windows-nt/Source/XPSP1/NT/multimedia/media/avi/msvidc/decmprss.c

2305 lines
66 KiB
C
Raw Permalink Normal View History

2020-09-26 03:20:57 -05:00
/*----------------------------------------------------------------------+
| decmprss.c - Microsoft Video 1 Compressor - decompress code |
| |
| |
| Copyright (c) 1990-1994 Microsoft Corporation. |
| Portions Copyright Media Vision Inc. |
| All Rights Reserved. |
| |
| You have a non-exclusive, worldwide, royalty-free, and perpetual |
| license to use this source code in developing hardware, software |
| (limited to drivers and other software required for hardware |
| functionality), and firmware for video display and/or processing |
| boards. Microsoft makes no warranties, express or implied, with |
| respect to the Video 1 codec, including without limitation warranties |
| of merchantability or fitness for a particular purpose. Microsoft |
| shall not be liable for any damages whatsoever, including without |
| limitation consequential damages arising from your use of the Video 1 |
| codec. |
| |
| |
+----------------------------------------------------------------------*/
#ifdef _WIN32
//#ifdef DEBUG DEBUG is not defined on NT until win32.h is included...
// Always define here so that the ntrtl headers get included
#ifndef CHICAGO
#if DBG
// We only want this stuff in the debug build
#define MEASURE_PERFORMANCE
#endif
#endif
//#endif
#endif
#ifdef MEASURE_PERFORMANCE // Displays frame decompress times on the debugger
#include <nt.h>
#include <ntrtl.h>
#include <nturtl.h>
#endif
#include <windows.h>
#include <win32.h>
#include "msvidc.h"
#ifdef DEBUG
#undef INLINE // Make debugging easier - less code movement
#define INLINE
#else
#undef MEASURE_PERFORMANCE // Turn it off for non debug builds
#endif
#ifdef MEASURE_PERFORMANCE
STATICDT LARGE_INTEGER PC1; /* current counter value */
STATICDT LARGE_INTEGER PC2; /* current counter value */
STATICDT LARGE_INTEGER PC3; /* current counter value */
STATICFN VOID StartCounting(VOID)
{
QueryPerformanceCounter(&PC1);
return;
}
STATICFN VOID EndCounting(LPSTR szId)
{
QueryPerformanceCounter(&PC2);
PC3.QuadPart = PC2.QuadPart - PC1.QuadPart;
DPF(("%s: %d ticks", szId, PC3.LowPart));
return;
}
#else
#define StartCounting()
#define EndCounting(x)
#endif
/*
* dither table pointers declared and initialised in msvidc.c
*/
extern LPVOID lpDitherTable;
/*
* these two pointers point into the lpDitherTable
*/
LPBYTE lpLookup;
LPWORD lpScale;
/*
** Lookup table for expanding 4 bits into 4 bytes
*/
CONST DWORD ExpansionTable[16] = {
0x00000000,
0x000000FF,
0x0000FF00,
0x0000FFFF,
0x00FF0000,
0x00FF00FF,
0x00FFFF00,
0x00FFFFFF,
0xFF000000,
0xFF0000FF,
0xFF00FF00,
0xFF00FFFF,
0xFFFF0000,
0xFFFF00FF,
0xFFFFFF00,
0xFFFFFFFF
};
/*
* Lookup table to turn a bitmask to a byte mask
*/
DWORD Bits2Bytes[13] = {0, 0xffff, 0xffff0000, 0xffffffff,
0xffff, 0, 0, 0,
0xffff0000, 0, 0, 0,
0xffffffff};
//#include <limits.h>
//#include <mmsystem.h>
//#include <aviffmt.h>
#define RGB555toRGBTRIPLE( rgbT, rgb ) rgbT.rgbtRed=(BYTE)((rgb & 0x7c00) >> 7); \
rgbT.rgbtGreen=(BYTE)((rgb & 0x3e0) >>2); \
rgbT.rgbtBlue=(BYTE)((rgb & 0x1f) << 3)
static WORD edgeBitMask[HEIGHT_CBLOCK*WIDTH_CBLOCK] = {
0x0001,0x0002,0x0010,0x0020,
0x0004,0x0008,0x0040,0x0080,
0x0100,0x0200,0x1000,0x2000,
0x0400,0x0800,0x4000,0x8000
};
/* make a DWORD that has four copies of the byte x */
#define MAKE4(x) ( (x << 24) | (x << 16) | (x << 8) | x)
/* make a DWORD that has two copies of the byte x (low word) and two of y */
#define MAKE22(x, y) ( (y << 24) | (y << 16) | (x << 8) | (x))
/**************************************************************************
compute a pointer into a DIB handling correctly "upside" down DIBs
***************************************************************************/
STATICFN LPVOID DibXY(LPBITMAPINFOHEADER lpbi, LPBYTE lpBits, LONG x, LONG y, INT FAR *pWidthBytes)
{
int WidthBytes;
if (x > 0)
((BYTE FAR *)lpBits) += ((int)x * (int)lpbi->biBitCount) >> 3;
WidthBytes = (((((int)lpbi->biWidth * (int)lpbi->biBitCount) >> 3) + 3)&~3);
if (lpbi->biHeight < 0)
{
WidthBytes = -WidthBytes;
((BYTE _huge *)lpBits) += lpbi->biSizeImage + WidthBytes;
}
if (y > 0)
((BYTE _huge *)lpBits) += ((long)y * WidthBytes);
if (pWidthBytes)
*pWidthBytes = WidthBytes;
return lpBits;
}
/*
* 16-bit decompression to 24-bit RGB--------------------------------------
*/
/*************************************************
purp: decompress a 4 by 4 compression block to RGBDWORD
entry: uncmp == address of the destination uncompressed image
cmp == address of the compressed image
exit: returns updated address of the compressed image
and 16 pixels are generated
*************************************************/
// note that the skip count is now stored in the parent stack frame
// and passed as a pointer pSkipCount. This ensures that we are multithread
// safe.
STATICFN HPWORD INLINE DecompressCBlockToRGBTRIPLE(
HPRGBTRIPLE uncmp,
HPWORD cmp,
INT bytesPerRow,
LONG FAR * pSkipCount
)
{
UINT by;
UINT bx;
UINT y;
UINT x;
WORD mask;
WORD color0;
WORD color1;
WORD bitMask;
RGBTRIPLE rgbTriple0;
RGBTRIPLE rgbTriple1;
HPRGBTRIPLE row;
HPRGBTRIPLE blockRow;
HPRGBTRIPLE blockColumn;
WORD *pEdgeBitMask;
// check for outstanding skips
if (*pSkipCount > 0)
{
// NOT YET IMPLEMENTED Assert(!"Skip count should be handled by caller");
(*pSkipCount) --;
return cmp;
}
// get mask and init bit mask
mask = *cmp++;
// check for a skip or a solid color
if (mask & 0x8000)
{
if ((mask & ~SKIP_MASK) == SKIP_MAGIC)
{
*pSkipCount = (mask & SKIP_MASK);
#ifdef _WIN32
Assert(*pSkipCount != 0); // break (on debug builds) if SkipCount == 0
#endif
(*pSkipCount)--;
return cmp;
}
else
{
// solid color
RGB555toRGBTRIPLE( rgbTriple1, mask );
for( row = uncmp,y=0; y < HEIGHT_CBLOCK; y++, row = NEXT_RGBT_PIXEL_ROW( row, bytesPerRow ) )
for( x=0; x < WIDTH_CBLOCK; x++ )
row[x] = rgbTriple1;
return cmp;
}
}
bitMask = 1;
pEdgeBitMask = edgeBitMask;
if( (*cmp & 0x8000) != 0 )
{ // this is an edge with 4 color pairs in four small blocks
blockRow = uncmp;
for( by=0; by < 2; by++, blockRow = NEXT_BLOCK_ROW( blockRow, bytesPerRow, EDGE_HEIGHT_CBLOCK ) )
{
blockColumn = blockRow;
for( bx=0; bx < 2; bx++, blockColumn += EDGE_WIDTH_CBLOCK )
{
color1 = *cmp++;
RGB555toRGBTRIPLE( rgbTriple1, color1 );
color0 = *cmp++;
RGB555toRGBTRIPLE( rgbTriple0, color0 );
row = blockColumn;
for( y=0; y < EDGE_HEIGHT_CBLOCK; y++, row = NEXT_RGBT_PIXEL_ROW( row, bytesPerRow ) )
{
for( x=0; x < EDGE_WIDTH_CBLOCK; x++ )
{
if( (mask & *pEdgeBitMask++ ) != 0 )
row[x] = rgbTriple1;
else
row[x] = rgbTriple0;
bitMask <<= 1;
}
}
}
}
}
else
{ // not an edge with only 1 colour pair and one large block
color1 = *cmp++;
RGB555toRGBTRIPLE( rgbTriple1, color1 );
color0 = *cmp++;
RGB555toRGBTRIPLE( rgbTriple0, color0 );
row = uncmp;
for( y=0; y < HEIGHT_CBLOCK; y++, row = NEXT_RGBT_PIXEL_ROW( row, bytesPerRow ) )
{
for( x=0; x < WIDTH_CBLOCK; x++ )
{
if( (mask & bitMask ) != 0 )
row[x] = rgbTriple1;
else
row[x] = rgbTriple0;
bitMask <<= 1;
}
}
}
return( cmp );
}
/*************************************************
purp: decompress the image to RGBTRIPLE
entry: lpinst = pointer to instance data
hpCompressed = pointer to compressed data
exit: returns number of bytes in the uncompressed image
lpinst->hDib = handle to the uncompressed image
*************************************************/
DWORD FAR PASCAL DecompressFrame24(LPBITMAPINFOHEADER lpbiIn, LPVOID lpIn,
LPBITMAPINFOHEADER lpbiOut, LPVOID lpOut, LONG x, LONG y)
{
HPWORD cmp = (HPWORD)lpIn;
int bix;
int biy;
HPRGBTRIPLE blockRow;
HPRGBTRIPLE blockColumn;
int bytesPerRow;
DWORD actualSize;
LONG SkipCount = 0;
DPF(("DecompressFrame24:\n"));
bix = (UINT)((UINT)lpbiIn->biWidth / WIDTH_CBLOCK);
biy = (UINT)((UINT)lpbiIn->biHeight / HEIGHT_CBLOCK);
StartCounting();
blockRow = DibXY(lpbiOut, lpOut, x, y, &bytesPerRow);
for( y=0; y < biy; y++, blockRow = NEXT_BLOCK_ROW( blockRow, bytesPerRow, HEIGHT_CBLOCK ) )
{
blockColumn = blockRow;
for( x=0; x < bix; x++, blockColumn += WIDTH_CBLOCK )
{
cmp = DecompressCBlockToRGBTRIPLE( blockColumn, cmp, bytesPerRow, &SkipCount);
}
}
actualSize = bytesPerRow*biy*HEIGHT_CBLOCK;
EndCounting("Decompress frame24 took");
return( actualSize );
}
/*************************************************
*************************************************/
/*
* -------- 8-bit decompression ----------------------------------------
*
*
* The input stream consists of four cases, handled like this:
*
* SKIP lower 10 bits have skip count
* Return the skip count to the caller (must be multi-thread safe).
