill in the available modes.
//
if (status = EngDeviceIoControl(hDriver,
IOCTL_VIDEO_QUERY_AVAIL_MODES,
NULL,
0,
*modeInformation,
modes.NumModes * modes.ModeInformationLength,
&ulTemp))
{
DISPDBG((0, "getAvailableModes failed VIDEO_QUERY_AVAIL_MODES"));
DISPDBG((0, "Win32 Status = %x", status));
EngFreeMem(*modeInformation);
*modeInformation = (PVIDEO_MODE_INFORMATION) NULL;
return(0);
}
//
// Now see which of these modes are supported by the display driver.
// As an internal mechanism, set the length to 0 for the modes we
// DO NOT support.
//
ulTemp = modes.NumModes;
pVideoTemp = *modeInformation;
//
// Mode is rejected if it is not 8 planes, or not graphics, or is not
// one of 1 bits per pel.
//
while (ulTemp--)
{
DISPDBG((2, "Planes: %li BitsPerPlane: %li ScreenWidth: %li",
pVideoTemp->NumberOfPlanes,
pVideoTemp->BitsPerPlane,
pVideoTemp->VisScreenWidth));
if ((pVideoTemp->NumberOfPlanes != 8) ||
!(pVideoTemp->AttributeFlags & VIDEO_MODE_GRAPHICS) ||
(pVideoTemp->BitsPerPlane != 1) ||
(pVideoTemp->VisScreenWidth > 320))
{
pVideoTemp->Length = 0;
}
pVideoTemp = (PVIDEO_MODE_INFORMATION)
(((PUCHAR)pVideoTemp) + modes.ModeInformationLength);
}
return(modes.NumModes);
}
/******************************Public*Routine******************************\
* BOOL bInitializeModeFields
*
* Initializes a bunch of fields in the pdev, devcaps (aka gdiinfo), and
* devinfo based on the requested mode.
*
\**************************************************************************/
BOOL bInitializeModeFields(
PDEV* ppdev,
GDIINFO* pgdi,
DEVINFO* pdi,
DEVMODEW* pdm)
{
ULONG cModes;
PVIDEO_MODE_INFORMATION pVideoBuffer;
PVIDEO_MODE_INFORMATION pVideoModeSelected;
PVIDEO_MODE_INFORMATION pVideoTemp;
BOOL bSelectDefault;
VIDEO_MODE_INFORMATION VideoModeInformation;
ULONG cbModeSize;
// Call the miniport to get mode information
cModes = getAvailableModes(ppdev->hDriver, &pVideoBuffer, &cbModeSize);
if (cModes == 0)
goto ReturnFalse;
// Now see if the requested mode has a match in that table.
pVideoModeSelected = NULL;
pVideoTemp = pVideoBuffer;
if ((pdm->dmPelsWidth == 0) &&
(pdm->dmPelsHeight == 0) &&
(pdm->dmBitsPerPel == 0) &&
(pdm->dmDisplayFrequency == 0))
{
DISPDBG((1, "Default mode requested"));
bSelectDefault = TRUE;
}
else
{
DISPDBG((1, "Requested mode..."));
DISPDBG((1, " Screen width -- %li", pdm->dmPelsWidth));
DISPDBG((1, " Screen height -- %li", pdm->dmPelsHeight));
DISPDBG((1, " Bits per pel -- %li", pdm->dmBitsPerPel));
DISPDBG((1, " Frequency -- %li", pdm->dmDisplayFrequency));
bSelectDefault = FALSE;
}
while (cModes--)
{
if (pVideoTemp->Length != 0)
{
DISPDBG((2, " Checking against miniport mode:"));
DISPDBG((2, " Screen width -- %li", pVideoTemp->VisScreenWidth));
DISPDBG((2, " Screen height -- %li", pVideoTemp->VisScreenHeight));
DISPDBG((2, " Bits per pel -- %li", pVideoTemp->BitsPerPlane *
pVideoTemp->NumberOfPlanes));
DISPDBG((2, " Frequency -- %li", pVideoTemp->Frequency));
if (bSelectDefault ||
((pVideoTemp->VisScreenWidth == pdm->dmPelsWidth) &&
(pVideoTemp->VisScreenHeight == pdm->dmPelsHeight) &&
(pVideoTemp->BitsPerPlane *
pVideoTemp->NumberOfPlanes == pdm->dmBitsPerPel) &&
(pVideoTemp->Frequency == pdm->dmDisplayFrequency)))
{
pVideoModeSelected = pVideoTemp;
DISPDBG((1, "...Found a mode match!"));
break;
}
}
pVideoTemp = (PVIDEO_MODE_INFORMATION)
(((PUCHAR)pVideoTemp) + cbModeSize);
}
// If no mode has been found, return an error
if (pVideoModeSelected == NULL)
{
DISPDBG((1, "...Couldn't find a mode match!"));
EngFreeMem(pVideoBuffer);
goto ReturnFalse;
}
// We have chosen the one we want. Save it in a stack buffer and
// get rid of allocated memory before we forget to free it.
