windows-nt/Source/XPSP1/NT/net/homenet/bridge/sys/brdgcomp.c

4364 lines
140 KiB
C
Raw Permalink Normal View History

2020-09-26 03:20:57 -05:00
/*++
Copyright(c) 2000 Microsoft Corporation
Module Name:
brdgcomp.c
Abstract:
Ethernet MAC level bridge.
Compatibility-Mode section
Author:
Mark Aiken
Environment:
Kernel mode driver
Revision History:
September 2000 - Original version
Notes
Currently, this code only works with traditional Ethernet framing (dest, src, ethertype).
Much of the code would need to be changed to support IEEE 802.3-style framing
(dest, src, size, LLC DSAP, LLC SSAP, LLC type).
--*/
#define NDIS_MINIPORT_DRIVER
#define NDIS50_MINIPORT 1
#define NDIS_WDM 1
#pragma warning( push, 3 )
#include <ndis.h>
// TCPIP.SYS structure definitions
#include <ipinfo.h>
#include <tdiinfo.h>
#include <ntddtcp.h>
#include <ntddip.h>
#pragma warning( pop )
#include "bridge.h"
#include "brdgcomp.h"
#include "brdgfwd.h"
#include "brdgbuf.h"
// ===========================================================================
//
// TYPES
//
// ===========================================================================
// An IPv4 address
typedef UINT32 IPADDRESS;
typedef PUINT32 PIPADDRESS;
// Types of ARP packets
typedef enum
{
ArpRequest,
ArpReply
} ARP_TYPE;
// ===========================================================================
//
// CONSTANTS
//
// ===========================================================================
// Size of the payload of an IPv4 ARP packet
#define SIZE_OF_ARP_DATA 28 // bytes
// Total size of an IPv4 ARP packet, including framing
#define SIZE_OF_ARP_PACKET (SIZE_OF_ARP_DATA + ETHERNET_HEADER_SIZE)
// Size of a basic IPv4 header, not including options
#define SIZE_OF_BASIC_IP_HEADER 20 // bytes
// Minimum amount of frame data we need to parse the IP header
#define MINIMUM_SIZE_FOR_IP (ETHERNET_HEADER_SIZE + SIZE_OF_BASIC_IP_HEADER)
// Size of a basic UDP header
#define SIZE_OF_UDP_HEADER 8 // bytes
// Minimum size of the payload of a BOOTP packet
#define SIZE_OF_BASIC_BOOTP_PACKET 236 // bytes
// The IP Ethertype
const USHORT IP_ETHERTYPE = 0x0800;
// The ARP Ethertype
const USHORT ARP_ETHERTYPE = 0x0806;
// The UDP IP protocol type
const UCHAR UDP_PROTOCOL = 0x11;
// Number of hash buckets in the IP and pending-ARP tables. This must
// be a power of 2 for our hash function to work propery.
#define NUM_HASH_BUCKETS 256
// Number of hash buckets for the pending-DHCP table. This
// must be a power of 2 for our hash function to work properly.
#define NUM_DHCP_HASH_BUCKETS 32
// The "shift factor" for our IP next-hop cache. The number of entries
// in the cache is 2 ^ (this number)
#define HOP_CACHE_SHIFT_FACTOR 8 // 256 cache entries
// Default size cap for the IP forwarding table
#define DEFAULT_MAX_IP_TABLE_SIZE (500 * 1024) // 500K in bytes
// Name of the registry parameter that optionally specifies the max table size
const PWCHAR gMaxIPTableSizeParameterName = L"MaxIPTableSize";
// Default size cap for the pending-ARP table
#define DEFAULT_MAX_ARP_TABLE_SIZE (100 * 1024) // 100K in bytes
// Name of the registry parameter that optionally specifies the max table size
const PWCHAR gMaxARPTableSizeParameterName = L"MaxARPTableSize";
// Default size cap for the pending-DHCP table
#define DEFAULT_MAX_DHCP_TABLE_SIZE (50 * 1024) // 50K in bytes
// Name of the registry parameter that optionally specifies the max table size
const PWCHAR gMaxDHCPTableSizeParameterName = L"MaxDHCPTableSize";
//
// Timeout length for IP forwarding table entries
//
// This should be somewhat longer than the time it takes hosts to age out
// their ARP table entries, since we learn the location of IP hosts
// by ARP traffic. Current Windows implementations age out their
// ARP table entries after 2 minutes if there has been no traffic from
// the station corresponding to the entry.
//
// We keep our forwarding table entries alive indefinitely as long as we
// continue to see IP traffic from the hosts we have information about.
// Windows implementations will age out their ARP entries under those
// conditions after 20mins or so.
//
#define MAX_IP_ENTRY_AGE (5 * 60 * 1000) // 5 minutes in ms
//
// Timeout length for pending-ARP table entries
//
// This should be somewhat longer than the maximum time hosts will wait to
// hear the results of an ARP discovery before timing out. Windows boxes
// have a giveup time of 1s.
//
// Note that it is not destructive to deliver ARP reply packets to a station
// after it has given up or even after its initial discovery was
// satisfied.
//
#define MAX_ARP_ENTRY_AGE (10 * 1000) // 10 seconds
//
// Timeout length for pending-DHCP table entries
//
// RFC 2131 mentions that clients may wait as long as 60 seconds for an
// ACK. Have the timeout be somewhat longer than even that.
//
#define MAX_DHCP_ENTRY_AGE (90 * 1000) // 1 1/2 minutes
// ===========================================================================
//
// DECLARATIONS
//
// ===========================================================================
// Structure to express the information carried in ARP packets
typedef struct _ARPINFO
{
ARP_TYPE type;
IPADDRESS ipSource, ipTarget;
UCHAR macSource[ETH_LENGTH_OF_ADDRESS];
UCHAR macTarget[ETH_LENGTH_OF_ADDRESS];
} ARPINFO, *PARPINFO;
// Structure to express the information carried in an IP header
typedef struct _IP_HEADER_INFO
{
UCHAR protocol;
IPADDRESS ipSource, ipTarget;
USHORT headerSize;
} IP_HEADER_INFO, *PIP_HEADER_INFO;
// Structure of our IP forwarding hash table entries
typedef struct _IP_TABLE_ENTRY
{
HASH_TABLE_ENTRY hte; // Required for hash table use
// Protects the following fields
NDIS_SPIN_LOCK lock;
PADAPT pAdapt;
UCHAR macAddr[ETH_LENGTH_OF_ADDRESS];
} IP_TABLE_ENTRY, *PIP_TABLE_ENTRY;
//
// Structure of the pending-ARP table keys. We want this to get
// packet into 8 bytes.
//
typedef struct _ARP_TABLE_KEY
{
IPADDRESS ipTarget;
IPADDRESS ipReqestor;
} ARP_TABLE_KEY, *PARP_TABLE_KEY;
// Structure of our pending-ARP hash table entries
typedef struct _ARP_TABLE_ENTRY
{
HASH_TABLE_ENTRY hte; // Required for hash table use
// Protects the following fields
NDIS_SPIN_LOCK lock;
// Information on the station that was trying to discover this host
// The discovering station's IP address is part of the entry key.
PADAPT pOriginalAdapt;
UCHAR originalMAC[ETH_LENGTH_OF_ADDRESS];
} ARP_TABLE_ENTRY, *PARP_TABLE_ENTRY;
// Structure of our DHCP-relay table entries
typedef struct _DHCP_TABLE_ENTRY
{
HASH_TABLE_ENTRY hte; // Required for hash table use
// Protects the following fields
NDIS_SPIN_LOCK lock;
UCHAR requestorMAC[ETH_LENGTH_OF_ADDRESS];
PADAPT pRequestorAdapt;
} DHCP_TABLE_ENTRY, *PDHCP_TABLE_ENTRY;
// Structure for deferring an ARP packet transmission
typedef struct _DEFERRED_ARP
{
ARPINFO ai;
PADAPT pTargetAdapt;
} DEFERRED_ARP, *PDEFERRED_ARP;
// Per-adapter rewriting function
typedef VOID (*PPER_ADAPT_EDIT_FUNC)(PUCHAR, PADAPT, PVOID);
// ===========================================================================
//
// GLOBALS
//
// ===========================================================================
//
// Whether or not there are *any* compatibility-mode adapters in our list
// at the moment. Is updated in the protocol module with a write lock
// held on the global adapter list
//
BOOLEAN gCompatAdaptersExist = FALSE;
//
// Our list of the bridge machine's IP addresses (passed down through an
// OID). The list is allocated on the heap and is protected by
// gLocalIPAddressLock.
//
PIPADDRESS gLocalIPAddressList = NULL;
ULONG gLocalIPAddressListLength = 0L;
NDIS_RW_LOCK gLocalIPAddressListLock;
//
// The IP address-based forwarding table
//
PHASH_TABLE gIPForwardingTable;
//
// Our table to hold pending ARP requests so we can proxy back replies
//
PHASH_TABLE gPendingARPTable;
//
// Our table to hold pending DHCP requests so we can translate DHCP packets
// appropriately (the MAC address of the requesting station is carried
// in a DHCP request and has to be edited when we relay it)
//
PHASH_TABLE gPendingDHCPTable;
//
// A cache of IP next-hop information to avoid hammering the IP drivers's
// route table
//
CACHE gNextHopCache;
// Special IP address indicating a negative cache entry (we tried previously
// and got no answer)
const IPADDRESS NO_ADDRESS = 0xFFFFFFFF;
// Whether we have an overall MAC address for the bridge miniport yet
BOOLEAN gCompHaveMACAddress = FALSE;
// Our overall MAC address (cached here instead of calling the miniport
// section all the time to increase perf)
UCHAR gCompMACAddress[ETH_LENGTH_OF_ADDRESS];
// Pointers and handles for interacting with TCP
HANDLE gTCPFileHandle = NULL;
PFILE_OBJECT gTCPFileObject = NULL;
PDEVICE_OBJECT gTCPDeviceObject = NULL;
// Pointers and handles for interacting with IP
HANDLE gIPFileHandle = NULL;
PFILE_OBJECT gIPFileObject = NULL;
PDEVICE_OBJECT gIPDeviceObject = NULL;
// Lock to protect the references above
NDIS_SPIN_LOCK gTCPIPLock;
// IRP posted to TCPIP for notifications of when the route table changes.
// Manipulated with InterlockedExchange.