* Caller will advance the source pointer past the correct number of
* of skipped cells.
*
* SOLID lower 8 bits is solid colour for entire cell
* Write the colour to each pixel, four pixels (one DWORD) at
* a time.
*
* Mask + 2 colours
* 1s in the mask represent the first colour, 0s the second colour.
* Pixels are represented thus:
*
* C D E F
* 8 9 A B
* 4 5 6 7
* 0 1 2 3
*
* To write four pixels at once, we rely on the fact that:
* (a ^ b) ^ a == b
* and also that a ^ 0 == a.
* We create a DWORD (Czero) containing four copies of the colour 0, and
* another DWORD (Cxor) containing four copies of (colour 0 ^ colour 1).
* Then we convert each bit in the mask (1 or 0) into a byte (0xff or 0),
* and combining four mask bytes into a DWORD. Then we can select
* four pixels at once (AND the mask with Czero and then XOR with Cxor).
*
* Mask + 8 colours.
* 1s and 0s represent two colours as before, but the cell is divided
* into 4 subcells with two colours per subcell. The first pair of
* colours are for subcell 0145, then 2367, 89cd and abef.
*
* We use the same algorithm as for the mask+2 case except that when
* making the mask, we need colours from the second pair in the top
* two bytes of Czero and Cxor, and that we need to change colours
* again after two rows.
*
* -----------------------------------------------------------------------
*/
/*
* DecompressCBlockTo8
*
*
* decompress one cell to 16 8-bit pixels.
*
* parameters:
* uncmp- pointer to de-compressed buffer for this block.
* cmp - pointer to compressed data for this block
* bytes.. - size of one row of de-compressed data
* pSkipCount - place to return the skipcount if non-zero.
*
* returns:
* pointer to the next block of compressed data to use.
*/
STATICFN HPWORD INLINE DecompressCBlockTo8(
HPBYTE uncmp,
HPWORD cmp,
INT bytesPerRow,
LONG FAR * pSkipCount
)
{
UINT y;
WORD mask;
BYTE b0,b1;
HPBYTE row;
BYTE b2, b3;
DWORD Czero, Cxor;
DWORD dwBytes;
// skip counts should be handled by caller
#ifdef _WIN32
Assert(*pSkipCount == 0);
#endif
/* first word is the escape word or bit mask */
mask = *cmp++;
/*
* is this an escape ?
*/
if (mask & 0x8000)
{
/* yes - this is either a SKIP code, a solid colour, or an edge
* cell (mask + 8 colours).
*/
if ((mask & ~SKIP_MASK) == SKIP_MAGIC)
{
*pSkipCount = (mask & SKIP_MASK);
#ifdef _WIN32
Assert(*pSkipCount != 0); // break (on debug builds) if SkipCount == 0
#endif
(*pSkipCount)--; // the current cell
return cmp;
}
else if ((mask & ~SKIP_MASK) == SOLID_MAGIC)
{
// solid color
DWORD dw;
//b0 = LOBYTE(mask);
//dw = b0 | b0<<8 | b0<<16 | b0<<24;
dw = LOBYTE(mask);
dw = MAKE4(dw);
#ifdef _WIN32
Assert(HEIGHT_CBLOCK == 4); // If this ever changes...
Assert(WIDTH_CBLOCK == 4);
#endif
for(y = 0, row = uncmp; y < HEIGHT_CBLOCK;y++, row+= bytesPerRow) {
// We know we will iterate 4 times (WIDTH_CBLOCK) storing
// 4 bytes of colour b0 in 4 adjacent rows
*(DWORD UNALIGNED HUGE *)row = dw;
}
return cmp;
}
else // this is an edge with 4 color pairs in four small blocks
{
/* read 4 colours, and make AND and XOR masks */
b0 = *((LPBYTE)cmp)++;
b1 = *((LPBYTE)cmp)++;
b2 = *((LPBYTE)cmp)++;
b3 = *((LPBYTE)cmp)++;
Czero = MAKE22(b1, b3);
Cxor = Czero ^ MAKE22(b0, b2);
row = uncmp;
/* first two rows - top two subcells */
for (y = 0; y < 2; y++) {
/* turn bitmask into byte mask */
dwBytes = ExpansionTable[mask & 0x0f];
/* select colours and write to dest */
*( (DWORD UNALIGNED HUGE *)row) = (dwBytes & Cxor) ^ Czero;
row += bytesPerRow;
mask >>= 4;
}
/* second two rows - bottom two subcells */
/* read last four colours and make masks */
b0 = *((LPBYTE)cmp)++;
b1 = *((LPBYTE)cmp)++;
b2 = *((LPBYTE)cmp)++;
b3 = *((LPBYTE)cmp)++;
Czero = MAKE22(b1, b3);
Cxor = Czero ^ MAKE22(b0, b2);
for (y = 0; y < 2; y++) {
/* turn bitmask into byte mask */
dwBytes = ExpansionTable[mask & 0x0f];
/* select both colours and write to dest */
*( (DWORD UNALIGNED HUGE *)row) = (dwBytes & Cxor) ^ Czero;
row += bytesPerRow;
mask >>= 4;
}
}
}
else // not an edge with only 1 colour pair and one large block
{
/* use and, xor to map several colours at once.
* relies on (Czero ^ Cone) ^ Czero == Cone and Czero ^ 0 == Czero.
*/
/* read colours */
b1 = *((LPBYTE)cmp)++;
b0 = *((LPBYTE)cmp)++;
row = uncmp;
/* make two DWORDs, one with four copies of colour 0, and one
* with four copies of (b0 ^ b1).
*/
Czero = MAKE4(b0);
Cxor = Czero ^ MAKE4(b1);
for (y = 0; y < 4; y++) {
/* turn bitmask into byte mask */
dwBytes = ExpansionTable[mask & 0x0f];
/* select both colours and write to dest */
*( (DWORD UNALIGNED HUGE *)row) = (dwBytes & Cxor) ^ Czero;
row += bytesPerRow;
mask >>= 4;
}
}
return( cmp );
}
/*************************************************
*************************************************/
/*
* decompress a CRAM-8 DIB to an 8-bit DIB
*
* Loop calling DecompressCBlockTo8 for each cell in the input
* stream. This writes a block of 16 pixels and returns us the
* pointer for the next block.