VideoModeInformation = *pVideoModeSelected;
EngFreeMem(pVideoBuffer);
// Set up screen information from the mini-port:
ppdev->ulMode = VideoModeInformation.ModeIndex;
ppdev->cxScreen = VideoModeInformation.VisScreenWidth;
ppdev->cyScreen = VideoModeInformation.VisScreenHeight;
DISPDBG((1, "ScreenStride: %lx", VideoModeInformation.ScreenStride));
ppdev->flHooks = (HOOK_BITBLT |
HOOK_TEXTOUT |
HOOK_COPYBITS |
HOOK_STROKEPATH |
HOOK_PAINT);
// Fill in the GDIINFO data structure with the default 8bpp values:
*pgdi = ggdiDefault;
// Now overwrite the defaults with the relevant information returned
// from the kernel driver:
pgdi->ulHorzSize = VideoModeInformation.XMillimeter;
pgdi->ulVertSize = VideoModeInformation.YMillimeter;
pgdi->ulHorzRes = VideoModeInformation.VisScreenWidth;
pgdi->ulVertRes = VideoModeInformation.VisScreenHeight;
pgdi->ulPanningHorzRes = VideoModeInformation.VisScreenWidth;
pgdi->ulPanningVertRes = VideoModeInformation.VisScreenHeight;
// NOTE: We exchange BitsPerPlane and NumberOfPlanes for compatibility.
// The miniport knows the true value of 8 planes, but we have to
// tell applications that there's only 1 plane otherwise some of
// them will undoubtedly fall over.
pgdi->cBitsPixel = VideoModeInformation.NumberOfPlanes;
pgdi->cPlanes = VideoModeInformation.BitsPerPlane;
pgdi->ulVRefresh = VideoModeInformation.Frequency;
pgdi->ulDACRed = VideoModeInformation.NumberRedBits;
pgdi->ulDACGreen = VideoModeInformation.NumberGreenBits;
pgdi->ulDACBlue = VideoModeInformation.NumberBlueBits;
pgdi->ulLogPixelsX = pdm->dmLogPixels;
pgdi->ulLogPixelsY = pdm->dmLogPixels;
// Fill in the devinfo structure with the default 8bpp values:
*pdi = gdevinfoDefault;
ppdev->iBitmapFormat = BMF_8BPP;
ppdev->cPaletteShift = 8 - pgdi->ulDACRed;
return(TRUE);
ReturnFalse:
DISPDBG((0, "Failed bInitializeModeFields"));
return(FALSE);
}
/******************************Public*Routine******************************\
* DHPDEV DrvEnablePDEV
*
* Initializes a bunch of fields for GDI, based on the mode we've been asked
* to do. This is the first thing called after DrvEnableDriver, when GDI
* wants to get some information about us.
*
* (This function mostly returns back information; DrvEnableSurface is used
* for initializing the hardware and driver components.)