PIRP gIPRouteChangeIRP = NULL;
// Refcount to allow us to block and wait when people are using the TCP
// driver
WAIT_REFCOUNT gTCPIPRefcount;
// ===========================================================================
//
// PRIVATE PROTOTYPES
//
// ===========================================================================
BOOLEAN
BrdgCompDecodeARPPacket(
IN PUCHAR pPacketData,
IN UINT dataLen,
OUT PARPINFO pARPInfo
);
VOID
BrdgCompTransmitARPPacket(
IN PADAPT pAdapt,
IN PARPINFO pARPInfo
);
BOOLEAN
BrdgCompDecodeIPHeader(
IN PUCHAR pHeader,
OUT PIP_HEADER_INFO piphi
);
BOOLEAN
BrdgCompProcessOutboundARPPacket(
IN PNDIS_PACKET pPacket,
IN PUCHAR pPacketData,
IN UINT packetLen,
IN PADAPT pTargetAdapt
);
BOOLEAN
BrdgCompProcessOutboundNonARPPacket(
IN PNDIS_PACKET pPacket,
IN PUCHAR pPacketData,
IN UINT packetLen,
IN PADAPT pTargetAdapt
);
BOOLEAN
BrdgCompProcessInboundARPPacket(
IN PNDIS_PACKET pPacket,
IN PADAPT pAdapt,
IN BOOLEAN bCanRetain,
IN PUCHAR pPacketData,
IN UINT packetLen
);
BOOLEAN
BrdgCompProcessInboundNonARPPacket(
IN PNDIS_PACKET pPacket,
IN PADAPT pAdapt,
IN BOOLEAN bCanRetain,
IN PUCHAR pPacketData,
IN UINT packetLen
);
VOID
BrdgCompTransmitDeferredARP(
IN PVOID pData
);
BOOLEAN
BrdgCompProcessInboundBootPPacket(
IN PNDIS_PACKET pPacket,
IN PADAPT pAdapt,
IN BOOLEAN bCanRetain,
IN PUCHAR pPacketData,
IN UINT packetLen,
IN PIP_HEADER_INFO piphi,
IN PUCHAR pBootPData
);
BOOLEAN
BrdgCompProcessOutboundBootPPacket(
IN PNDIS_PACKET pPacket,
IN PUCHAR pPacketData,
IN UINT packetLen,
IN PADAPT pTargetAdapt,
IN PUCHAR pBootPData,
IN PIP_HEADER_INFO piphi
);
BOOLEAN
BrdgCompIsUnicastIPAddress(
IN IPADDRESS ip
);
VOID
BrdgCompAttachToTCPIP(
IN PVOID ignored
);
VOID
BrdgCompDetachFromTCPIP(
IN PVOID ignored
);
BOOLEAN
BrdgCompIsLocalIPAddress(
IN IPADDRESS ipAddr
);
// ===========================================================================
//
// INLINES / MACROS
//
// ===========================================================================
//
// This retrieves the Ethertype of an Ethernet frame from a pointer
// to its header.
//
__forceinline
USHORT
BrdgCompGetEtherType(
IN PUCHAR pEtherHeader
)
{
USHORT retVal;
// The two bytes immediately following the source and destination addresses
// encode the Ethertype, most significant byte first.
retVal = 0L;
retVal |= (pEtherHeader[2 * ETH_LENGTH_OF_ADDRESS]) << 8;
retVal |= pEtherHeader[2 * ETH_LENGTH_OF_ADDRESS + 1];
return retVal;
}
//
// Transmits a packet on an adapter after rewriting the source MAC address
// to be the adapter's own MAC address.
//
// The caller relinquishes ownership of the packet with this call.
//
__forceinline
VOID
BrdgCompSendPacket(
IN PNDIS_PACKET pPacket,
IN PUCHAR pPacketData,
IN PADAPT pAdapt
)
{
// Rewrite the source MAC address to be our address
ETH_COPY_NETWORK_ADDRESS(pPacketData + ETH_LENGTH_OF_ADDRESS, pAdapt->MACAddr);
BrdgFwdSendPacketForCompat(pPacket, pAdapt);
}
//
// Transmits a packet, dealing with an optional editing function if one is
// present
//
__forceinline
VOID
BrdgCompEditAndSendPacket(
IN PNDIS_PACKET pPacket,
IN PUCHAR pPacketData,
IN PADAPT pAdapt,
IN PPER_ADAPT_EDIT_FUNC pFunc,
IN PVOID pData
)
{
if( pFunc != NULL )
{
(*pFunc)(pPacketData, pAdapt, pData);
}
BrdgCompSendPacket( pPacket, pPacketData, pAdapt );
}
//
// Transmits a packet, dealing with the possibility that we are not allowed to
// retain the packet and setting the destination MAC address to a specified
// value
//
// Returns whether the input packet was retained
//
__inline
BOOLEAN
BrdgCompEditAndSendPacketOrPacketCopy(
IN PNDIS_PACKET pPacket,
IN PUCHAR pPacketData,
IN BOOLEAN bCanRetain,
IN PUCHAR pDestMAC,
IN PADAPT pAdapt,
IN PPER_ADAPT_EDIT_FUNC pFunc,
IN PVOID pData
)
{
UINT dataLen;
SAFEASSERT( (pPacket != NULL) && (pPacketData != NULL) );
if( !bCanRetain )
{
// We aren't allowed to use the original packet. Make a copy.
pPacket = BrdgFwdMakeCompatCopyPacket(pPacket, &pPacketData, &dataLen, FALSE);
}
if( (pPacket != NULL) && (pPacketData != NULL) )
{
// Poke the destination MAC address
ETH_COPY_NETWORK_ADDRESS(pPacketData, pDestMAC);
BrdgCompEditAndSendPacket(pPacket, pPacketData, pAdapt, pFunc, pData);
}
// If we were allowed to retain the packet, we did.
return bCanRetain;
}
//
// Indicates a packet to the local machine. If the target MAC address was previously
// the adapter's hardware MAC address, it is rewritten to the bridge adapter's
// overall MAC address.
//
// The caller relinquishes ownership of the packet with this call.
//
__inline
VOID
BrdgCompIndicatePacket(
IN PNDIS_PACKET pPacket,
IN PUCHAR pPacketData,
IN PADAPT pAdapt // Receiving adapter
)
{
// No packet indications can occur until we have a MAC address
if( gCompHaveMACAddress )
{
UINT Result;
// See if this frame was targeted at this adapter's MAC address.
ETH_COMPARE_NETWORK_ADDRESSES_EQ(pPacketData, pAdapt->MACAddr, &Result);
if( Result == 0 )
{
ETH_COPY_NETWORK_ADDRESS( pPacketData, gCompMACAddress );
}
else
{
// We expect to only be indicating frames unicast to this machine
// or sent to bcast / multicast hardware addresses.
SAFEASSERT( ETH_IS_BROADCAST(pPacketData) || ETH_IS_MULTICAST(pPacketData) );
}
BrdgFwdIndicatePacketForCompat( pPacket );
}
}
//
// Indicates a packet to the local machine, making a copy of the packet if
// necessary.
//
__inline
BOOLEAN
BrdgCompIndicatePacketOrPacketCopy(
IN PNDIS_PACKET pPacket,
IN PUCHAR pPacketData,
IN BOOLEAN bCanRetain,
IN PADAPT pAdapt,
IN PPER_ADAPT_EDIT_FUNC pEditFunc,
IN PVOID pData
)
{
if( bCanRetain )
{
if( pEditFunc != NULL )
{
(*pEditFunc)(pPacketData, LOCAL_MINIPORT, pData);
}
BrdgCompIndicatePacket( pPacket, pPacketData, pAdapt );
}
else
{
UINT packetLen;
// Make our own copy of the packet for indication
pPacket = BrdgFwdMakeCompatCopyPacket( pPacket, &pPacketData, &packetLen, FALSE );
if( pPacket != NULL )
{
if( pEditFunc != NULL )
{
(*pEditFunc)(pPacketData, LOCAL_MINIPORT, pData);
}
BrdgCompIndicatePacket( pPacket, pPacketData, pAdapt );
}
else
{
DBGPRINT(COMPAT, ("Failed to acquire a packet for indication in BrdgCompIndicatePacketOrPacketCopy\n"));
}
}
// If we were allowed to retain the packet, we did.
return bCanRetain;
}
//
// The IP and UDP checksums treat the data they are checksumming as a
// sequence of 16-bit words. The checksum is carried as the bitwise
// inverse of the actual checksum (~C). The formula for calculating
// the new checksum as transmitted, ~C', given that a 16-bit word of
// the checksummed data has changed from w to w' is
//
// ~C' = ~C + w + ~w' (addition in ones-complement)
//
// This function returns the updated checksum given the original checksum
// and the original and new values of a word in the checksummed data.
//
__forceinline
USHORT
BrdgCompRecalcChecksum(
IN USHORT oldChecksum,
IN USHORT oldWord,
IN USHORT newWord
)
{
ULONG sum;
sum = oldChecksum + oldWord + ((~(newWord)) & 0xFFFF);
return (USHORT)((sum & 0xFFFF) + (sum >> 16));
}
//
// Rewrites a BootP packet so the client MAC address in the packet payload
// is the given new MAC address
//
__inline
BrdgCompRewriteBootPClientAddress(
IN PUCHAR pPacketData,
IN PIP_HEADER_INFO piphi,
IN PUCHAR newMAC
)
{
USHORT checkSum;
PUCHAR pBootPData, pCheckSum, pDestMAC, pSrcMAC;
UINT i;
// The BOOTP packet lives right after the UDP header
pBootPData = pPacketData + ETHERNET_HEADER_SIZE + piphi->headerSize + SIZE_OF_UDP_HEADER;
// The checksum lives at offset 7 in the UDP packet.
pCheckSum = pPacketData + ETHERNET_HEADER_SIZE + piphi->headerSize + 6;
checkSum = 0;
checkSum = pCheckSum[0] << 8;
checkSum |= pCheckSum[1];
// Replace the client's hardware address, updating the checksum as we go.
// The client's hardware address lives at offset 29 in the BOOTP packet
pSrcMAC = newMAC;
pDestMAC = &pBootPData[28];
for( i = 0 ; i < ETH_LENGTH_OF_ADDRESS / 2; i++ )
{
checkSum = BrdgCompRecalcChecksum( checkSum,
(USHORT)(pDestMAC[0] << 8 | pDestMAC[1]),
(USHORT)(pSrcMAC[0] << 8 | pSrcMAC[1]) );
pDestMAC[0] = pSrcMAC[0];
pDestMAC[1] = pSrcMAC[1];
pDestMAC += 2;
pSrcMAC += 2;
}
// Write the new checksum back out
pCheckSum[0] = (UCHAR)(checkSum >> 8);
pCheckSum[1] = (UCHAR)(checkSum & 0xFF);
}
//
// Rewrites an oubound ARP packet so the source MAC address carried in the payload
// matches the MAC address of the outbound adapter
//
VOID
BrdgCompRewriteOutboundARPPacket(
IN PUCHAR pPacketData,
IN PADAPT pAdapt,
IN PVOID ignored
)
{
//
// Rewrite the source MAC address so it is the MAC address of the adapter the
// request is going out on.
//
pPacketData[22] = pAdapt->MACAddr[0];
pPacketData[23] = pAdapt->MACAddr[1];
pPacketData[24] = pAdapt->MACAddr[2];
pPacketData[25] = pAdapt->MACAddr[3];
pPacketData[26] = pAdapt->MACAddr[4];
pPacketData[27] = pAdapt->MACAddr[5];
// Leave the rewriting of the MAC address in the actual Ethernet header to
// BrdgCompSendPacket(), which always overwrites the source MAC address
// with the adapter's MAC address.
}
//
// Provides a PDEVICE_OBJECT and a PFILE_OBJECT that can be used to talk to
// TCPIP.SYS. Returns TRUE if a channel is open and the pointers can be used,
// FALSE otherwise.