*/
DWORD FAR PASCAL DecompressFrame8(LPBITMAPINFOHEADER lpbiIn, LPVOID lpIn,
LPBITMAPINFOHEADER lpbiOut, LPVOID lpOut, LONG x, LONG y)
{
HPWORD cmp = (HPWORD)lpIn;
int bix;
int biy;
HPBYTE blockRow;
HPBYTE blockColumn;
LONG SkipCount8 = 0; // multithread-safe - cannot be static
int bytesPerRow;
DPF(("DecompressFrame8:\n"));
bix = (int)((UINT)lpbiIn->biWidth / WIDTH_CBLOCK);
biy = (int)((UINT)lpbiIn->biHeight / HEIGHT_CBLOCK);
StartCounting();
blockRow = DibXY(lpbiOut, lpOut, x, y, &bytesPerRow);
for( y=biy; y--; blockRow += bytesPerRow * HEIGHT_CBLOCK )
{
blockColumn = blockRow;
for( x=bix; x--; blockColumn += WIDTH_CBLOCK )
{
cmp = DecompressCBlockTo8(blockColumn, cmp, bytesPerRow, &SkipCount8);
// See if the SkipCount has been set. If so we want to move to
// the next location rather than calling DecompressCBlock every
// time around the loop. Keep the test simple to minimise the
// overhead on every iteration that the Skipcount is 0.
if (SkipCount8) {
if ((x -= SkipCount8) <0) { // extends past this row
LONG SkipRows;
// More than just the remainder of this row to skip
SkipCount8 =-x; // These bits are on the next row(s)
// SkipCount8 will be >0 otherwise we would have gone
// down the else leg.
// Calculate how many complete and partial rows to skip.
// We know we have skipped at least one row. The plan
// is to restart the X loop at some point along the row.
// If the skipcount takes us exactly to the end of a row
// we drop out of the x loop, and let the outer y loop do
// the decrement. This takes care of the case when the
// skipcount takes us to the very end of the image.
SkipRows = 1 + (SkipCount8-1)/bix;
// Decrement the row count and set new blockrow start
#ifdef _WIN32
if (y<SkipRows) {
Assert(y >= SkipRows);
SkipRows = y;
}
#endif
// Unless we have finished we need to reset blockRow
y -= SkipRows;
// y might be 0, but we must still complete the last row
blockRow += bytesPerRow*HEIGHT_CBLOCK*SkipRows;
// Calculate the offset into the next row we will process
x = SkipCount8%bix; // This may be 0
if (x) {
// Set block column by the amount along the row
// this iteration is starting, making allowance for
// the "for x..." loop iterating blockColumn once.
blockColumn = blockRow + ((x-1)*WIDTH_CBLOCK);
x=bix-x; // Get the counter correct
}
SkipCount8 = 0; // Skip count now exhausted (so am I)
} else {
// SkipCount has been exhausted by this row
// Either the row has completed, or there is more data
// on this row. Check...
if (x) {
// More of this row left
// Worry about moving blockColumn on the right amount
blockColumn += WIDTH_CBLOCK*SkipCount8;
} // else x==0 and we will drop out of the "for x..." loop
// blockColumn will be reset when we reenter the x loop
SkipCount8=0;
}
}
}
}
EndCounting("Decompress 8bit took");
return 0;
}
#ifdef _WIN32
/* ---- 8-bit X2 decompress - in asm for Win16 ---------------------------*/
/*
* decompress one block, stretching by 2.
*
* parameters:
* uncmp- pointer to de-compressed buffer for this block.
* cmp - pointer to compressed data for this block
* bytes.. - size of one row of de-compressed data
*
* returns:
* pointer to the next block of compressed data.
*
* Given same incoming data, write a block of four pixels for every
* pixel in original compressed image. Uses same techniques as
* unstretched routine, masking and writing four pixels (one dword)
* at a time.
*
* Stretching by 2 is done by simple pixel duplication.
* Experiments were done (x86) to only store every other line, then to use
* memcpy to fill in the gaps. This is slower than writing two identical
* lines as you proceed.
*
* Skip counts are returned (via pSkipCount) to the caller, who will handle
* advancing the source pointer accordingly.
*
*/
STATICFN HPWORD INLINE DecompressCBlockTo8X2(
HPBYTE uncmp,
HPWORD cmp,
INT bytesPerRow,
LONG FAR * pSkipCount)
{
UINT y;
UINT dx, dy;
WORD mask;
BYTE b0,b1;
HPBYTE row;
DWORD Czero, Cxor, dwBytes;
DWORD Ctwo, Cxor2;
// skip counts should be handled by caller
#ifdef _WIN32
Assert (*pSkipCount == 0);
#endif
// get mask and init bit mask
mask = *cmp++;
// check for a skip or a solid color
if (mask & 0x8000)
{
if ((mask & ~SKIP_MASK) == SKIP_MAGIC)
{
*pSkipCount = (mask & SKIP_MASK);
#ifdef _WIN32
Assert(*pSkipCount != 0); // break (on debug builds) if SkipCount == 0
#endif
(*pSkipCount)--;
return cmp;
}
else if ((mask & ~SKIP_MASK) == SOLID_MAGIC)
{
// solid color
DWORD dw;
//b0 = LOBYTE(mask);
//dw = b0 | b0<<8 | b0<<16 | b0<<24;
dw = LOBYTE(mask);
dw = MAKE4(dw);
#ifdef _WIN32
Assert(HEIGHT_CBLOCK == 4); // If this ever changes...
Assert(WIDTH_CBLOCK == 4);
#endif
dx = WIDTH_CBLOCK * 2;
dy = HEIGHT_CBLOCK * 2;
for(row = uncmp; dy--; row+= bytesPerRow) {
// We know we will iterate 8 times (dx) value storing
// 4 bytes of colour b0 in eight adjacent rows
*(DWORD UNALIGNED HUGE *)row = dw;
*((DWORD UNALIGNED HUGE *)row+1) = dw;
}
return cmp;
}
else // this is an edge with 4 color pairs in four small blocks
{
/* read 2 colours, and make AND and XOR masks for first subcell*/
b0 = *((LPBYTE)cmp)++;
b1 = *((LPBYTE)cmp)++;
Czero = MAKE4(b1);
Cxor = Czero ^ MAKE4(b0);
/* colour masks for second subcell */
b0 = *((LPBYTE)cmp)++;
b1 = *((LPBYTE)cmp)++;
Ctwo = MAKE4(b1);
Cxor2 = Ctwo ^ MAKE4(b0);
row = uncmp;
/* first two rows - top two subcells */
for (y = 0; y < 2; y++) {
/* --- first subcell (two pixels) ---- */
/* turn bitmask into byte mask */
#if 0
dwBytes = ((mask & 1) ? 0xffff: 0) |
((mask & 2) ? 0xffff0000 : 0);
#else
dwBytes = Bits2Bytes[mask&3];
#endif
/* select both colours and write to dest */
dwBytes = (dwBytes & Cxor) ^ Czero;
*( (DWORD UNALIGNED HUGE *)row) = dwBytes;
*( (DWORD UNALIGNED HUGE *)(row + bytesPerRow)) = dwBytes;
/* ---- second subcell (two pixels) --- */
/* turn bitmask into byte mask */
#if 0
dwBytes = ((mask & 4) ? 0xffff: 0) |
((mask & 8) ? 0xffff0000 : 0);
#else
dwBytes = Bits2Bytes[mask&0xc];
#endif
/* select both colours and write to dest */
dwBytes = (dwBytes & Cxor2) ^ Ctwo;
*( (DWORD UNALIGNED HUGE *)(row + sizeof(DWORD))) = dwBytes;
*( (DWORD UNALIGNED HUGE *)(row + sizeof(DWORD) + bytesPerRow)) = dwBytes;
row += bytesPerRow * 2;
mask >>= 4;
}
/* second two rows - bottom two subcells */
/* read 2 colours, and make AND and XOR masks for first subcell*/
b0 = *((LPBYTE)cmp)++;
b1 = *((LPBYTE)cmp)++;
Czero = MAKE4(b1);
Cxor = Czero ^ MAKE4(b0);
/* colour masks for second subcell */
b0 = *((LPBYTE)cmp)++;
b1 = *((LPBYTE)cmp)++;
Ctwo = MAKE4(b1);
Cxor2 = Ctwo ^ MAKE4(b0);
for (y = 0; y < 2; y++) {
/* --- first subcell (two pixels) ---- */
/* turn bitmask into byte mask */
#if 0
dwBytes = ((mask & 1) ? 0xffff: 0) |
((mask & 2) ? 0xffff0000 : 0);
#else
dwBytes = Bits2Bytes[mask&3];
#endif
/* select both colours and write to dest */
dwBytes = (dwBytes & Cxor) ^ Czero;
*( (DWORD UNALIGNED HUGE *)row) = dwBytes;
*( (DWORD UNALIGNED HUGE *)(row + bytesPerRow)) = dwBytes;
/* ---- second subcell (two pixels) --- */
/* turn bitmask into byte mask */
#if 0
dwBytes = ((mask & 4) ? 0xffff: 0) |
((mask & 8) ? 0xffff0000 : 0);
#else
dwBytes = Bits2Bytes[mask&0xc];
#endif
/* select both colours and write to dest */
dwBytes = (dwBytes & Cxor2) ^ Ctwo;
*( (DWORD UNALIGNED HUGE *)(row + sizeof(DWORD))) = dwBytes;
*( (DWORD UNALIGNED HUGE *)(row + sizeof(DWORD) + bytesPerRow)) = dwBytes;
row += bytesPerRow * 2;
mask >>= 4;
}
}
}
else // not an edge with only 1 color pair and one large block
{
/* use and, xor to map several colours at once.