*
\**************************************************************************/
DHPDEV DrvEnablePDEV(
DEVMODEW* pdm, // Contains data pertaining to requested mode
PWSTR pwszLogAddr, // Logical address
ULONG cPat, // Count of standard patterns
HSURF* phsurfPatterns, // Buffer for standard patterns
ULONG cjCaps, // Size of buffer for device caps 'pdevcaps'
ULONG* pdevcaps, // Buffer for device caps, also known as 'gdiinfo'
ULONG cjDevInfo, // Number of bytes in device info 'pdi'
DEVINFO* pdi, // Device information
HDEV hdev, // HDEV, used for callbacks
PWSTR pwszDeviceName, // Device name
HANDLE hDriver) // Kernel driver handle
{
PDEV* ppdev;
// Future versions of NT had better supply 'devcaps' and 'devinfo'
// structures that are the same size or larger than the current
// structures:
if ((cjCaps < sizeof(GDIINFO)) || (cjDevInfo < sizeof(DEVINFO)))
{
DISPDBG((0, "DrvEnablePDEV - Buffer size too small"));
goto ReturnFailure0;
}
// Allocate a physical device structure. Note that we definitely
// rely on the zero initialization:
ppdev = (PDEV*) EngAllocMem(FL_ZERO_MEMORY, sizeof(PDEV), ALLOC_TAG);
if (ppdev == NULL)
{
DISPDBG((0, "DrvEnablePDEV - Failed EngAllocMem"));
goto ReturnFailure0;
}
ppdev->hDriver = hDriver;
// Get the current screen mode information. Set up device caps and
// devinfo:
if (!bInitializeModeFields(ppdev, (GDIINFO*) pdevcaps, pdi, pdm))
{
DISPDBG((0, "DrvEnablePDEV - Failed bInitializeModeFields"));
goto ReturnFailure1;
}
// Initialize palette information.
if (!bInitializePalette(ppdev, pdi))
{
DISPDBG((0, "DrvEnablePDEV - Failed bInitializePalette"));
goto ReturnFailure1;
}
return((DHPDEV) ppdev);
ReturnFailure1:
DrvDisablePDEV((DHPDEV) ppdev);
ReturnFailure0:
DISPDBG((0, "Failed DrvEnablePDEV"));
return(0);
}
/******************************Public*Routine******************************\
* DrvDisablePDEV
*
* Release the resources allocated in DrvEnablePDEV. If a surface has been
* enabled DrvDisableSurface will have already been called.
*
* Note: In an error, we may call this before DrvEnablePDEV is done.
*
\**************************************************************************/
VOID DrvDisablePDEV(
DHPDEV dhpdev)
{
PDEV* ppdev;
ppdev = (PDEV*) dhpdev;
vUninitializePalette(ppdev);
EngFreeMem(ppdev);
}
/******************************Public*Routine******************************\
* VOID DrvCompletePDEV
*
* Store the HPDEV, the engines handle for this PDEV, in the DHPDEV.
*
\**************************************************************************/
VOID DrvCompletePDEV(
DHPDEV dhpdev,
HDEV hdev)
{
((PDEV*) dhpdev)->hdevEng = hdev;
}
/******************************Public*Routine******************************\
* HSURF DrvEnableSurface
*
* Creates the drawing surface, initializes the hardware, and initializes
* driver components. This function is called after DrvEnablePDEV, and
* performs the final device initialization.
*
\**************************************************************************/
HSURF DrvEnableSurface(
DHPDEV dhpdev)
{
PDEV* ppdev;
HSURF hsurfShadow;
HSURF hsurfDevice;
SIZEL sizl;
SURFOBJ* psoShadow;
ppdev = (PDEV*) dhpdev;
/////////////////////////////////////////////////////////////////////
// Have GDI create the actual SURFOBJ.
//
// Our drawing surface is going to be 'device-managed', meaning that
// GDI cannot draw on the framebuffer bits directly, and as such we
// create the surface via EngCreateSurface. By doing this, we ensure
// that GDI will only ever access the bitmaps bits via the Drv calls
// that we've HOOKed.
sizl.cx = ppdev->cxScreen;
sizl.cy = ppdev->cyScreen;
hsurfDevice = EngCreateDeviceSurface(NULL, sizl, ppdev->iBitmapFormat);
if (hsurfDevice == 0)
{
DISPDBG((0, "DrvEnableSurface - Failed EngCreateSurface"));
goto ReturnFailure;
}
ppdev->hsurfScreen = hsurfDevice; // Remember it for clean-up
/////////////////////////////////////////////////////////////////////
// Now associate the surface and the PDEV.