//
__inline
BOOLEAN
BrdgCompAcquireTCPIP(
OUT PDEVICE_OBJECT OPTIONAL *pTCPpdo,
OUT PFILE_OBJECT OPTIONAL *pTCPpfo,
OUT PDEVICE_OBJECT OPTIONAL *pIPpdo,
OUT PFILE_OBJECT OPTIONAL *pIPpfo
)
{
BOOLEAN rc = FALSE;
if( BrdgIncrementWaitRef(&gTCPIPRefcount) )
{
NdisAcquireSpinLock( &gTCPIPLock );
SAFEASSERT( gTCPDeviceObject != NULL );
SAFEASSERT( gTCPFileHandle != NULL );
SAFEASSERT( gTCPFileObject != NULL );
SAFEASSERT( gIPFileHandle != NULL );
SAFEASSERT( gIPDeviceObject != NULL );
SAFEASSERT( gIPFileObject != NULL );
if( pTCPpdo != NULL )
{
*pTCPpdo = gTCPDeviceObject;
}
if( pTCPpfo != NULL )
{
*pTCPpfo = gTCPFileObject;
}
if( pIPpdo != NULL )
{
*pIPpdo = gIPDeviceObject;
}
if( pIPpfo != NULL )
{
*pIPpfo = gIPFileObject;
}
rc = TRUE;
NdisReleaseSpinLock( &gTCPIPLock );
}
return rc;
}
//
// Releases the refcount on our connection to the TCPIP driver after a
// previous call to BrdgCompAcquireTCPIP().
//
__inline
VOID
BrdgCompReleaseTCPIP()
{
BrdgDecrementWaitRef( &gTCPIPRefcount );
}
// ====================================================================
//
// These small helper functions would be inline except we need to pass
// pointers to them
//
// ====================================================================
//
// Rewrites a BootP packet for a particular adapter
//
VOID
BrdgCompRewriteBootPPacketForAdapt(
IN PUCHAR pPacketData,
IN PADAPT pAdapt,
IN PVOID pData
)
{
PIP_HEADER_INFO piphi = (PIP_HEADER_INFO)pData;
//
// pAdapt can be LOCAL_MINIPORT if we're being used to edit a packet
// for indication to the local machine. No rewriting is necessary
// in that case.
//
if( pAdapt != LOCAL_MINIPORT )
{
SAFEASSERT( pAdapt != NULL );
BrdgCompRewriteBootPClientAddress( pPacketData, piphi, pAdapt->MACAddr );
}
}
//
// Hashes an IP address. Used for the IP forwarding table as well as
// the pending-ARP table, which uses an extended key made up of
// the target IP address and the requesting station's IP address
//
ULONG
BrdgCompHashIPAddress(
IN PUCHAR pKey
)
{
// Our hash function consists of taking the lower portion of the IP
// address. The number of hash buckets has to be a power of 2 for
// this to work propery.
return (*(PULONG)pKey) & (NUM_HASH_BUCKETS - 1);
}
//
// Hashes a DHCP transaction id
//
ULONG
BrdgCompHashXID(
IN PUCHAR pXid
)
{
// Our hash function consists of taking the lower portion of the
// XID. The number of hash buckets has to be a power of 2 for
// this to work propery.
return (*(PULONG)pXid) & (NUM_DHCP_HASH_BUCKETS - 1);
}
//
// Returns true if the given IP table entry refers to a certain
// adapter
BOOLEAN
BrdgCompIPEntriesMatchAdapter(
IN PHASH_TABLE_ENTRY phte,
IN PVOID pData
)
{
PADAPT pAdapt = (PADAPT)pData;
PIP_TABLE_ENTRY pipte = (PIP_TABLE_ENTRY)phte;
// Don't take the spin lock since we're doing a single read,
// which we ASSUME to be atomic.
return (BOOLEAN)(pipte->pAdapt == pAdapt);
}
//
// Returns true if the given ARP table entry refers to a certain
// adapter
//
BOOLEAN
BrdgCompARPEntriesMatchAdapter(
IN PHASH_TABLE_ENTRY phte,
IN PVOID pData
)
{
PADAPT pAdapt = (PADAPT)pData;
PARP_TABLE_ENTRY pate = (PARP_TABLE_ENTRY)phte;
// Don't take the spin lock since we're doing a single read,
// which we ASSUME to be atomic.
return (BOOLEAN)(pate->pOriginalAdapt == pAdapt);
}
//
// Returns true if the given DHCP table entry refers to a certain
// adapter
//
BOOLEAN
BrdgCompDHCPEntriesMatchAdapter(
IN PHASH_TABLE_ENTRY phte,
IN PVOID pData
)
{
PADAPT pAdapt = (PADAPT)pData;
PDHCP_TABLE_ENTRY pdhcpte = (PDHCP_TABLE_ENTRY)phte;
// Don't take the spin lock since we're doing a single read,
// which we ASSUME to be atomic.
return (BOOLEAN)(pdhcpte->pRequestorAdapt == pAdapt);
}
//
// Completion function for route lookup IRPs. Returns
// STATUS_MORE_PROCESSING_REQUIRED to prevent the IO manager
// from mucking with the IRP (which we free ourselves).
//
NTSTATUS
BrdgCompCompleteRouteLookupIRP(
IN PDEVICE_OBJECT DeviceObject,
IN PIRP pirp,
IN PVOID ignored
)
{
IoFreeIrp( pirp );
return STATUS_MORE_PROCESSING_REQUIRED;
}
// ===========================================================================
//
// PUBLIC FUNCTIONS
//
// ===========================================================================
NTSTATUS
BrdgCompDriverInit()
/*++
Routine Description:
Driver-initialization function for the compatibility module
Arguments:
None
Return Value:
Status. Anything other than STATUS_SUCCESS aborts the driver load.
--*/
{
ULONG MaxSize, MaxEntries;
// Initialize the next-hop cache
if( BrdgInitializeCache(&gNextHopCache, HOP_CACHE_SHIFT_FACTOR) != NDIS_STATUS_SUCCESS )
{
DBGPRINT(COMPAT, ("FAILED TO ALLOCATE NEXT-HOPE CACHE!\n"));
NdisWriteEventLogEntry( gDriverObject, EVENT_BRIDGE_INIT_MALLOC_FAILED, 0L, 0L, NULL, 0L, NULL );
return STATUS_INSUFFICIENT_RESOURCES;
}
// See if the registry specifies a max table size for the IP table
if( BrdgReadRegDWord(&gRegistryPath, gMaxIPTableSizeParameterName, &MaxSize) != STATUS_SUCCESS )
{
MaxSize = DEFAULT_MAX_IP_TABLE_SIZE;
}
MaxEntries = MaxSize / sizeof(IP_TABLE_ENTRY);
DBGPRINT(COMPAT, ("Capping IP forwarding table at %i entries (%i bytes of memory)\n", MaxEntries, MaxSize));
gIPForwardingTable = BrdgHashCreateTable( BrdgCompHashIPAddress, NUM_HASH_BUCKETS, sizeof(IP_TABLE_ENTRY),
MaxEntries, MAX_IP_ENTRY_AGE, MAX_IP_ENTRY_AGE, sizeof(IPADDRESS) );
if( gIPForwardingTable == NULL )
{
DBGPRINT(COMPAT, ("FAILED TO ALLOCATE IP TABLE!\n"));
NdisWriteEventLogEntry( gDriverObject, EVENT_BRIDGE_INIT_MALLOC_FAILED, 0L, 0L, NULL, 0L, NULL );
return STATUS_INSUFFICIENT_RESOURCES;
}
//
// Our Pending-ARP table uses ARP_TABLE_KEY structures as a key, but we still use the BrdgCompHashIPAddress
// routine to hash the keys. This will result in the hash being based on the first part of the key alone (the
// target IP address), which is what we want, since all the entries for a single target must end up in the
// same bucket for our multi-match retrieval to work.
//
// See if the registry specifies a max table size for the ARP table
if( BrdgReadRegDWord(&gRegistryPath, gMaxARPTableSizeParameterName, &MaxSize) != STATUS_SUCCESS )
{
MaxSize = DEFAULT_MAX_ARP_TABLE_SIZE;
}
MaxEntries = MaxSize / sizeof(ARP_TABLE_ENTRY);
DBGPRINT(COMPAT, ("Capping Pending-ARP table at %i entries (%i bytes of memory)\n", MaxEntries, MaxSize));
gPendingARPTable = BrdgHashCreateTable( BrdgCompHashIPAddress, NUM_HASH_BUCKETS, sizeof(ARP_TABLE_ENTRY),
MaxEntries, MAX_ARP_ENTRY_AGE, MAX_ARP_ENTRY_AGE, sizeof(ARP_TABLE_KEY) );
if( gPendingARPTable == NULL )
{
BrdgHashFreeHashTable( gIPForwardingTable );
DBGPRINT(COMPAT, ("FAILED TO ALLOCATE ARP TABLE!\n"));
NdisWriteEventLogEntry( gDriverObject, EVENT_BRIDGE_INIT_MALLOC_FAILED, 0L, 0L, NULL, 0L, NULL );
return STATUS_INSUFFICIENT_RESOURCES;
}
// See if the registry specifies a max table size for the DHCP table
if( BrdgReadRegDWord(&gRegistryPath, gMaxDHCPTableSizeParameterName, &MaxSize) != STATUS_SUCCESS )
{
MaxSize = DEFAULT_MAX_DHCP_TABLE_SIZE;
}
MaxEntries = MaxSize / sizeof(DHCP_TABLE_ENTRY);
DBGPRINT(COMPAT, ("Capping Pending-DHCP table at %i entries (%i bytes of memory)\n", MaxEntries, MaxSize));
gPendingDHCPTable = BrdgHashCreateTable( BrdgCompHashXID, NUM_DHCP_HASH_BUCKETS, sizeof(DHCP_TABLE_ENTRY),
MaxEntries, MAX_DHCP_ENTRY_AGE, MAX_DHCP_ENTRY_AGE, sizeof(ULONG) );
if( gPendingDHCPTable == NULL )
{
BrdgHashFreeHashTable( gIPForwardingTable );
BrdgHashFreeHashTable( gPendingARPTable );
DBGPRINT(COMPAT, ("FAILED TO ALLOCATE DHCP TABLE!\n"));
NdisWriteEventLogEntry( gDriverObject, EVENT_BRIDGE_INIT_MALLOC_FAILED, 0L, 0L, NULL, 0L, NULL );
return STATUS_INSUFFICIENT_RESOURCES;
}
// Initialize synchronization objects
NdisInitializeReadWriteLock( &gLocalIPAddressListLock );
NdisAllocateSpinLock( &gTCPIPLock );
BrdgInitializeWaitRef( &gTCPIPRefcount, FALSE );
// We start out with no connection to TCPIP so the waitref needs to be in the shutdown state
BrdgShutdownWaitRefOnce( &gTCPIPRefcount );
return STATUS_SUCCESS;
}
VOID
BrdgCompCleanup()
/*++
Routine Description:
One-time cleanup for the compatibility module
Arguments:
None
Return Value:
None
--*/
{
LOCK_STATE LockState;
// Detach from TCPIP
BrdgCompDetachFromTCPIP(NULL);
// Dump the next-hop cache
BrdgFreeCache( &gNextHopCache );
// Dump the forwarding hash table
BrdgHashFreeHashTable( gIPForwardingTable );
gIPForwardingTable = NULL;
// Dump the pending-ARP hash table
BrdgHashFreeHashTable( gPendingARPTable );
gPendingARPTable = NULL;
// Dump the pending-DHCP table
BrdgHashFreeHashTable( gPendingDHCPTable );
gPendingDHCPTable = NULL;
// Clean up the list of network addresses.