* relies on (Czero ^ Cone) ^ Czero == Cone and Czero ^ 0 == Czero.
*/
/* read colours */
b1 = *((LPBYTE)cmp)++;
b0 = *((LPBYTE)cmp)++;
row = uncmp;
/* make two DWORDs, one with four copies of colour 0, and one
* with four copies of (b0 ^ b1).
*/
Czero = MAKE4(b0);
Cxor = Czero ^ MAKE4(b1);
for (y = 0; y < 4; y++) {
/* --- first two pixels in row ---- */
/* turn bitmask into byte mask */
#if 0
dwBytes = ((mask & 1) ? 0xffff: 0) |
((mask & 2) ? 0xffff0000 : 0);
#else
dwBytes = Bits2Bytes[mask&3];
#endif
/* select both colours and write to dest */
dwBytes = (dwBytes & Cxor) ^ Czero;
*( (DWORD UNALIGNED HUGE *)row) = dwBytes;
*( (DWORD UNALIGNED HUGE *)(row + bytesPerRow)) = dwBytes;
/* ---- second two pixels in row ---- */
/* turn bitmask into byte mask */
#if 0
dwBytes = ((mask & 4) ? 0xffff: 0) |
((mask & 8) ? 0xffff0000 : 0);
#else
dwBytes = Bits2Bytes[mask&0xc];
#endif
/* select both colours and write to dest */
dwBytes = (dwBytes & Cxor) ^ Czero;
*( (DWORD UNALIGNED HUGE *)(row + sizeof(DWORD))) = dwBytes;
*( (DWORD UNALIGNED HUGE *)(row + sizeof(DWORD) + bytesPerRow)) = dwBytes;
row += bytesPerRow * 2;
mask >>= 4;
}
}
return( cmp );
}
/*
* decompress one frame, stretching by 2.
*
* parameters:
* lpbiIn pointer to compressed buffer for this frame
* lpIn pointer to compressed data for this block
* lpbiOut pointer to decompressed bitmap header
* lpOut pointer to where to store the decompressed data
*
* returns:
* 0 on success
*
* Uses DecompressCBlockTo8X2 (see above) to do the decompression.
* This also returns (via a pointer to SkipCount8X2) the count of cells
* to skip. We can then move the source and target pointers on
* until the SkipCount is exhausted.
*/
DWORD FAR PASCAL DecompressFrame8X2C(LPBITMAPINFOHEADER lpbiIn, LPVOID lpIn,
LPBITMAPINFOHEADER lpbiOut, LPVOID lpOut, LONG x, LONG y)
{
HPWORD cmp = (HPWORD)lpIn;
int bix;
int biy;
HPBYTE blockRow;
HPBYTE blockColumn;
LONG SkipCount8X2 = 0;
int bytesPerRow;
DPF(("DecompressFrame8X2C:\n"));
bix = (int)(lpbiIn->biWidth) / (WIDTH_CBLOCK);
biy = (int)(lpbiIn->biHeight) / (HEIGHT_CBLOCK);
StartCounting();
blockRow = DibXY(lpbiOut, lpOut, x, y, &bytesPerRow);
for( y=biy; y--; blockRow += bytesPerRow * HEIGHT_CBLOCK*2 )
{
blockColumn = blockRow;
for( x=bix; x--; blockColumn += WIDTH_CBLOCK*2 )
{
cmp = DecompressCBlockTo8X2(blockColumn, cmp, bytesPerRow, &SkipCount8X2);
// See if the SkipCount has been set. If so we want to move to
// the next location rather than calling DecompressCBlock every
// time around the loop. Keep the test simple to minimise the
// overhead on every iteration that the Skipcount is 0.
if (SkipCount8X2) {
if ((x -= SkipCount8X2) <0) { // extends past this row
LONG SkipRows;
// More than just the remainder of this row to skip
SkipCount8X2 =-x; // These bits are on the next row(s)
// SkipCount8X2 will be >0 otherwise we would have gone
// down the else leg.
// Calculate how many complete and partial rows to skip.
// We know we have skipped at least one row. The plan
// is to restart the X loop at some point along the row.
// If the skipcount takes us exactly to the end of a row
// we drop out of the x loop, and let the outer y loop do
// the decrement. This takes care of the case when the
// skipcount takes us to the very end of the image.
SkipRows = 1 + (SkipCount8X2-1)/bix;
// Decrement the row count and set new blockrow start
#ifdef _WIN32
if (y<SkipRows) {
Assert(y >= SkipRows);
SkipRows = y;
}
#endif
// Unless we have finished we need to reset blockRow
y -= SkipRows;
// y might be 0, but we must still complete the last row
blockRow += bytesPerRow*HEIGHT_CBLOCK*2*SkipRows;
// Calculate the offset into the next row we will process
x = SkipCount8X2%bix; // This may be 0
if (x) {
// Set block column by the amount along the row
// this iteration is starting, making allowance for
// the "for x..." loop iterating blockColumn once.
blockColumn = blockRow + ((x-1)*WIDTH_CBLOCK*2);
x=bix-x; // Get the counter correct
}
SkipCount8X2 = 0; // Skip count now exhausted (so am I)
} else {
// SkipCount has been exhausted by this row
// Either the row has completed, or there is more data
// on this row. Check...
if (x) {
// More of this row left
// Worry about moving blockColumn on the right amount
blockColumn += WIDTH_CBLOCK*2*SkipCount8X2;
} // else x==0 and we will drop out of the "for x..." loop
// blockColumn will be reset when we reenter the x loop
SkipCount8X2=0;
}
}
}
}
EndCounting("Decompress and stretch 8x2 took");
return 0;
}
/*
* -------- 16-bit decompression ----------------------------------------
*
*
* CRAM-16 has 16-bit mask or escape code, together with 16-bit (RGB555)
* colour words. We decode to 16 bits, to 24-bits (above), and to 8 bits
* stretched 1:1 and 1:2 (this case DecompressFrame16To8X2C does
* decompression, dithering and stretching in one pass.
*
* The input stream consists of four cases:
*
* SOLID top bit set, lower 15 bits is solid colour for entire cell
* If the red element (bits 9-14) = '00001', then this is not a solid
* colour but a skip count.
* Write the colour to each pixel, two pixels (one DWORD) at
* a time.
*
* SKIP top 6 bits = 100001xxxxxxxxxx, lower 10 bits have skip count
* Store the skip count via a pointer to a variable passed by the.
* parent - this way the skip count is maintained across calls
*
* Mask + 2 colours (top bit 0, bit 15 of first colour word also 0)
* 1s in the mask represent the first colour, 0s the second colour.
* Pixels are represented thus:
*
* C D E F
* 8 9 A B
* 4 5 6 7
* 0 1 2 3
*
*
* Mask + 8 colours. (top bit 0, bit 15 of first colour word == 1)
*
* 1s and 0s represent two colours as before, but the cell is divided
* into 4 subcells with two colours per subcell. The first pair of
* colours are for subcell 0145, then 2367, 89cd and abef.
*
*
* Dithering:
*
* we use the table method from drawdib\dith775.c, and we import the
* same tables and palette by including their header file. We have a fixed
* palette in which we have 7 levels of red, 7 levels of green and 5 levels of
* blue (= 245 combinations) in a 256-colour palette. We use tables
* to quantize the colour elements to 7 levels, combine them into an 8-bit
* value and then lookup in a table that maps this combination to the actual
* palette. Before quantizing, we add on small corrections (less than one
* level) based on the x,y position of the pixel to balance the
* colour over a 4x4 pixel area: this makes the decompression slightly more
* awkward since we dither differently for any x, y position within the cell.
*
* -----------------------------------------------------------------------
*/
/* ---- 16-bit decompress to 16 bits ----------------------------------*/
/*
* decompress one 16bpp block to RGB555.
*
* parameters:
* uncmp- pointer to de-compressed buffer for this block.
* cmp - pointer to compressed data for this block
* bytes.. - size of one row of de-compressed data
* pSkipCount - outstanding count of cells to skip - set here and just stored
* in parent stack frame for multi-thread-safe continuity.
*
* returns:
* pointer to the next block of compressed data.