//
// We have to associate the surface we just created with our physical
// device so that GDI can get information related to the PDEV when
// it's drawing to the surface (such as, for example, the length of
// styles on the device when simulating styled lines).
//
if (!EngAssociateSurface(hsurfDevice, ppdev->hdevEng, ppdev->flHooks))
{
DISPDBG((0, "DrvEnableSurface - Failed EngAssociateSurface"));
goto ReturnFailure;
}
// Since we are employing a shadow buffer, we can fake out DirectDraw
// and indicate that we have more flip surfaces in our shadow buffer
// than we do on the physical device. However, we need room for at
// least two physical flip surfaces on the device to do this; at 320x480,
// there's enough physical video memory for only one flip surface, so
// we have to tell DirectDraw that we don't have any off-screen memory,
// and so can't do any flips:
ppdev->cxMemory = ppdev->cxScreen;
ppdev->cyMemory = ppdev->cyScreen;
if (ppdev->cyScreen <= 400)
{
ppdev->cyMemory *= NUM_FLIP_BUFFERS;
}
// Create the 8bpp DIB on which we'll have GDI do all the drawing.
// We'll merely occasionally blt portions to the screen to update.
sizl.cy = ppdev->cyMemory;
sizl.cx = ppdev->cxMemory;
// We allocate a kernel-mode section so that we can map a view of the
// frame buffer bitmap into user-mode for use with DirectDraw:
hsurfShadow = (HSURF) EngCreateBitmap(sizl,
sizl.cx,
ppdev->iBitmapFormat,
BMF_KMSECTION | BMF_TOPDOWN,
NULL);
if (hsurfShadow == 0)
goto ReturnFailure;
psoShadow = EngLockSurface(hsurfShadow);
if (psoShadow == NULL)
goto ReturnFailure;
ppdev->lScreenDelta = sizl.cx;
ppdev->pjScreen = psoShadow->pvScan0;
ppdev->pso = psoShadow;
ASSERTDD(psoShadow->pvScan0 == psoShadow->pvBits,
"We'll be assuming in DirectDraw that the bitmap is bottom-up");
if (!EngAssociateSurface(hsurfShadow, ppdev->hdevEng, 0))
{
DISPDBG((0, "DrvEnableSurface - Failed second EngAssociateSurface"));
goto ReturnFailure;
}
/////////////////////////////////////////////////////////////////////
// Now enable all the subcomponents.
//
// Note that the order in which these 'Enable' functions are called
// may be significant in low off-screen memory conditions, because
// the off-screen heap manager may fail some of the later
// allocations...
if (!bEnableHardware(ppdev))
goto ReturnFailure;
if (!bEnablePalette(ppdev))
goto ReturnFailure;
if (!bEnableDirectDraw(ppdev))
goto ReturnFailure;
DISPDBG((5, "Passed DrvEnableSurface"));
return(hsurfDevice);
ReturnFailure:
DrvDisableSurface((DHPDEV) ppdev);
DISPDBG((0, "Failed DrvEnableSurface"));
return(0);
}
/******************************Public*Routine******************************\
* VOID DrvDisableSurface
*
* Free resources allocated by DrvEnableSurface. Release the surface.
*
* Note: In an error case, we may call this before DrvEnableSurface is
* completely done.
*
\**************************************************************************/
VOID DrvDisableSurface(
DHPDEV dhpdev)
{
PDEV* ppdev;
HSURF hsurf;
ppdev = (PDEV*) dhpdev;
// Note: In an error case, some of the following relies on the
// fact that the PDEV is zero-initialized, so fields like
// 'hsurfScreen' will be zero unless the surface has been
// sucessfully initialized, and makes the assumption that
// EngDeleteSurface can take '0' as a parameter.
vDisableDirectDraw(ppdev);
vDisablePalette(ppdev);
vDisableHardware(ppdev);
if (ppdev->pso) {
hsurf = ppdev->pso->hsurf;
EngUnlockSurface(ppdev->pso);
EngDeleteSurface(hsurf);
}
EngDeleteSurface(ppdev->hsurfScreen);
}
/******************************Public*Routine******************************\
* VOID DrvAssertMode
*
* This asks the device to reset itself to the mode of the pdev passed in.