NdisAcquireReadWriteLock( &gLocalIPAddressListLock, TRUE /*Read-Write*/, &LockState );
if( gLocalIPAddressListLength > 0L )
{
NdisFreeMemory( gLocalIPAddressList, gLocalIPAddressListLength, 0 );
gLocalIPAddressList = NULL;
gLocalIPAddressListLength = 0L;
}
NdisReleaseReadWriteLock( &gLocalIPAddressListLock, &LockState );
}
VOID
BrdgCompScrubAdapter(
IN PADAPT pAdapt
)
/*++
Routine Description:
Removes all table entries that refer to a given adapter; called when that
adapter is being removed (future references to this adapter are illegal)
Arguments:
None
Return Value:
None
--*/
{
DBGPRINT(COMPAT, ("Scrubbing Adapter %p from the compatibility tables...\n", pAdapt));
// Remove all entries referencing this adapter from the IP table
BrdgHashRemoveMatching( gIPForwardingTable, BrdgCompIPEntriesMatchAdapter, pAdapt );
// Remove all entries referencing this adapter from the pending-ARP table
BrdgHashRemoveMatching( gPendingARPTable, BrdgCompARPEntriesMatchAdapter, pAdapt );
// Remove all entries referencing this adapter from the DHCP table
BrdgHashRemoveMatching( gPendingDHCPTable, BrdgCompDHCPEntriesMatchAdapter, pAdapt );
}
VOID BrdgCompScrubAllAdapters()
/*++
Routine Description:
This function cleans all the adapters from the IP tables (this is in the case of a GPO changing
our bridging settings)
Arguments:
None
Return Value:
None
--*/
{
PADAPT pAdapt = NULL;
LOCK_STATE LockStateAdapterList;
//
// We don't want an adapter to go away while we're running through the list of adapters.
//
NdisAcquireReadWriteLock(&gAdapterListLock, FALSE /* Read Only */, &LockStateAdapterList);
for( pAdapt = gAdapterList; pAdapt != NULL; pAdapt = pAdapt->Next )
{
// Scrub the adapter from the Compatibility tables.
BrdgCompScrubAdapter(pAdapt);
}
NdisReleaseReadWriteLock(&gAdapterListLock, &LockStateAdapterList);
}
VOID
BrdgCompNotifyMACAddress(
IN PUCHAR pBridgeMACAddr
)
/*++
Routine Description:
Called by the miniport module to notify us of the MAC address of the miniport
Arguments:
pBridgeMACAddr Our MAC address
Return Value:
None
--*/
{
ETH_COPY_NETWORK_ADDRESS( &gCompMACAddress, pBridgeMACAddr );
gCompHaveMACAddress = TRUE;
}
BOOLEAN
BrdgCompRequiresCompatWork(
IN PADAPT pAdapt,
IN PUCHAR pPacketData,
IN UINT dataSize
)
/*++
Routine Description:
Called during the processing of inbound packets to determine whether a
packet will require compatibility-mode work.
The compatibility code requires that its packets be flat, whereas packets
indicated from underlying miniports can be arbitrarily fragmented. The
forwarding engine uses the result of this call to determine whether an
inbound packet must be copied to a flat data buffer in a copy packet that
we own or whether it can be handled along fast-track paths that don't
care about packet fragmentation.
Arguments:
pAdapt Adapter on which the packet was received
pPacketDataq A pointer to the beginning of the packet data
dataSize The amount of data pointed to
Return Value:
TRUE: The forwarding engine should call BrdgCompProcessInboundPacket at
a later time to process this packet
FALSE: BrdgCompProcessInboundPacket should never be called for this packet
--*/
{
UINT result;
USHORT etherType;
// Weird runty packets are of no use to anyone
if( dataSize < ETHERNET_HEADER_SIZE )
{
return FALSE;
}
//
// No compatibility-mode work is required if there are no compatibility-mode
// adapters.
//
if( !gCompatAdaptersExist )
{
return FALSE;
}
// All frames that arrive on a compatibility adapter are processed
if( pAdapt->bCompatibilityMode )
{
return TRUE;
}
// Broadcast or multicast frames always require compatibility processing
if( ETH_IS_BROADCAST(pPacketData) || ETH_IS_MULTICAST(pPacketData) )
{
return TRUE;
}
//
// The packet was unicast. If it wasn't sent to the adapter's MAC address,
// it does not require compatibility-mode processing.
//
ETH_COMPARE_NETWORK_ADDRESSES_EQ( pPacketData, pAdapt->MACAddr, &result );
if( result != 0 )
{
return FALSE;
}
//
// The packet is only of interest if it is ARP or IP (on a non-compat
// adapter)
//
etherType = BrdgCompGetEtherType( pPacketData );
return (BOOLEAN)( (etherType == ARP_ETHERTYPE) || (etherType == IP_ETHERTYPE) );
}
BOOLEAN
BrdgCompProcessInboundPacket(
IN PNDIS_PACKET pPacket,
IN PADAPT pAdapt,
IN BOOLEAN bCanRetain
)
/*++
Routine Description:
Called to hand an inbound packet to the compatibility module for processing.
If the packet arrived on a non-compatibility adapter, the compatibility
code should NEVER indicate the packet, as that will be done by the
regular forwarding engine code. On the other hand, if the packet
arrived on a compatibility-mode adapter, the compatibility code MUST
indicate the packet if appropriate. Why the disparity? A packet
arriving on a compatibility adapter will likely require editing before
indication, whereas a packet arriving on a non-compatibility adapter
will not.
The compatibility module may retain the packet if bCanRetain is TRUE
(in which case we must return TRUE). If bCanRetain is FALSE, the
compatibility code may NOT retain the packet. If it needs to forward
the packet data or indicate the packet, it must make a copy
packet and use that instead of the original.
Arguments:
pPacket The received packet
pAdapt The adapter the packet was received on
bCanRetain Whether we can hang on to the packet
Return Value:
TRUE: The packet was retained (should never be returned if bCanRetain == FALSE)
The caller should not use this packet or attempt to free it.
FALSE: The packet was not retained. The caller still has ownership of the
packet and should arrange for it to be freed when appropriate.
--*/
{
PNDIS_BUFFER pBuffer;
PUCHAR pBufferData;
UINT bufferLen = 0;
UINT totLen;
USHORT etherType;
BOOLEAN bRetained;
NdisGetFirstBufferFromPacketSafe( pPacket, &pBuffer, &pBufferData, &bufferLen,
&totLen, NormalPagePriority );
if( pBufferData == NULL )
{
// The packet was empty or the system is under severe memory pressure
// We didn't retain the packet.
return FALSE;
}
if( totLen < ETHERNET_HEADER_SIZE )
{
return FALSE;
}
// The packet should be flat
SAFEASSERT( totLen == bufferLen );
etherType = BrdgCompGetEtherType( pBufferData );
if( etherType == ARP_ETHERTYPE )
{
bRetained = BrdgCompProcessInboundARPPacket( pPacket, pAdapt, bCanRetain, pBufferData, bufferLen );
}
else
{
bRetained = BrdgCompProcessInboundNonARPPacket( pPacket, pAdapt, bCanRetain, pBufferData, bufferLen );
}
if( !bCanRetain )
{
SAFEASSERT( !bRetained );
}
return bRetained;
}
VOID
BrdgCompProcessOutboundPacket(
IN PNDIS_PACKET pPacket,
IN PADAPT pTargetAdapt
)
/*++
Routine Description:
Called to hand an outbound packet to the compatibility module for processing.
Because the packet passed to us is from an overlying protocol driver, we
are not allowed to do anything with it. The packet may be arbitrarily
fragmented, and its data buffers must be treated as read-only.
This function is only called if a packet is bound for an adapter in
compatibility mode (so we can do any necessary packet editing) or for a packet
for which we have no known outbound adapter (i.e., it is a packet we are
flooding).
In the case that pTargetAdapt == NULL (a flood), the compatibility code is
responsible for sending the packet out all *compatibility mode* adapters.
Sending the packet out regular-mode adapters is the job of the regular
code in the forwarding engine.
Arguments:
pPacket The outbound packet
pTargetAdapt The target adapter, as determined by a previous lookup in
the MAC forwarding table. This can be NULL to indicate
a flood.
Return Value:
None
--*/
{
PNDIS_PACKET pCopyPacket;
PUCHAR pCopyPacketData;
UINT copyPacketSize;
// There's no point in calling us for a packet that is bound for a MAC
// address which is known to be reachable on a non-compat adapter
SAFEASSERT( (pTargetAdapt == NULL) || (pTargetAdapt->bCompatibilityMode) );
// There is no work to do if there are no compatibility adapters
if( !gCompatAdaptersExist )
{
return;
}
// Prepare the flattened copy packet so our functions can edit
// the packet as appropriate. The packet will be counted as a local-source
// transmission when / if it is used.
pCopyPacket = BrdgFwdMakeCompatCopyPacket( pPacket, &pCopyPacketData, &copyPacketSize, TRUE );
if( pCopyPacket != NULL )
{
BOOLEAN bRetained = FALSE;
if( copyPacketSize >= ETHERNET_HEADER_SIZE )
{
USHORT etherType;
etherType = BrdgCompGetEtherType(pCopyPacketData);
if( etherType == ARP_ETHERTYPE )
{
bRetained = BrdgCompProcessOutboundARPPacket(pCopyPacket, pCopyPacketData, copyPacketSize, pTargetAdapt);
}
else
{
bRetained = BrdgCompProcessOutboundNonARPPacket(pCopyPacket, pCopyPacketData, copyPacketSize, pTargetAdapt);
}
}
// else the packet was really small!
if( ! bRetained )
{
// The functions above decided not to hang on to the packet after all.
// Release it.
BrdgFwdReleaseCompatPacket( pCopyPacket );
}
}
// Else we didn't get a packet
}
VOID
BrdgCompNotifyNetworkAddresses(
IN PNETWORK_ADDRESS_LIST pAddressList,
IN ULONG infoLength
)
/*++
Routine Description:
Called by the miniport code when we get an OID indicating our network-layer
addresses to us. We copy out the list of our IP addresses. The buffer
passed to us can also be formatted in such a way as to indicate that we
should dump our list of network addresses.
Arguments:
pAddressList The data buffer passed down in the OID
infoLength The size of the buffer
Return Value:
None
--*/
{
PIPADDRESS pOldList;
UINT oldListLength;
LOCK_STATE LockState;
if( infoLength < sizeof(NETWORK_ADDRESS_LIST) - sizeof(NETWORK_ADDRESS) )
{
// The structure is too small to hold anything interesting.
return;
}
if( pAddressList->AddressCount > 0 )
{
USHORT i, numAddresses, copiedAddresses = 0;
NETWORK_ADDRESS UNALIGNED *pNetAddress;
NDIS_STATUS Status;
PIPADDRESS pNewList;
//
// Make sure the structure can hold the number of addresses it claims to.