*
*/
STATICFN HPWORD INLINE
DecompressCBlock16To555(
HPBYTE uncmp,
HPWORD cmp,
INT bytesPerRow,
LONG FAR *pSkipCount
)
{
UINT y;
WORD mask;
WORD col0, col1;
HPBYTE row;
DWORD Czero, Cxor, Ctwo, Cxor2, dwBytes;
// check for outstanding skips
if (*pSkipCount > 0)
{
(*pSkipCount)--;
return cmp;
}
// get mask and init bit mask
mask = *cmp++;
// check for a skip or a solid color
if (mask & 0x8000)
{
if ((mask & ~SKIP_MASK) == SKIP_MAGIC)
{
*pSkipCount = (mask & SKIP_MASK);
#ifdef _WIN32
Assert(*pSkipCount != 0); // break (on debug builds) if SkipCount == 0
#endif
(*pSkipCount)--;
return cmp;
}
else /* must be solid colour */
{
/* write four rows of 4 2-byte pixels of col0 */
/* solid colour is lower 15 bits of mask */
col0 = mask & 0x7fff;
Czero = col0 | (col0 << 16);
for(row = uncmp, y = 0; y < HEIGHT_CBLOCK; y++, row+= bytesPerRow) {
*(DWORD UNALIGNED HUGE *)row = Czero;
*((DWORD UNALIGNED HUGE *)row+1) = Czero;
}
return cmp;
}
}
/* in 16-bit CRAM, both 4-pair and 1-pair cells have bit 15 of mask set
* to zero. We distinguish between them based on bit 15 of the first
* colour. if this is set, this is the 4-pair edge case cell.
*/
if (*cmp & 0x8000) {
// this is an edge with 4 colour pairs in four small blocks
/* read 2 colours, and make AND and XOR masks for first subcell*/
col0 = *cmp++;
col1 = *cmp++;
Czero = col1 | (col1 << 16);
Cxor = Czero ^ (col0 | (col0 << 16));
/* colour masks for second subcell */
col0 = *cmp++;
col1 = *cmp++;
Ctwo = col1 | (col1 << 16);
Cxor2 = Ctwo ^ (col0 | (col0 << 16));
row = uncmp;
/* first two rows - top two subcells */
for (y = 0; y < 2; y++) {
/* --- first subcell (two pixels) ---- */
/* turn bitmask into byte mask */
#if 0
dwBytes = ((mask & 1) ? 0xffff: 0) |
((mask & 2) ? 0xffff0000 : 0);
#else
dwBytes = Bits2Bytes[mask&3];
#endif
/* select both colours and write to dest */
dwBytes = (dwBytes & Cxor) ^ Czero;
*( (DWORD UNALIGNED HUGE *)row) = dwBytes;
/* ---- second subcell (two pixels) --- */
/* turn bitmask into byte mask */
#if 0
dwBytes = ((mask & 4) ? 0xffff: 0) |
((mask & 8) ? 0xffff0000 : 0);
#else
dwBytes = Bits2Bytes[mask&0xc];
#endif
/* select both colours and write to dest */
dwBytes = (dwBytes & Cxor2) ^ Ctwo;
*( (DWORD UNALIGNED HUGE *)(row + sizeof(DWORD))) = dwBytes;
row += bytesPerRow;
mask >>= 4;
}
/* second two rows - bottom two subcells */
/* read 2 colours, and make AND and XOR masks for first subcell*/
col0 = *cmp++;
col1 = *cmp++;
Czero = col1 | (col1 << 16);
Cxor = Czero ^ (col0 | (col0 << 16));
/* colour masks for second subcell */
col0 = *cmp++;
col1 = *cmp++;
Ctwo = col1 | (col1 << 16);
Cxor2 = Ctwo ^ (col0 | (col0 << 16));
for (y = 0; y < 2; y++) {
/* --- first subcell (two pixels) ---- */
/* turn bitmask into byte mask */
#if 0
dwBytes = ((mask & 1) ? 0xffff: 0) |
((mask & 2) ? 0xffff0000 : 0);
#else
dwBytes = Bits2Bytes[mask&3];
#endif
/* select both colours and write to dest */
dwBytes = (dwBytes & Cxor) ^ Czero;
*( (DWORD UNALIGNED HUGE *)row) = dwBytes;
/* ---- second subcell (two pixels) --- */
/* turn bitmask into byte mask */
#if 0
dwBytes = ((mask & 4) ? 0xffff: 0) |
((mask & 8) ? 0xffff0000 : 0);
#else
dwBytes = Bits2Bytes[mask&0xc];
#endif
/* select both colours and write to dest */
dwBytes = (dwBytes & Cxor2) ^ Ctwo;
*( (DWORD UNALIGNED HUGE *)(row + sizeof(DWORD))) = dwBytes;
row += bytesPerRow;
mask >>= 4;
}
} else {
// not an edge with only 1 colour pair and one large block
/* read colours */
col0 = *cmp++;
col1 = *cmp++;
Czero = col1 | (col1 << 16);
Cxor = Czero ^ (col0 | (col0 << 16));
row = uncmp;
for (y = 0; y < 4; y++) {
/* --- first two pixels in row ---- */
/* turn bitmask into byte mask */
#if 0
dwBytes = ((mask & 1) ? 0xffff: 0) |
((mask & 2) ? 0xffff0000 : 0);
#else
dwBytes = Bits2Bytes[mask&3];
#endif
/* select both colours and write to dest */
dwBytes = (dwBytes & Cxor) ^ Czero;
*( (DWORD UNALIGNED HUGE *)row) = dwBytes;
/* ---- second two pixels in row ---- */
/* turn bitmask into byte mask */
#if 0
dwBytes = ((mask & 4) ? 0xffff: 0) |
((mask & 8) ? 0xffff0000 : 0);
#else
dwBytes = Bits2Bytes[mask&0xc];
#endif
/* select both colours and write to dest */
dwBytes = (dwBytes & Cxor) ^ Czero;
*( (DWORD UNALIGNED HUGE *)(row + sizeof(DWORD))) = dwBytes;
row += bytesPerRow;
mask >>= 4;
}
}
return( cmp );
}
DWORD FAR PASCAL DecompressFrame16To555C(LPBITMAPINFOHEADER lpbiIn, LPVOID lpIn,
LPBITMAPINFOHEADER lpbiOut, LPVOID lpOut, LONG x, LONG y)
{
HPWORD cmp = (HPWORD)lpIn;
INT bix;
INT biy;
HPBYTE blockRow;
HPBYTE blockColumn;
LONG SkipCount = 0;
INT bytesPerRow;
DPF(("DecompressFrame16To555C:\n"));
bix = (UINT)(lpbiIn->biWidth) / (WIDTH_CBLOCK); // No negative values in
biy = (UINT)(lpbiIn->biHeight) / (HEIGHT_CBLOCK); // width or height fields
StartCounting();
blockRow = DibXY(lpbiOut, lpOut, x, y, &bytesPerRow);
for( y=0; y < biy; y++, blockRow += bytesPerRow * HEIGHT_CBLOCK )
{
blockColumn = blockRow;
for( x=0; x < bix; x++, blockColumn += (WIDTH_CBLOCK * sizeof(WORD)))
{
cmp = DecompressCBlock16To555(blockColumn, cmp, bytesPerRow, &SkipCount);
}
}
EndCounting("Decompress Frame16To555C took");
return 0;
}
// 16-bit 565 decompression
// macro to convert a 15-bit 555 colour to a 16-bit 565 colour
#define RGB555_TO_RGB565(c) (c = ( ((c & 0x7fe0) << 1) | (c & 0x1f)))
/*
* decompress one 16bpp block to RGB565.
*
* same as RGB555 but we need a colour translation between 555->565
*
* parameters:
* uncmp- pointer to de-compressed buffer for this block.
* cmp - pointer to compressed data for this block
* bytes.. - size of one row of de-compressed data
* pSkipCount - outstanding count of cells to skip - set here and just stored
* in parent stack frame for multi-thread-safe continuity.
*
* returns:
* pointer to the next block of compressed data.
*
*/
STATICFN HPWORD INLINE
DecompressCBlock16To565(
HPBYTE uncmp,
HPWORD cmp,
INT bytesPerRow,
LONG FAR * pSkipCount
)
{
UINT y;
WORD mask;
WORD col0, col1;
HPBYTE row;
DWORD Czero, Cxor, Ctwo, Cxor2, dwBytes;
// check for outstanding skips
if (*pSkipCount > 0)
{
(*pSkipCount)--;
return cmp;
}
// get mask and init bit mask
mask = *cmp++;
// check for a skip or a solid color
if (mask & 0x8000)
{
if ((mask & ~SKIP_MASK) == SKIP_MAGIC)
{
*pSkipCount = (mask & SKIP_MASK);
#ifdef _WIN32
Assert(*pSkipCount != 0); // break (on debug builds) if SkipCount == 0
#endif
(*pSkipCount)--;
return cmp;
}
else /* must be solid colour */
{
/* write four rows of 4 2-byte pixels of col0 */
/* solid colour is lower 15 bits of mask */
col0 = mask & 0x7fff;
RGB555_TO_RGB565(col0);
Czero = col0 | (col0 << 16);
for(row = uncmp, y = 0; y < HEIGHT_CBLOCK; y++, row+= bytesPerRow) {
*(DWORD UNALIGNED HUGE *)row = Czero;
*((DWORD UNALIGNED HUGE *)row+1) = Czero;
}
return cmp;
}
}
/* in 16-bit CRAM, both 4-pair and 1-pair cells have bit 15 of mask set
* to zero. We distinguish between them based on bit 15 of the first
* colour. if this is set, this is the 4-pair edge case cell.