*
\**************************************************************************/
BOOL DrvAssertMode(
DHPDEV dhpdev,
BOOL bEnable)
{
PDEV* ppdev;
ppdev = (PDEV*) dhpdev;
if (!bEnable)
{
//////////////////////////////////////////////////////////////
// Disable - Switch to full-screen mode
vAssertModeDirectDraw(ppdev, FALSE);
vAssertModePalette(ppdev, FALSE);
if (bAssertModeHardware(ppdev, FALSE))
{
return(TRUE);
}
vAssertModeDirectDraw(ppdev, TRUE);
}
else
{
//////////////////////////////////////////////////////////////
// Enable - Switch back to graphics mode
// We have to enable every subcomponent in the reverse order
// in which it was disabled:
if (bAssertModeHardware(ppdev, TRUE))
{
vAssertModePalette(ppdev, TRUE);
vAssertModeDirectDraw(ppdev, TRUE);
return(TRUE);
}
}
return(FALSE);
}
/******************************Public*Routine******************************\
* ULONG DrvGetModes
*
* Returns the list of available modes for the device.
*
\**************************************************************************/
ULONG DrvGetModes(
HANDLE hDriver,
ULONG cjSize,
DEVMODEW* pdm)
{
DWORD cModes;
DWORD cbOutputSize;
PVIDEO_MODE_INFORMATION pVideoModeInformation;
PVIDEO_MODE_INFORMATION pVideoTemp;
DWORD cOutputModes = cjSize / (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE);
DWORD cbModeSize;
cModes = getAvailableModes(hDriver,
(PVIDEO_MODE_INFORMATION *) &pVideoModeInformation,
&cbModeSize);
if (cModes == 0)
{
DISPDBG((0, "DrvGetModes failed to get mode information"));
return(0);
}
if (pdm == NULL)
{
cbOutputSize = cModes * (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE);
}
else
{
//
// Now copy the information for the supported modes back into the
// output buffer
//
cbOutputSize = 0;
pVideoTemp = pVideoModeInformation;
do
{
if (pVideoTemp->Length != 0)
{
if (cOutputModes == 0)
{
break;
}
//
// Zero the entire structure to start off with.
//
memset(pdm, 0, sizeof(DEVMODEW));
//
// Set the name of the device to the name of the DLL.
//
memcpy(pdm->dmDeviceName, DLL_NAME, sizeof(DLL_NAME));
pdm->dmSpecVersion = DM_SPECVERSION;
pdm->dmDriverVersion = DM_SPECVERSION;
pdm->dmSize = sizeof(DEVMODEW);
pdm->dmDriverExtra = DRIVER_EXTRA_SIZE;
pdm->dmBitsPerPel = pVideoTemp->NumberOfPlanes *
pVideoTemp->BitsPerPlane;
pdm->dmPelsWidth = pVideoTemp->VisScreenWidth;
pdm->dmPelsHeight = pVideoTemp->VisScreenHeight;
pdm->dmDisplayFrequency = pVideoTemp->Frequency;
pdm->dmDisplayFlags = 0;
pdm->dmFields = DM_BITSPERPEL |
DM_PELSWIDTH |
DM_PELSHEIGHT |
DM_DISPLAYFREQUENCY |
DM_DISPLAYFLAGS ;
//
// Go to the next DEVMODE entry in the buffer.
//
cOutputModes--;
pdm = (LPDEVMODEW) ( ((ULONG_PTR)pdm) + sizeof(DEVMODEW)
+ DRIVER_EXTRA_SIZE);
cbOutputSize += (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE);
}
pVideoTemp = (PVIDEO_MODE_INFORMATION)
(((PUCHAR)pVideoTemp) + cbModeSize);
} while (--cModes);
}
EngFreeMem(pVideoModeInformation);
return(cbOutputSize);
}