// NETWORK_ADDRESS_LIST is defined with one NETWORK_ADDRESS at its tail,
// so knock one off pAddressList->AddressCount when calculating the
// size of the total structure.
//
if( infoLength < sizeof(NETWORK_ADDRESS_LIST) +
( sizeof(NETWORK_ADDRESS) * (pAddressList->AddressCount - 1) ) )
{
// The structure is too small to contain the number of addresses
// it claims to.
SAFEASSERT( FALSE );
return;
}
// Make a first pass to count the number of IP addresses in the list
pNetAddress = pAddressList->Address;
for( i = 0, numAddresses = 0; i < pAddressList->AddressCount; i++ )
{
if( pNetAddress->AddressType == NDIS_PROTOCOL_ID_TCP_IP )
{
numAddresses++;
}
pNetAddress = (NETWORK_ADDRESS UNALIGNED*)(((PUCHAR)pNetAddress) + pNetAddress->AddressLength);
}
if( numAddresses == 0 )
{
// There are no IP addresses in this list. Nothing to do.
return;
}
// Allocate enough room to hold the addresses
Status = NdisAllocateMemoryWithTag( &pNewList, sizeof(IPADDRESS) * numAddresses, 'gdrB' );
if( Status != NDIS_STATUS_SUCCESS )
{
DBGPRINT(COMPAT, ("NdisAllocateMemoryWithTag failed while recording IP address list\n"));
// Clobber the old list with a NULL, since we know that the old list is outdated,
// but we failed to record the new info
pNewList = NULL;
}
else
{
SAFEASSERT( pNewList != NULL );
// Copy the IP addresses to our list
pNetAddress = pAddressList->Address;
for( i = 0; i < pAddressList->AddressCount; i++ )
{
if( pNetAddress->AddressType == NDIS_PROTOCOL_ID_TCP_IP )
{
NETWORK_ADDRESS_IP UNALIGNED *pIPAddr;
PUCHAR pIPNetAddr;
SAFEASSERT( copiedAddresses < numAddresses );
pIPAddr = (NETWORK_ADDRESS_IP UNALIGNED*)&pNetAddress->Address[0];
pIPNetAddr = (PUCHAR)&pIPAddr->in_addr;
// IP passes down the IP address in the opposite byte order that we use
pNewList[copiedAddresses] = 0L;
pNewList[copiedAddresses] |= pIPNetAddr[3];
pNewList[copiedAddresses] |= pIPNetAddr[2] << 8;
pNewList[copiedAddresses] |= pIPNetAddr[1] << 16;
pNewList[copiedAddresses] |= pIPNetAddr[0] << 24;
DBGPRINT(COMPAT, ("Noted local IP address %i.%i.%i.%i\n",
pIPNetAddr[0], pIPNetAddr[1], pIPNetAddr[2], pIPNetAddr[3] ));
copiedAddresses++;
}
pNetAddress = (NETWORK_ADDRESS UNALIGNED*)(((PUCHAR)pNetAddress) + pNetAddress->AddressLength);
}
SAFEASSERT( copiedAddresses == numAddresses );
}
// Swap in the new list (even if it's NULL)
NdisAcquireReadWriteLock( &gLocalIPAddressListLock, TRUE /*Read-write*/, &LockState );
pOldList = gLocalIPAddressList;
oldListLength = gLocalIPAddressListLength;
gLocalIPAddressList = pNewList;
if( pNewList != NULL )
{
gLocalIPAddressListLength = sizeof(IPADDRESS) * numAddresses;
}
else
{
gLocalIPAddressListLength = 0L;
}
NdisReleaseReadWriteLock( &gLocalIPAddressListLock, &LockState );
// Ditch the old list if there was one
if( pOldList != NULL )
{
SAFEASSERT( oldListLength > 0L );
NdisFreeMemory( pOldList, oldListLength, 0 );
}
// Only attach to TCPIP if we actually learned some IP addresses
if( numAddresses > 0 )
{
// We are at DISPATCH_LEVEL in this function. Defer the call to BrdgCompAttachToTCPIP
// so we open a channel of communication to the TCPIP driver.
BrdgDeferFunction( BrdgCompAttachToTCPIP, NULL );
}
}
else
{
// This is a request to clear out our list of network-layer
// addresses.
if( pAddressList->AddressType == NDIS_PROTOCOL_ID_TCP_IP )
{
DBGPRINT(COMPAT, ("Flushing list of IP addresses\n"));
// Dump our list of network addresses
NdisAcquireReadWriteLock( &gLocalIPAddressListLock, TRUE /*Read-write*/, &LockState );
pOldList = gLocalIPAddressList;
oldListLength = gLocalIPAddressListLength;
gLocalIPAddressList = NULL;
gLocalIPAddressListLength = 0L;
NdisReleaseReadWriteLock( &gLocalIPAddressListLock, &LockState );
if( oldListLength > 0L )
{
SAFEASSERT( pOldList != NULL );
NdisFreeMemory( pOldList, oldListLength, 0 );
}
// Detach from the TCPIP driver at lower IRQL
BrdgDeferFunction( BrdgCompDetachFromTCPIP, NULL );
}
}
}
// ===========================================================================
//
// PRIVATE UTILITY FUNCTIONS
//
// ===========================================================================
NTSTATUS
BrdgCompRouteChangeCompletion(
PDEVICE_OBJECT DeviceObject,
PIRP pirp,
PVOID Context
)
/*++
Routine Description:
Called when the IRP we post to TCPIP.SYS completes, indicating a change
in the IP routing table
Arguments:
DeviceObject Unused
pirp The completed IRP
Context Unused
Return Value:
STATUS_SUCCESS, indicating we are done with this IRP
STATUS_MORE_PROCESSING_REQUIRED when we reuse this IRP by reposting it
--*/
{
PIO_STACK_LOCATION IrpSp;
PDEVICE_OBJECT pdo;
PFILE_OBJECT pfo;
DBGPRINT(COMPAT, ("IP route table changed; flushing route cache.\n"));
// Flush the route cache
BrdgClearCache( &gNextHopCache );
//
// If gIPRouteChangeIRP != pirp, it indicates that we are either detached
// from TCPIP (gIPRouteChangeIRP == NULL) or we have detached and
// reattached (gIPRouteChangeIRP != NULL && gIPRouteChangeIRP != pirp).
// In either case, we should stop reusing this IRP to post route-change
// notification requests.
//
if( (gIPRouteChangeIRP == pirp) && (BrdgCompAcquireTCPIP(NULL, NULL, &pdo, &pfo)) )
{
NTSTATUS status;
//
// Reinitialize the IRP structure and submit it again
// for further notification.
//
pirp->Cancel = FALSE;
pirp->IoStatus.Status = 0;
pirp->IoStatus.Information = 0;
pirp->AssociatedIrp.SystemBuffer = NULL;
IoSetCompletionRoutine( pirp, BrdgCompRouteChangeCompletion,
NULL, TRUE, FALSE, FALSE );
IrpSp = IoGetNextIrpStackLocation(pirp);
IrpSp->MajorFunction = IRP_MJ_DEVICE_CONTROL;
IrpSp->Parameters.DeviceIoControl.IoControlCode = IOCTL_IP_RTCHANGE_NOTIFY_REQUEST;
IrpSp->Parameters.DeviceIoControl.InputBufferLength = 0;
IrpSp->Parameters.DeviceIoControl.OutputBufferLength = 0;
status = IoCallDriver(pdo, pirp);
BrdgCompReleaseTCPIP();
if (!NT_SUCCESS(status))
{
// We failed to call TCPIP. Release the IRP.
DBGPRINT(COMPAT, ("Failed to call TCPIP for route notification: %08x\n", status));
return STATUS_SUCCESS;
}
else
{
// We keep the IRP since we reposted it to TCPIP
return STATUS_MORE_PROCESSING_REQUIRED;
}
}
else
{
// We must be detaching or detached from TCPIP. Don't repost the IRP.
DBGPRINT(COMPAT, ("Stopping our route change notifications...\n"));
return STATUS_SUCCESS;
}
}
VOID
BrdgCompAttachToTCPIP(
IN PVOID ignored
)
/*++
Routine Description:
Establishes a connection to TCPIP for sending future route-lookup requests.
Opens a connection to the TCPIP driver and posts an IRP for route change
notifications.
Arguments:
ignored ignored
Return Value:
None
--*/
{
NTSTATUS status;
HANDLE TCPFileHandle, IPFileHandle;
PFILE_OBJECT pTCPFileObject, pIPFileObject;
PDEVICE_OBJECT pTCPDeviceObject, pIPDeviceObject;
BOOLEAN bAbort = FALSE;
// Check if there is already a connection open to TCP
if( BrdgCompAcquireTCPIP(NULL, NULL, NULL, NULL) )
{
BrdgCompReleaseTCPIP();
return;
}
// There doesn't appear to currently be a connection to the TCPIP driver.
// Open one.
status = BrdgOpenDevice( DD_TCP_DEVICE_NAME, &pTCPDeviceObject, &TCPFileHandle, &pTCPFileObject );
if( ! NT_SUCCESS(status) )
{
DBGPRINT(ALWAYS_PRINT, ("Couldn't open TCP device: %08x\n", status));
return;
}
status = BrdgOpenDevice( DD_IP_DEVICE_NAME, &pIPDeviceObject, &IPFileHandle, &pIPFileObject );
if( ! NT_SUCCESS(status) )
{
DBGPRINT(ALWAYS_PRINT, ("Couldn't open IP device: %08x\n", status));
BrdgCloseDevice(TCPFileHandle, pTCPFileObject, pTCPDeviceObject);
return;
}
NdisAcquireSpinLock( &gTCPIPLock );
if( gTCPDeviceObject == NULL )
{
SAFEASSERT( gTCPFileHandle == NULL );
SAFEASSERT( gTCPFileObject == NULL );
SAFEASSERT( gIPDeviceObject == NULL );
SAFEASSERT( gIPFileHandle == NULL );
SAFEASSERT( gIPFileObject == NULL );
// Swap in the info we just obtained.
gTCPDeviceObject = pTCPDeviceObject;
gTCPFileHandle = TCPFileHandle;
gTCPFileObject = pTCPFileObject;
gIPDeviceObject = pIPDeviceObject;
gIPFileHandle = IPFileHandle;
gIPFileObject = pIPFileObject;
// Let people acquire the TCPIP driver
BrdgResetWaitRef( &gTCPIPRefcount );
}
else
{
// Someone else opened TCPIP.SYS between our initial call to BrdgCompAcquireTCPIP
// and now. This should be rather rare.