*/
if (*cmp & 0x8000) {
// this is an edge with 4 colour pairs in four small blocks
/* read 2 colours, and make AND and XOR masks for first subcell*/
col0 = *cmp++;
RGB555_TO_RGB565(col0);
col1 = *cmp++;
RGB555_TO_RGB565(col1);
Czero = col1 | (col1 << 16);
Cxor = Czero ^ (col0 | (col0 << 16));
/* colour masks for second subcell */
col0 = *cmp++;
RGB555_TO_RGB565(col0);
col1 = *cmp++;
RGB555_TO_RGB565(col1);
Ctwo = col1 | (col1 << 16);
Cxor2 = Ctwo ^ (col0 | (col0 << 16));
row = uncmp;
/* first two rows - top two subcells */
for (y = 0; y < 2; y++) {
/* --- first subcell (two pixels) ---- */
/* turn bitmask into byte mask */
#if 0
dwBytes = ((mask & 1) ? 0xffff: 0) |
((mask & 2) ? 0xffff0000 : 0);
#else
dwBytes = Bits2Bytes[mask&3];
#endif
/* select both colours and write to dest */
dwBytes = (dwBytes & Cxor) ^ Czero;
*( (DWORD UNALIGNED HUGE *)row) = dwBytes;
/* ---- second subcell (two pixels) --- */
/* turn bitmask into byte mask */
#if 0
dwBytes = ((mask & 4) ? 0xffff: 0) |
((mask & 8) ? 0xffff0000 : 0);
#else
dwBytes = Bits2Bytes[mask&0xc];
#endif
/* select both colours and write to dest */
dwBytes = (dwBytes & Cxor2) ^ Ctwo;
*( (DWORD UNALIGNED HUGE *)(row + sizeof(DWORD))) = dwBytes;
row += bytesPerRow;
mask >>= 4;
}
/* second two rows - bottom two subcells */
/* read 2 colours, and make AND and XOR masks for first subcell*/
col0 = *cmp++;
RGB555_TO_RGB565(col0);
col1 = *cmp++;
RGB555_TO_RGB565(col1);
Czero = col1 | (col1 << 16);
Cxor = Czero ^ (col0 | (col0 << 16));
/* colour masks for second subcell */
col0 = *cmp++;
RGB555_TO_RGB565(col0);
col1 = *cmp++;
RGB555_TO_RGB565(col1);
Ctwo = col1 | (col1 << 16);
Cxor2 = Ctwo ^ (col0 | (col0 << 16));
for (y = 0; y < 2; y++) {
/* --- first subcell (two pixels) ---- */
/* turn bitmask into byte mask */
#if 0
dwBytes = ((mask & 1) ? 0xffff: 0) |
((mask & 2) ? 0xffff0000 : 0);
#else
dwBytes = Bits2Bytes[mask&3];
#endif
/* select both colours and write to dest */
dwBytes = (dwBytes & Cxor) ^ Czero;
*( (DWORD UNALIGNED HUGE *)row) = dwBytes;
/* ---- second subcell (two pixels) --- */
/* turn bitmask into byte mask */
#if 0
dwBytes = ((mask & 4) ? 0xffff: 0) |
((mask & 8) ? 0xffff0000 : 0);
#else
dwBytes = Bits2Bytes[mask&0xc];
#endif
/* select both colours and write to dest */
dwBytes = (dwBytes & Cxor2) ^ Ctwo;
*( (DWORD UNALIGNED HUGE *)(row + sizeof(DWORD))) = dwBytes;
row += bytesPerRow;
mask >>= 4;
}
} else {
// not an edge with only 1 colour pair and one large block
/* read colours */
col0 = *cmp++;
RGB555_TO_RGB565(col0);
col1 = *cmp++;
RGB555_TO_RGB565(col1);
Czero = col1 | (col1 << 16);
Cxor = Czero ^ (col0 | (col0 << 16));
row = uncmp;
for (y = 0; y < 4; y++) {
/* --- first two pixels in row ---- */
/* turn bitmask into byte mask */
#if 0
dwBytes = ((mask & 1) ? 0xffff: 0) |
((mask & 2) ? 0xffff0000 : 0);
#else
dwBytes = Bits2Bytes[mask&3];
#endif
/* select both colours and write to dest */
dwBytes = (dwBytes & Cxor) ^ Czero;
*( (DWORD UNALIGNED HUGE *)row) = dwBytes;
/* ---- second two pixels in row ---- */
/* turn bitmask into byte mask */
#if 0
dwBytes = ((mask & 4) ? 0xffff: 0) |
((mask & 8) ? 0xffff0000 : 0);
#else
dwBytes = Bits2Bytes[mask&0xc];
#endif
/* select both colours and write to dest */
dwBytes = (dwBytes & Cxor) ^ Czero;
*( (DWORD UNALIGNED HUGE *)(row + sizeof(DWORD))) = dwBytes;
row += bytesPerRow;
mask >>= 4;
}
}
return( cmp );
}
DWORD FAR PASCAL DecompressFrame16To565C(LPBITMAPINFOHEADER lpbiIn, LPVOID lpIn,
LPBITMAPINFOHEADER lpbiOut, LPVOID lpOut, LONG x, LONG y)
{
HPWORD cmp = (HPWORD)lpIn;
INT bix;
INT biy;
HPBYTE blockRow;
HPBYTE blockColumn;
LONG SkipCount = 0;
INT bytesPerRow;
DPF(("DecompressFrame16To565C:\n"));
bix = (UINT)(lpbiIn->biWidth) / (WIDTH_CBLOCK); // No negative values in
biy = (UINT)(lpbiIn->biHeight) / (HEIGHT_CBLOCK); // width or height fields
StartCounting();
blockRow = DibXY(lpbiOut, lpOut, x, y, &bytesPerRow);
for( y=0; y < biy; y++, blockRow += bytesPerRow * HEIGHT_CBLOCK )
{
blockColumn = blockRow;
for( x=0; x < bix; x++, blockColumn += (WIDTH_CBLOCK * sizeof(WORD)))
{
cmp = DecompressCBlock16To565(blockColumn, cmp, bytesPerRow, &SkipCount);
}
}
EndCounting("Decompress Frame16To565C took");
return 0;
}
/* ---- 16-bit decompress & dither to 8 bit - in asm for Win16 ---------------------------*/
/*
* dither using SCALE method. see dcram168.asm or drawdib\dith775a.asm
*
* 8-bit colour = lookup[ scale[ rgb555] + err]
*
* where error is one of the values in the 4x4 array below to balance
* the colour.
*/
/*
* dither error array - values to add to rgb value after scaling before
* converting to 8 bits. Balances colour over a 4x4 matrix
*/
int ditherr[4][4] = {
{0, 3283, 4924, 8207},
{6565, 6566, 1641, 1642},
{3283, 0, 8207, 4924},
{6566, 4925, 3282, 1641}
};
/* scale the rgb555 first by lookup in lpScale[rgb555] */
#define DITHER16TO8(col, x, y) lpLookup[col + ditherr[(y)&3][(x)&3]]
/*
* decompress one 16bpp block, and dither to 8 bpp using table dither method.
*
* parameters:
* uncmp- pointer to de-compressed buffer for this block.
* cmp - pointer to compressed data for this block
* bytes.. - size of one row of de-compressed data
* pSkipCount - skipcount stored in parent stack frame
*
* returns:
* pointer to the next block of compressed data.
*
*/
STATICFN HPWORD INLINE
DecompressCBlock16To8(
HPBYTE uncmp,
HPWORD cmp,
INT bytesPerRow,
LONG * pSkipCount
)
{
UINT y;
WORD mask;
WORD col0, col1, col2, col3;
HPBYTE row;
DWORD Czero, Cone, Cxor, dwBytes;
// check for outstanding skips
if (*pSkipCount > 0)
{
Assert(!"Skip count should be handled by caller");
(*pSkipCount)--;
return cmp;
}
// get mask and init bit mask
mask = *cmp++;
// check for a skip or a solid color
if (mask & 0x8000)
{
if ((mask & ~SKIP_MASK) == SKIP_MAGIC)
{
*pSkipCount = (mask & SKIP_MASK);
#ifdef _WIN32
Assert(*pSkipCount != 0); // break (on debug builds) if SkipCount == 0
#endif
(*pSkipCount)--;
return cmp;
}
else /* must be solid colour */
{
/* solid colour is lower 15 bits of mask */
col0 = lpScale[mask & 0x7fff];
for(row = uncmp, y = 0; y < HEIGHT_CBLOCK; y++, row+= bytesPerRow) {
/* convert colour once for each row */
Czero = (DITHER16TO8(col0, 0, y) ) |
(DITHER16TO8(col0, 1, y) << 8 ) |
(DITHER16TO8(col0, 2, y) << 16 ) |
(DITHER16TO8(col0, 3, y) << 24 );
*(DWORD UNALIGNED HUGE *)row = Czero;
}
return cmp;
}
}
/* in 16-bit CRAM, both 4-pair and 1-pair cells have bit 15 of mask set
* to zero. We distinguish between them based on bit 15 of the first
* colour. if this is set, this is the 4-pair edge case cell.
*/
if (*cmp & 0x8000) {
// this is an edge with 4 color pairs in four small blocks
col0 = lpScale[(*cmp++) & 0x7fff];
col1 = lpScale[(*cmp++) & 0x7fff];
col2 = lpScale[(*cmp++) & 0x7fff];
col3 = lpScale[(*cmp++) & 0x7fff];
row = uncmp;
/* first two rows - top two subcells */
for (y = 0; y < 2; y++) {
/* dithering requires that we make different
* colour masks depending on x and y position - and
* therefore re-do it each row
*/
Czero = (DITHER16TO8(col1, 0, y) ) |
(DITHER16TO8(col1, 1, y) << 8 ) |
(DITHER16TO8(col3, 2, y) << 16 ) |
(DITHER16TO8(col3, 3, y) << 24 );
Cone = (DITHER16TO8(col0, 0, y) ) |
(DITHER16TO8(col0, 1, y) << 8 ) |
(DITHER16TO8(col2, 2, y) << 16 ) |
(DITHER16TO8(col2, 3, y) << 24 );
Cxor = Czero ^ Cone;
/* turn bitmask into byte mask */
dwBytes = ExpansionTable[mask & 0x0f];
/* select colours and write to dest */
*( (DWORD UNALIGNED HUGE *)row) = (dwBytes & Cxor) ^ Czero;
row += bytesPerRow;
mask >>= 4;
}
/* second two rows - bottom two subcells */
/* read last four colours */
col0 = lpScale[(*cmp++) & 0x7fff];
col1 = lpScale[(*cmp++) & 0x7fff];
col2 = lpScale[(*cmp++) & 0x7fff];
col3 = lpScale[(*cmp++) & 0x7fff];
for (; y < 4; y++) {
/* dithering requires that we make different
* colour masks depending on x and y position - and
* therefore re-do it each row
*/
Czero = (DITHER16TO8(col1, 0, y) ) |
(DITHER16TO8(col1, 1, y) << 8 ) |
(DITHER16TO8(col3, 2, y) << 16 ) |
(DITHER16TO8(col3, 3, y) << 24 );
Cone = (DITHER16TO8(col0, 0, y) ) |
(DITHER16TO8(col0, 1, y) << 8 ) |
(DITHER16TO8(col2, 2, y) << 16 ) |
(DITHER16TO8(col2, 3, y) << 24 );
Cxor = Czero ^ Cone;
/* turn bitmask into byte mask */
dwBytes = ExpansionTable[mask & 0x0f];
/* select both colours and write to dest */
*( (DWORD UNALIGNED HUGE *)row) = (dwBytes & Cxor) ^ Czero;
row += bytesPerRow;
mask >>= 4;
}
} else {
// not an edge with only 1 colour pair and one large block
/* read colours */
col0 = lpScale[(*cmp++) & 0x7fff];
col1 = lpScale[(*cmp++) & 0x7fff];
row = uncmp;
for (y = 0; y < 4; y++) {
Czero = (DITHER16TO8(col1, 0, y) ) |
(DITHER16TO8(col1, 1, y) << 8 ) |
(DITHER16TO8(col1, 2, y) << 16 ) |
(DITHER16TO8(col1, 3, y) << 24 );
Cone = (DITHER16TO8(col0, 0, y) ) |
(DITHER16TO8(col0, 1, y) << 8 ) |
(DITHER16TO8(col0, 2, y) << 16 ) |
(DITHER16TO8(col0, 3, y) << 24 );
Cxor = Czero ^ Cone;
/* turn bitmask into byte mask */
dwBytes = ExpansionTable[mask & 0x0f];
/* select both colours and write to dest */
*( (DWORD UNALIGNED HUGE *)row) = (dwBytes & Cxor) ^ Czero;
row += bytesPerRow;
mask >>= 4;
}
}
return( cmp );
}
DWORD FAR PASCAL DecompressFrame16To8C(LPBITMAPINFOHEADER lpbiIn, LPVOID lpIn,
LPBITMAPINFOHEADER lpbiOut, LPVOID lpOut, LONG x, LONG y)
{
HPWORD cmp = (HPWORD)lpIn;
INT bix;
INT biy;
HPBYTE blockRow;
HPBYTE blockColumn;
LONG SkipCount = 0;
INT bytesPerRow;
DPF(("DecompressFrame16To8C:\n"));
/* init dither table pointers. lpDitherTable is inited in msvidc. */
lpScale = lpDitherTable;
lpLookup = (LPBYTE) &lpScale[32768];
bix = (UINT)(lpbiIn->biWidth) / (WIDTH_CBLOCK); // No negative values in
biy = (UINT)(lpbiIn->biHeight) / (HEIGHT_CBLOCK); // width or height fields
StartCounting();
blockRow = DibXY(lpbiOut, lpOut, x, y, &bytesPerRow);
for( y=biy; y--; blockRow += bytesPerRow * HEIGHT_CBLOCK )
{
blockColumn = blockRow;
for( x=bix; x--; blockColumn += WIDTH_CBLOCK)
{
cmp = DecompressCBlock16To8(blockColumn, cmp, bytesPerRow, &SkipCount);
// See if the SkipCount has been set. If so we want to move to
// the next location rather than calling DecompressCBlock every
// time around the loop. Keep the test simple to minimise the
// overhead on every iteration that the Skipcount is 0.
if (SkipCount) {
if ((x -= SkipCount) <0) { // extends past this row
LONG SkipRows;
// More than just the remainder of this row to skip
SkipCount =-x; // These bits are on the next row(s)
// SkipCount will be >0 otherwise we would have gone
// down the else leg.
// Calculate how many complete and partial rows to skip.
// We know we have skipped at least one row. The plan
// is to restart the X loop at some point along the row.
// If the skipcount takes us exactly to the end of a row
// we drop out of the x loop, and let the outer y loop do
// the decrement. This takes care of the case when the
// skipcount takes us to the very end of the image.
SkipRows = 1 + (SkipCount-1)/bix;
// Decrement the row count and set new blockrow start
#ifdef _WIN32
if (y<SkipRows) {
Assert(y >= SkipRows);
SkipRows = y;
}
#endif
// Unless we have finished we need to reset blockRow
y -= SkipRows;
// y might be 0, but we must still complete the last row
blockRow += bytesPerRow*HEIGHT_CBLOCK*SkipRows;
// Calculate the offset into the next row we will process
x = SkipCount%bix; // This may be 0
if (x) {
// Set block column by the amount along the row
// this iteration is starting, making allowance for
// the "for x..." loop iterating blockColumn once.
blockColumn = blockRow + ((x-1)*WIDTH_CBLOCK);
x=bix-x; // Get the counter correct
}
SkipCount = 0; // Skip count now exhausted (so am I)
} else {
// SkipCount has been exhausted by this row
// Either the row has completed, or there is more data
// on this row. Check...
if (x) {
// More of this row left
// Worry about moving blockColumn on the right amount
blockColumn += WIDTH_CBLOCK*SkipCount;
} // else x==0 and we will drop out of the "for x..." loop
// blockColumn will be reset when we reenter the x loop
SkipCount=0;
}
}
}
}
EndCounting("Decompress Frame16To8C took");
return 0;
}
/* -- 16-bit decompress to 8-bit X2 -----------------------------------*/
/*
* given a 16-bit CRAM input stream, decompress and dither to 8
* bits and stretch by 2 in both dimensions (ie draw each pixel 4 times).
*/
/*
* decompress one 16bpp block, and dither to 8 bpp using table dither method.
* write each pixel 4 times to stretch X 2.
*
* parameters:
* uncmp- pointer to de-compressed buffer for this block.
* cmp - pointer to compressed data for this block
* bytes.. - size of one row of de-compressed data
* pSkipCount - skip count held in parent stack frame
*
* returns:
* pointer to the next block of compressed data.