SAFEASSERT( gTCPFileHandle != NULL );
SAFEASSERT( gTCPFileObject != NULL );
SAFEASSERT( gIPDeviceObject != NULL );
SAFEASSERT( gIPFileHandle != NULL );
SAFEASSERT( gIPFileObject != NULL );
bAbort = TRUE;
}
NdisReleaseSpinLock( &gTCPIPLock );
if( bAbort )
{
// Need to back out of the attempt to open TCPIP.SYS
BrdgCloseDevice( TCPFileHandle, pTCPFileObject, pTCPDeviceObject );
BrdgCloseDevice( IPFileHandle, pIPFileObject, pIPDeviceObject );
}
else
{
if( BrdgCompAcquireTCPIP(NULL, NULL, &pIPDeviceObject, &pIPFileObject) )
{
NTSTATUS status;
PIRP pirp;
// Set up the route-change notification IRP
pirp = IoBuildDeviceIoControlRequest( IOCTL_IP_RTCHANGE_NOTIFY_REQUEST, pIPDeviceObject,
NULL, 0, NULL, 0, FALSE, NULL, NULL );
if( pirp == NULL )
{
DBGPRINT(COMPAT, ("Failed to allocate an IRP for route-change notification!\n"));
}
else
{
if( InterlockedExchangePointer(&gIPRouteChangeIRP, pirp) != NULL )
{
//
// Oops; someone else created an IRP to post to TCPIP at the same time as us.
// Abort our attempt.
//
IoCompleteRequest( pirp, IO_NO_INCREMENT );
}
else
{
IoSetCompletionRoutine( pirp, BrdgCompRouteChangeCompletion, NULL, TRUE, FALSE, FALSE );
status = IoCallDriver( pIPDeviceObject, pirp );
if( ! NT_SUCCESS(status) )
{
DBGPRINT(COMPAT, ("Failed to post IRP to TCPIP for route-change notification: %08x\n", status));
}
else
{
DBGPRINT(COMPAT, ("Posted route-change notification request to TCPIP\n"));
}
}
}
BrdgCompReleaseTCPIP();
}
// else someone shut down the connection to TCPIP very quickly after we set it up
}
}
VOID
BrdgCompDetachFromTCPIP(
IN PVOID ignored
)
/*++
Routine Description:
Severs the current connection, if any, to TCPIP.SYS.
Arguments:
ignored ignored
Return Value:
None
--*/
{
HANDLE TCPFileHandle, IPFileHandle;
PFILE_OBJECT pTCPFileObject, pIPFileObject;
PDEVICE_OBJECT pTCPDeviceObject, pIPDeviceObject;
PIRP pRouteIRP;
// Wait for everyone to be done using the driver
// Ignore return value because we are multi-shutdown-safe.
BrdgShutdownWaitRef( &gTCPIPRefcount );
// Cancel the IRP we use for route change notifications.
pRouteIRP = InterlockedExchangePointer( &gIPRouteChangeIRP, NULL );
// pRouteIRP can be NULL if someone is shutting down the connection
// at the same time as us, or if the connection was already shut down
if( pRouteIRP != NULL )
{
IoCancelIrp( pRouteIRP );
}
// Flush the route cache
BrdgClearCache( &gNextHopCache );
// Copy out the pointers and NULL them
NdisAcquireSpinLock( &gTCPIPLock );
TCPFileHandle = gTCPFileHandle;
gTCPFileHandle = NULL;
pTCPFileObject = gTCPFileObject;
gTCPFileObject = NULL;
pTCPDeviceObject = gTCPDeviceObject;
gTCPDeviceObject = NULL;
IPFileHandle = gIPFileHandle;
gIPFileHandle = NULL;
pIPFileObject = gIPFileObject;
gIPFileObject = NULL;
pIPDeviceObject = gIPDeviceObject;
gIPDeviceObject = NULL;
NdisReleaseSpinLock( &gTCPIPLock );
// The global pointers can be NULL if someone else is shutting down the
// connection concurrently with us, or if the connection was already
// shut down.
if( pTCPFileObject != NULL )
{
SAFEASSERT( TCPFileHandle != NULL );
SAFEASSERT( pTCPDeviceObject != NULL );
SAFEASSERT( IPFileHandle != NULL );
SAFEASSERT( pIPFileObject != NULL );
SAFEASSERT( pIPDeviceObject != NULL );
BrdgCloseDevice( TCPFileHandle, pTCPFileObject, pTCPDeviceObject );
BrdgCloseDevice( IPFileHandle, pIPFileObject, pIPDeviceObject );
}
else
{
SAFEASSERT( TCPFileHandle == NULL );
SAFEASSERT( pTCPDeviceObject == NULL );
SAFEASSERT( IPFileHandle == NULL );
SAFEASSERT( pIPFileObject == NULL );
SAFEASSERT( pIPDeviceObject == NULL );
}
}
BOOLEAN
BrdgCompIsUnicastIPAddress(
IN IPADDRESS ip
)
/*++
Routine Description:
Determines whether a given IP address is a unicast address (i.e., one that
can reasonably designate a single station)
Arguments:
ip The IP address
Return Value:
TRUE: The address appears to be a unicast address
FALSE: The opposite is true
--*/
{
UCHAR highByte;
// The broadcast address is not cool
if( ip == 0xFFFFFFFF )
{
return FALSE;
}
// The zero address is no good
if( ip == 0L )
{
return FALSE;
}
// Any class D (multicast) or class E (currently undefined) is similarly uncool
highByte = (UCHAR)(ip >> 24);
if( (highByte & 0xF0) == 0xE0 || (highByte & 0xF0) == 0xF0 )
{
return FALSE;
}
// Check each address class to see if this is a net-directed (or all-subnets)
// broadcast
if( (highByte & 0x80) && ((ip & 0x00FFFFFF) == 0x00FFFFFFFF) )
{
// Class A net-directed or all-subnets broadcast.
return FALSE;
}
else if( ((highByte & 0xC0) == 0x80) && ((ip & 0x0000FFFF) == 0x0000FFFF) )
{
// Class B net-directed or all-subnets broadcast.
return FALSE;
}
else if( ((highByte & 0xE0) == 0xC) && ((UCHAR)ip == 0xFF) )
{
// Class C net-directed or all-subnets broadcast.
return FALSE;
}
//
// This address appears to be OK, although note that since we have no way of
// knowing the subnet prefix in use on the local links, we cannot detect
// subnet-directed broadcasts.
//
return TRUE;
}
BOOLEAN
BrdgCompGetNextHopForTarget(
IN IPADDRESS ipTarget,
OUT PIPADDRESS pipNextHop
)
/*++
Routine Description:
Calls into the TCPIP.SYS driver to determine the next-hop address for a
given target IP.
Arguments:
ipTarget The target address
pipNextHop Receives the next-hop address
Return Value:
TRUE if the next-hop lookup succeeded and *pipNextHop is valid, FALSE
otherwise.
--*/
{
BOOLEAN rc = FALSE;
// First look for the information in our next-hop cache
*pipNextHop = BrdgProbeCache( &gNextHopCache, (UINT32)ipTarget );
if( *pipNextHop != 0L )
{
if( *pipNextHop != NO_ADDRESS )
{
// The cache contained a valid next hop
rc = TRUE;
}
else
{
// We asked TCPIP before about this target address and it
// told us it doesn't know.
rc = FALSE;
}
}
else
{
PDEVICE_OBJECT pdo;
PFILE_OBJECT pfo;
if( BrdgCompAcquireTCPIP(&pdo, &pfo, NULL, NULL) )
{
PIRP pirp;
pirp = IoAllocateIrp( pdo->StackSize, FALSE );
if( pirp != NULL )
{
TCP_REQUEST_QUERY_INFORMATION_EX trqiBuffer;
IPRouteLookupData *pRtLookupData;
TDIObjectID *lpObject;
IPRouteEntry routeEntry;
PIO_STACK_LOCATION irpSp;
NTSTATUS status;
RtlZeroMemory (&trqiBuffer, sizeof (trqiBuffer));
pRtLookupData = (IPRouteLookupData *)trqiBuffer.Context;
pRtLookupData->SrcAdd = 0;
// IP uses the opposite byte ordering from us.
((PUCHAR)&pRtLookupData->DestAdd)[0] = ((PUCHAR)&ipTarget)[3];
((PUCHAR)&pRtLookupData->DestAdd)[1] = ((PUCHAR)&ipTarget)[2];
((PUCHAR)&pRtLookupData->DestAdd)[2] = ((PUCHAR)&ipTarget)[1];
((PUCHAR)&pRtLookupData->DestAdd)[3] = ((PUCHAR)&ipTarget)[0];
lpObject = &trqiBuffer.ID;
lpObject->toi_id = IP_MIB_SINGLE_RT_ENTRY_ID;
lpObject->toi_class = INFO_CLASS_PROTOCOL;
lpObject->toi_type = INFO_TYPE_PROVIDER;
lpObject->toi_entity.tei_entity = CL_NL_ENTITY;
lpObject->toi_entity.tei_instance = 0;
irpSp = IoGetNextIrpStackLocation(pirp);
SAFEASSERT( irpSp != NULL );
irpSp->MajorFunction = IRP_MJ_DEVICE_CONTROL;
irpSp->Parameters.DeviceIoControl.IoControlCode = IOCTL_TCP_QUERY_INFORMATION_EX;
irpSp->DeviceObject = pdo;
irpSp->FileObject = pfo;
irpSp->Parameters.DeviceIoControl.Type3InputBuffer = &trqiBuffer;
irpSp->Parameters.DeviceIoControl.InputBufferLength = sizeof(trqiBuffer);
irpSp->Parameters.DeviceIoControl.OutputBufferLength = sizeof(routeEntry);
pirp->UserBuffer = &routeEntry;
pirp->RequestorMode = KernelMode;
IoSetCompletionRoutine( pirp, BrdgCompCompleteRouteLookupIRP, NULL, TRUE, TRUE, TRUE );
status = IoCallDriver( pdo, pirp );
// STATUS_PENDING will bugcheck the machine since we passed buffers that
// are on the stack.
SAFEASSERT( status != STATUS_PENDING );
if( status == STATUS_SUCCESS )
{
//
// TCPIP signals failure by setting the interface designator
// on the reply to 0xFFFFFFFF
//
if( routeEntry.ire_index != 0xFFFFFFFF )
{
// IP uses the opposite byte ordering from us.
((PUCHAR)pipNextHop)[3] = ((PUCHAR)&routeEntry.ire_nexthop)[0];
((PUCHAR)pipNextHop)[2] = ((PUCHAR)&routeEntry.ire_nexthop)[1];
((PUCHAR)pipNextHop)[1] = ((PUCHAR)&routeEntry.ire_nexthop)[2];
((PUCHAR)pipNextHop)[0] = ((PUCHAR)&routeEntry.ire_nexthop)[3];
if( ! BrdgCompIsLocalIPAddress(*pipNextHop) )
{
// Poke the new data into the cache
BrdgUpdateCache( &gNextHopCache, ipTarget, *pipNextHop );
rc = TRUE;
}
else
{
THROTTLED_DBGPRINT(COMPAT, ("TCPIP gave a bridge IP address as next hop for %i.%i.%i.%i\n",
((PUCHAR)&ipTarget)[3], ((PUCHAR)&ipTarget)[2], ((PUCHAR)&ipTarget)[1],
((PUCHAR)&ipTarget)[0] ));
BrdgUpdateCache( &gNextHopCache, ipTarget, NO_ADDRESS );
}
}
else
{
// Poke a negative entry into the cache so we don't keep trying to look this up.
THROTTLED_DBGPRINT(COMPAT, ("TCPIP found no route entry for %i.%i.%i.%i\n", ((PUCHAR)&ipTarget)[3], ((PUCHAR)&ipTarget)[2],
((PUCHAR)&ipTarget)[1], ((PUCHAR)&ipTarget)[0] ));
BrdgUpdateCache( &gNextHopCache, ipTarget, NO_ADDRESS );
}
}
else
{
DBGPRINT(COMPAT, ("TPCIP failed route lookup IRP: %08x\n", status));
}
}
else
{
DBGPRINT(COMPAT, ("Failed to allocate an IRP in BrdgCompGetNextHopForTarget!\n"));
}
// We are done talking to TCPIP
BrdgCompReleaseTCPIP();
}
// else no open channel to TCPIP
}
return rc;
}
BOOLEAN
BrdgCompIsLocalIPAddress(
IN IPADDRESS ipAddr
)
/*++
Routine Description:
Determines whether a given IP address is one of our local addresses.
Arguments:
ipAddr The address
Return Value:
TRUE if the given address is on our list of local addresses, FALSE
otherwise
--*/
{
LOCK_STATE LockState;
ULONG i;
PIPADDRESS pAddr = (PIPADDRESS)gLocalIPAddressList;
BOOLEAN bFound = FALSE;
NdisAcquireReadWriteLock( &gLocalIPAddressListLock, FALSE/*Read only*/, &LockState );
// There should be an integral number of IP addresses in the list!
SAFEASSERT( (gLocalIPAddressListLength % sizeof(IPADDRESS)) == 0 );
SAFEASSERT( (gLocalIPAddressListLength == 0) || (gLocalIPAddressList != NULL) );
for( i = 0L; i < gLocalIPAddressListLength / sizeof(IPADDRESS); i++ )
{
if( pAddr[i] == ipAddr )
{
bFound = TRUE;
break;
}
}
NdisReleaseReadWriteLock( &gLocalIPAddressListLock, &LockState );
return bFound;
}
BOOLEAN
BrdgCompSendToMultipleAdapters(
IN PNDIS_PACKET pPacket,
IN PADAPT pOriginalAdapt,
IN PUCHAR pPacketData,
IN BOOLEAN bCanRetain,
IN BOOLEAN bAllAdapters,
IN PPER_ADAPT_EDIT_FUNC pEditFunc,
IN PVOID pData
)
/*++
Routine Description:
Sends a packet (or a copy thereof) to multiple adapters. Usually used to send around
a broadcast packet.
Arguments:
pPacket The packet to send (or to send a copy of)
pOriginalAdapt The adapter the packet was originally received on (so
we can skip it). This can be NULL
pPacketData A pointer to the packet's data buffer
bCanRetain Whether we can retain the packet
bAllAdapters TRUE: Send to all adapters FALSE: send only to
adapters in compatibility mode
pEditFunc Optional function that gets called before sending to
each adapter (to edit the packet)
pData Cookie to pass to pEditFunc as context
Return Value:
TRUE if pPacket was retained, FALSE otherwise
--*/
{
UINT numTargets = 0L, i;
PADAPT pAdapt;
PADAPT SendList[MAX_ADAPTERS];
LOCK_STATE LockState;
BOOLEAN bSentOriginal = FALSE; // Whether we have sent the packet we were given yet
//
// First we need a list of the adapters we intend to send this packet to
//
NdisAcquireReadWriteLock( &gAdapterListLock, FALSE /*Read only*/, &LockState );
// Note each adapter to send to
for( pAdapt = gAdapterList; pAdapt != NULL; pAdapt = pAdapt->Next )
{
// Don't need to acquire the global adapter characteristics lock to read the
// media state because we don't care about the global consistency of the
// adapters' characteristics here
if( (pAdapt != pOriginalAdapt) &&
(pAdapt->MediaState == NdisMediaStateConnected) && // Don't send to disconnected adapters
(pAdapt->State == Forwarding) && // Adapter must be in relaying state
(! pAdapt->bResetting) ) // Adapter must not be resetting
{
// If we're not trying to send to every single adapter, make sure
// this one is in compatibility mode
if( bAllAdapters || (pAdapt->bCompatibilityMode) )
{
if( numTargets < MAX_ADAPTERS )
{
// We will use this adapter outside the list lock; bump its refcount
BrdgAcquireAdapterInLock(pAdapt);
SendList[numTargets] = pAdapt;
numTargets++;
}
else
{
// Too many copies to send!
SAFEASSERT( FALSE );
}
}
}
}
// Can let go of the adapter list now; we have copied out all the target adapters
// and incremented the refcount for the adapters we will be using.
NdisReleaseReadWriteLock( &gAdapterListLock, &LockState );
for( i = 0; i < numTargets; i++ )
{
PNDIS_PACKET pPacketToSend;
PUCHAR pPacketToSendData;
if( bCanRetain && (! bSentOriginal) && (i == (numTargets - 1)) )
{
//
// Use the packet we were given.
// We must do this only with the last adapter since we need to be
// able to copy from it for every adapter before the last one.
//
pPacketToSend = pPacket;
pPacketToSendData = pPacketData;
bSentOriginal = TRUE;
}
else
{
UINT pPacketToSendSize;
// Duplicate the original packet yet another time so we have an editable
// copy for this target adapter
pPacketToSend = BrdgFwdMakeCompatCopyPacket(pPacket, &pPacketToSendData, &pPacketToSendSize, FALSE);
}
if( pPacketToSend != NULL )
{
BrdgCompEditAndSendPacket( pPacketToSend, pPacketToSendData, SendList[i], pEditFunc, pData );
}
// Done with this adapter
BrdgReleaseAdapter( SendList[i] );
}
return bSentOriginal;
}
VOID
BrdgCompRefreshOrInsertIPEntry(
IN IPADDRESS IPAddr,
IN PADAPT pAdapt,
IN PUCHAR pMACAddr
)
/*++
Routine Description:
Inserts a new entry into the IP forwarding table or refreshes an existing entry
Arguments:
IPAddr The address to insert
pAdapt The adapter to associate with the IP address
pMACAddr The MAC address to associate with the IP address
Return Value:
None
--*/
{
PIP_TABLE_ENTRY pEntry;
BOOLEAN bIsNewEntry;
LOCK_STATE LockState;
if( BrdgCompIsUnicastIPAddress(IPAddr) )
{
pEntry = (PIP_TABLE_ENTRY)BrdgHashRefreshOrInsert( gIPForwardingTable, (PUCHAR)&IPAddr,
&bIsNewEntry, &LockState );
if( pEntry != NULL )
{
if( bIsNewEntry )
{
// This is a brand new table entry. Initialize it.
NdisAllocateSpinLock( &pEntry->lock );
pEntry->pAdapt = pAdapt;
ETH_COPY_NETWORK_ADDRESS( pEntry->macAddr, pMACAddr );
DBGPRINT(COMPAT, ("Learned the location of %i.%i.%i.%i\n", ((PUCHAR)&IPAddr)[3], ((PUCHAR)&IPAddr)[2],
((PUCHAR)&IPAddr)[1], ((PUCHAR)&IPAddr)[0]));
}
else
{
// This is an existing entry and we may only have a read lock
// held on the hash table. Use the entry's spin lock to protect
// us while we monkey with the contents
NdisAcquireSpinLock( &pEntry->lock );
pEntry->pAdapt = pAdapt;
ETH_COPY_NETWORK_ADDRESS( pEntry->macAddr, pMACAddr );
NdisReleaseSpinLock( &pEntry->lock );
}
// Since we got a non-NULL result we must release the table lock
NdisReleaseReadWriteLock( &gIPForwardingTable->tableLock, &LockState );
}
}
else
{
//
// We shouldn't be getting called with non-unicast source IP addresses
//
THROTTLED_DBGPRINT(COMPAT, ("WARNING: Not noting non-unicast source IP address %i.%i.%i.%i from adapter %p!\n",
((PUCHAR)&IPAddr)[3], ((PUCHAR)&IPAddr)[2], ((PUCHAR)&IPAddr)[1], ((PUCHAR)&IPAddr)[0],
pAdapt ));
}
}
PUCHAR
BrdgCompIsBootPPacket(
IN PUCHAR pPacketData,
IN UINT packetLen,
IN PIP_HEADER_INFO piphi
)
/*++
Routine Description:
Determines whether a given packet is a BOOTP packet
Arguments:
pPacketData Pointer to the packet's data buffer
packetLen Amount of data at pPacketDaa
piphi Info about the IP header of this packet
Return Value:
A pointer to the BOOTP payload within the packet, or NULL if the packet was not
a BOOTP Packet.
--*/
{
// After the IP header, there must be enough room for a UDP header and
// a basic BOOTP packet
if( packetLen < ETHERNET_HEADER_SIZE + (UINT)piphi->headerSize + SIZE_OF_UDP_HEADER +
SIZE_OF_BASIC_BOOTP_PACKET)
{
return NULL;
}
// Protocol must be UDP
if( piphi->protocol != UDP_PROTOCOL )
{
return NULL;
}
// Jump to the beginning of the UDP packet by skipping the IP header
pPacketData += ETHERNET_HEADER_SIZE + piphi->headerSize;
// The first two bytes are the source port and should be the
// BOOTP Client port (0x0044) or the BOOTP Server port (0x0043)
if( (pPacketData[0] != 00) ||
((pPacketData[1] != 0x44) && (pPacketData[1] != 0x43)) )
{
return NULL;
}
// The next two bytes are the destination port and should be the BOOTP
// server port (0x0043) or the BOOTP client port (0x44)
if( (pPacketData[2] != 00) ||
((pPacketData[3] != 0x43) && (pPacketData[3] != 0x44)) )
{
return NULL;
}
// Skip ahead to the beginning of the BOOTP packet
pPacketData += SIZE_OF_UDP_HEADER;
// The first byte is the op code and should be 0x01 for a request
// or 0x02 for a reply
if( pPacketData[0] > 0x02 )
{
return NULL;
}
// The next byte is the hardware type and should be 0x01 for Ethernet
if( pPacketData[1] != 0x01 )
{
return NULL;
}
// The next byte is the address length and should be 0x06 for Ethernet
if( pPacketData[2] != 0x06 )
{
return NULL;
}
// Everything checks out; this looks like a BOOTP request packet.
return pPacketData;
}
BOOLEAN
BrdgCompDecodeIPHeader(
IN PUCHAR pHeader,
OUT PIP_HEADER_INFO piphi
)
/*++
Routine Description:
Decodes basic information from the IP header (no options)
Arguments:
pHeader Pointer to an IP header
piphi Receives the info
Return Value:
TRUE: header was valid
FALSE: packet is not an IP packet
--*/
{
// First nibble of the header encodes the packet version, which must be 4.
if( (*pHeader >> 4) != 0x04 )
{
return FALSE;
}
// Next nibble of the header encodes the length of the header in 32-bit words.