*
*/
STATICFN HPWORD INLINE
DecompressCBlock16To8X2(
HPBYTE uncmp,
HPWORD cmp,
INT bytesPerRow,
LONG * pSkipCount
)
{
UINT x, y;
WORD mask;
WORD col0, col1, col2, col3;
HPBYTE row, col;
DWORD Czero;
// check for outstanding skips
if (*pSkipCount > 0)
{
Assert(!"Skip count should be handled by caller");
(*pSkipCount)--;
return cmp;
}
// get mask and init bit mask
mask = *cmp++;
// check for a skip or a solid color
if (mask & 0x8000)
{
if ((mask & ~SKIP_MASK) == SKIP_MAGIC)
{
*pSkipCount = (mask & SKIP_MASK);
#ifdef _WIN32
Assert(*pSkipCount != 0); // break (on debug builds) if SkipCount == 0
#endif
(*pSkipCount)--;
return cmp;
}
else /* must be solid colour */
{
/* solid colour is lower 15 bits of mask */
col0 = lpScale[mask & 0x7fff];
for(row = uncmp, y = 0; y < HEIGHT_CBLOCK*2; y++, row+= bytesPerRow) {
/* convert colour once for each row */
Czero = (DITHER16TO8(col0, 0, (y&3)) ) |
(DITHER16TO8(col0, 1, (y&3)) << 8 ) |
(DITHER16TO8(col0, 2, (y&3)) << 16 ) |
(DITHER16TO8(col0, 3, (y&3)) << 24 );
*(DWORD UNALIGNED HUGE *)row = Czero;
*((DWORD UNALIGNED HUGE *)row + 1) = Czero;
}
return cmp;
}
}
/* in 16-bit CRAM, both 4-pair and 1-pair cells have bit 15 of mask set
* to zero. We distinguish between them based on bit 15 of the first
* colour. if this is set, this is the 4-pair edge case cell.
*/
if (*cmp & 0x8000) {
// this is an edge with 4 colour pairs in four small blocks
row = uncmp;
/* first two rows - top two subcells */
for (y = 0; y < HEIGHT_CBLOCK*2; y += 2) {
/* read colours at start, and again half-way through */
if ((y == 0) || (y == HEIGHT_CBLOCK)) {
col0 = lpScale[(*cmp++) & 0x7fff];
col1 = lpScale[(*cmp++) & 0x7fff];
col2 = lpScale[(*cmp++) & 0x7fff];
col3 = lpScale[(*cmp++) & 0x7fff];
}
col = row;
/* first two pixels (first subcell) */
for (x = 0; x < WIDTH_CBLOCK; x += 2) {
if (mask & 1) {
*col = DITHER16TO8(col0, (x & 3), (y&3));
*(col + bytesPerRow) =
DITHER16TO8(col0, (x&3), ((y+1) & 3));
col++;
*col = DITHER16TO8(col0, ((x+1)&3), ((y)&3));
*(col + bytesPerRow) =
DITHER16TO8(col0, ((x+1)&3), ((y+1)&3));
} else {
*col = DITHER16TO8(col1, (x & 3), (y&3));
*(col + bytesPerRow) =
DITHER16TO8(col1, (x&3), ((y+1) & 3));
col++;
*col = DITHER16TO8(col1, ((x+1)&3), ((y)&3));
*(col + bytesPerRow) =
DITHER16TO8(col1, ((x+1)&3), ((y+1)&3));
}
col++;
mask >>= 1;
}
/* second two pixels (second subcell) */
for (; x < WIDTH_CBLOCK*2; x += 2) {
if (mask & 1) {
*col = DITHER16TO8(col2, (x & 3), (y&3));
*(col + bytesPerRow) =
DITHER16TO8(col2, (x&3), ((y+1) & 3));
col++;
*col = DITHER16TO8(col2, ((x+1)&3), ((y)&3));
*(col + bytesPerRow) =
DITHER16TO8(col2, ((x+1)&3), ((y+1)&3));
} else {
*col = DITHER16TO8(col3, (x & 3), (y&3));
*(col + bytesPerRow) =
DITHER16TO8(col3, (x&3), ((y+1) & 3));
col++;
*col = DITHER16TO8(col3, ((x+1)&3), ((y)&3));
*(col + bytesPerRow) =
DITHER16TO8(col3, ((x+1)&3), ((y+1)&3));
}
col++;
mask >>= 1;
}
row += bytesPerRow * 2;
}
} else {
// not an edge with only 1 colour pair and one large block
/* read colours */
col0 = lpScale[(*cmp++) & 0x7fff];
col1 = lpScale[(*cmp++) & 0x7fff];
row = uncmp;
for (y = 0; y < HEIGHT_CBLOCK*2; y += 2) {
col = row;
for (x = 0; x < WIDTH_CBLOCK*2; x += 2) {
if (mask & 1) {
*col = DITHER16TO8(col0, (x & 3), (y&3));
*(col + bytesPerRow) =
DITHER16TO8(col0, (x&3), ((y+1) & 3));
col++;
*col = DITHER16TO8(col0, ((x+1)&3), ((y)&3));
*(col + bytesPerRow) =
DITHER16TO8(col0, ((x+1)&3), ((y+1)&3));
} else {
*col = DITHER16TO8(col1, (x & 3), (y&3));
*(col + bytesPerRow) =
DITHER16TO8(col1, (x&3), ((y+1) & 3));
col++;
*col = DITHER16TO8(col1, ((x+1)&3), ((y)&3));
*(col + bytesPerRow) =
DITHER16TO8(col1, ((x+1)&3), ((y+1)&3));
}
col++;
mask >>= 1;
}
row += bytesPerRow * 2;
}
}
return( cmp );
}
DWORD FAR PASCAL DecompressFrame16To8X2C(LPBITMAPINFOHEADER lpbiIn, LPVOID lpIn,
LPBITMAPINFOHEADER lpbiOut, LPVOID lpOut, LONG x, LONG y)
{
HPWORD cmp = (HPWORD)lpIn;
INT bix;
INT biy;
HPBYTE blockRow;
HPBYTE blockColumn;
LONG SkipCount = 0;
INT bytesPerRow;
DPF(("DecompressFrame16To8X2C:\n"));
/* init dither table pointers. lpDitherTable is inited in msvidc. */
lpScale = lpDitherTable;
lpLookup = (LPBYTE) &lpScale[32768];
StartCounting();
bix = (UINT)(lpbiIn->biWidth) / (WIDTH_CBLOCK); // No negative values in
biy = (UINT)(lpbiIn->biHeight) / (HEIGHT_CBLOCK); // width or height fields
blockRow = DibXY(lpbiOut, lpOut, x, y, &bytesPerRow);
for( y=biy; y--; blockRow += bytesPerRow * HEIGHT_CBLOCK *2 )
{
blockColumn = blockRow;
for( x=bix; x--; blockColumn += WIDTH_CBLOCK*2)
{
cmp = DecompressCBlock16To8X2(blockColumn, cmp, bytesPerRow, &SkipCount);
// See if the SkipCount has been set. If so we want to move to
// the next location rather than calling DecompressCBlock every
// time around the loop. Keep the test simple to minimise the
// overhead on every iteration that the Skipcount is 0.
if (SkipCount) {
if ((x -= SkipCount) <0) { // extends past this row
LONG SkipRows;
// More than just the remainder of this row to skip
SkipCount =-x; // These bits are on the next row(s)
// SkipCount will be >0 otherwise we would have gone
// down the else leg.
// Calculate how many complete and partial rows to skip.
// We know we have skipped at least one row. The plan
// is to restart the X loop at some point along the row.
// If the skipcount takes us exactly to the end of a row
// we drop out of the x loop, and let the outer y loop do
// the decrement. This takes care of the case when the
// skipcount takes us to the very end of the image.
SkipRows = 1 + (SkipCount-1)/bix;
// Decrement the row count and set new blockrow start
#ifdef _WIN32
if (y<SkipRows) {
Assert(y >= SkipRows);
SkipRows = y;
}
#endif
// Unless we have finished we need to reset blockRow
y -= SkipRows;
// y might be 0, but we must still complete the last row
blockRow += bytesPerRow*HEIGHT_CBLOCK*2*SkipRows;
// Calculate the offset into the next row we will process
x = SkipCount%bix; // This may be 0
if (x) {
// Set block column by the amount along the row
// this iteration is starting, making allowance for
// the "for x..." loop iterating blockColumn once.
blockColumn = blockRow + ((x-1)*WIDTH_CBLOCK*2);
x=bix-x; // Get the counter correct
}
SkipCount = 0; // Skip count now exhausted (so am I)
} else {
// SkipCount has been exhausted by this row
// Either the row has completed, or there is more data
// on this row. Check...
if (x) {
// More of this row left
// Worry about moving blockColumn on the right amount
blockColumn += WIDTH_CBLOCK*2*SkipCount;
} // else x==0 and we will drop out of the "for x..." loop
// blockColumn will be reset when we reenter the x loop
SkipCount=0;
}
}
}
}
EndCounting("Decompress Frame16To8x2C took");
return 0;
}
#endif