// This length must be at least 20 bytes or something is amiss.
piphi->headerSize = (*pHeader & 0x0F) * 4;
if( piphi->headerSize < 20 )
{
return FALSE;
}
// Retrieve the protocol byte (offset 10)
piphi->protocol = pHeader[9];
// The source IP address begins at the 12th byte (most significant byte first)
piphi->ipSource = 0L;
piphi->ipSource |= pHeader[12] << 24;
piphi->ipSource |= pHeader[13] << 16;
piphi->ipSource |= pHeader[14] << 8;
piphi->ipSource |= pHeader[15];
// The destination IP address is next
piphi->ipTarget = 0L;
piphi->ipTarget |= pHeader[16] << 24;
piphi->ipTarget |= pHeader[17] << 16;
piphi->ipTarget |= pHeader[18] << 8;
piphi->ipTarget |= pHeader[19];
return TRUE;
}
BOOLEAN
BrdgCompDecodeARPPacket(
IN PUCHAR pPacketData,
IN UINT dataLen,
OUT PARPINFO pARPInfo
)
/*++
Routine Description:
Decodes an ARP packet
Arguments:
pPacketData Pointer to a packet's data buffer
dataLen Amount of data at pPacketData
pARPInfo Receives the info
Return Value:
TRUE: packet was valid
FALSE: packet is not an ARP packet
--*/
{
SAFEASSERT( pPacketData != NULL );
SAFEASSERT( pARPInfo != NULL );
// We can't process this if it's too small
if( dataLen < SIZE_OF_ARP_PACKET )
{
return FALSE;
}
// Check the ethertype for consistency (0x0806 is ARP)
if( (pPacketData[12] != 0x08) || (pPacketData[13] != 0x06) )
{
return FALSE;
}
// Check the hardware type for consistency (0x0001 is classic Ethernet;
// 802 has a seperate value)
if( (pPacketData[14] != 0x00) || (pPacketData[15] != 0x01) )
{
return FALSE;
}
// Check the protocol type for consistency (0x0800 is IPv4)
if( (pPacketData[16] != 0x08) || (pPacketData[17] != 0x00) )
{
return FALSE;
}
// Check the length of the hardware address for consistency (must be 6 bytes)
if( pPacketData[18] != 0x06 )
{
return FALSE;
}
// Check the length of the protocol address for consistency (must be 4 bytes)
if( pPacketData[19] != 0x04 )
{
return FALSE;
}
// Next two bytes are the operation (0x0001 == request, 0x0002 == reply)
if( pPacketData[20] != 0x00 )
{
return FALSE;
}
if( pPacketData[21] == 0x01 )
{
pARPInfo->type = ArpRequest;
}
else if( pPacketData[21] == 0x02 )
{
pARPInfo->type = ArpReply;
}
else
{
return FALSE;
}
// Next 6 bytes are the sender's MAC address
pARPInfo->macSource[0] = pPacketData[22];
pARPInfo->macSource[1] = pPacketData[23];
pARPInfo->macSource[2] = pPacketData[24];
pARPInfo->macSource[3] = pPacketData[25];
pARPInfo->macSource[4] = pPacketData[26];
pARPInfo->macSource[5] = pPacketData[27];
// Next 4 bytes are the sender's protocol address (most significant byte first)
pARPInfo->ipSource = 0;
pARPInfo->ipSource |= pPacketData[28] << 24;
pARPInfo->ipSource |= pPacketData[29] << 16;
pARPInfo->ipSource |= pPacketData[30] << 8;
pARPInfo->ipSource |= pPacketData[31];
//
// Next 6 bytes are the target's MAC address. For a request, these bytes are
// meaningless.
//
pARPInfo->macTarget[0] = pPacketData[32];
pARPInfo->macTarget[1] = pPacketData[33];
pARPInfo->macTarget[2] = pPacketData[34];
pARPInfo->macTarget[3] = pPacketData[35];
pARPInfo->macTarget[4] = pPacketData[36];
pARPInfo->macTarget[5] = pPacketData[37];
// Next 4 bytes are the sender's protocol address (most significant byte first)
pARPInfo->ipTarget = 0;
pARPInfo->ipTarget |= pPacketData[38] << 24;
pARPInfo->ipTarget |= pPacketData[39] << 16;
pARPInfo->ipTarget |= pPacketData[40] << 8;
pARPInfo->ipTarget |= pPacketData[41];
return TRUE;
}
VOID
BrdgCompTransmitDeferredARP(
IN PVOID pData
)
/*++
Routine Description:
Transmits an ARP packet whose transmission was deferred
Arguments:
pData Info on the deferred ARP packet to
be transmitted
Return Value:
None
--*/
{
PDEFERRED_ARP pda = (PDEFERRED_ARP)pData;
BrdgCompTransmitARPPacket( pda->pTargetAdapt, &pda->ai );
// We incremented this adapter's refcount when setting up the
// function deferral
BrdgReleaseAdapter( pda->pTargetAdapt );
// Free the memory for this request
NdisFreeMemory( pda, sizeof(DEFERRED_ARP), 0 );
}
VOID
BrdgCompTransmitARPPacket(
IN PADAPT pAdapt,
IN PARPINFO pARPInfo
)
/*++
Routine Description:
Transmits an ARP packet
Arguments:
pAdapt Adapter to transmit on
pARPInfo The info to transmit as an ARP packet
Return Value:
None
--*/
{
NDIS_STATUS Status;
UCHAR ARPPacket[SIZE_OF_ARP_PACKET];
SAFEASSERT( pAdapt != NULL );
SAFEASSERT( pARPInfo != NULL );
SAFEASSERT( (pARPInfo->type == ArpRequest) || (pARPInfo->type == ArpReply) );
//
// Fill in the destination MAC address. If the operation is a discovery,
// the target MAC address is the broadcast address. If it is a reply, the
// target MAC address is the target machine's MAC address.
//
if( pARPInfo->type == ArpRequest )
{
ARPPacket[0] = ARPPacket[1] = ARPPacket[2] = ARPPacket[3] =
ARPPacket[4] = ARPPacket[5] = 0xFF;
}
else
{
ARPPacket[0] = pARPInfo->macTarget[0];
ARPPacket[1] = pARPInfo->macTarget[1];
ARPPacket[2] = pARPInfo->macTarget[2];
ARPPacket[3] = pARPInfo->macTarget[3];
ARPPacket[4] = pARPInfo->macTarget[4];
ARPPacket[5] = pARPInfo->macTarget[5];
}
// Fill in the source MAC address
ARPPacket[6] = pARPInfo->macSource[0];
ARPPacket[7] = pARPInfo->macSource[1];
ARPPacket[8] = pARPInfo->macSource[2];
ARPPacket[9] = pARPInfo->macSource[3];
ARPPacket[10] = pARPInfo->macSource[4];
ARPPacket[11] = pARPInfo->macSource[5];
// Next 2 bytes are the EtherType (0x0806 == ARP)
ARPPacket[12] = 0x08;
ARPPacket[13] = 0x06;
// Next 2 bytes are 0x0001 for classic Ethernet
// (802 has a seperate value)
ARPPacket[14] = 0x00;
ARPPacket[15] = 0x01;
// Next 2 bytes indicate that this is ARP for IPv4 traffic
ARPPacket[16] = 0x08;
ARPPacket[17] = 0x00;
// Next byte indicates the length of the hardware address (6 bytes)
ARPPacket[18] = 0x6;
// Next byte indicates the length of the protocol address (4 bytes)
ARPPacket[19] = 0x4;
// Next byte is the operation (1 == request, 2 == reply)
if( pARPInfo->type == ArpRequest )
{
ARPPacket[20] = 0x00;
ARPPacket[21] = 0x01;
}
else
{
ARPPacket[20] = 0x00;
ARPPacket[21] = 0x02;
}
// Next 6 bytes are the sender's MAC address (LSB first)
ARPPacket[22] = pARPInfo->macSource[0];
ARPPacket[23] = pARPInfo->macSource[1];
ARPPacket[24] = pARPInfo->macSource[2];
ARPPacket[25] = pARPInfo->macSource[3];
ARPPacket[26] = pARPInfo->macSource[4];
ARPPacket[27] = pARPInfo->macSource[5];
// Next 4 bytes are the sender's protocol address (most significant byte first)
ARPPacket[28] = (UCHAR)((pARPInfo->ipSource >> 24) & 0xFF);
ARPPacket[29] = (UCHAR)((pARPInfo->ipSource >> 16) & 0xFF);
ARPPacket[30] = (UCHAR)((pARPInfo->ipSource >> 8) & 0xFF);
ARPPacket[31] = (UCHAR)(pARPInfo->ipSource & 0xFF);
//
// Next 6 bytes are the target's MAC address. For a request, these bytes are
// ignored and set to zero.
//
if( pARPInfo->type == ArpRequest )
{
ARPPacket[32] = ARPPacket[33] = ARPPacket[34] = ARPPacket[35] =
ARPPacket[36] = ARPPacket[37] = 0x00;
}
else
{
// MAC address is transmitted LSB first.
ARPPacket[32] = pARPInfo->macTarget[0];
ARPPacket[33] = pARPInfo->macTarget[1];
ARPPacket[34] = pARPInfo->macTarget[2];
ARPPacket[35] = pARPInfo->macTarget[3];
ARPPacket[36] = pARPInfo->macTarget[4];
ARPPacket[37] = pARPInfo->macTarget[5];
}
// Next 4 bytes are the target's protocol address (most significant byte first)
ARPPacket[38] = (UCHAR)((pARPInfo->ipTarget >> 24) & 0xFF);
ARPPacket[39] = (UCHAR)((pARPInfo->ipTarget >> 16) & 0xFF);
ARPPacket[40] = (UCHAR)((pARPInfo->ipTarget >> 8) & 0xFF);
ARPPacket[41] = (UCHAR)(pARPInfo->ipTarget & 0xFF);
// Send the finished packet
Status = BrdgFwdSendBuffer( pAdapt, ARPPacket, sizeof(ARPPacket) );
if( Status != NDIS_STATUS_SUCCESS )
{
THROTTLED_DBGPRINT(COMPAT, ("ARP packet send failed: %08x\n", Status));
}
}
//
// pTargetAdapt comes back with incremented refcount if
// *pbIsRequest == FALSE and *pTargetAdapt != NULL
//
BOOLEAN
BrdgCompPreprocessBootPPacket(
IN PUCHAR pPacketData,
IN PIP_HEADER_INFO piphi,
IN PUCHAR pBootPData, // Actual BOOTP packet
IN PADAPT pAdapt, // Receiving adapt (or NULL for outbound from local machine)
OUT PBOOLEAN pbIsRequest,
OUT PADAPT *ppTargetAdapt, // Only if bIsRequest == FALSE
OUT PUCHAR targetMAC // Only if bIsRequest == FALSE
)
/*++
Routine Description:
Does preliminary processing of a BOOTP packet common to the inbound and outbound case
Arguments:
pPacketData Pointer to a packet's data buffer
piphi Info on the packet's IP header
pBootPData Pointer to the BOOTP payload within the packet
pAdapt Receiving adapter (or NULL if this packet is outbound from
the local machine)
pbIsRequest Receives a flag indicating if this is a BOOTP request
ppTargetAdapt Receives the target adapter this packet should be relayed to
(only valid if bIsRequest == FALSE and return == TRUE)
targetMAC The MAC address this packet should be relayed to (valid under
same conditions as ppTargetAdapt)
Return Value:
TRUE : packet was processed successfully
FALSE : an error occured or something is wrong with the packet
--*/
{
PDHCP_TABLE_ENTRY pEntry;
ULONG xid;
LOCK_STATE LockState;
SAFEASSERT( pbIsRequest != NULL );
SAFEASSERT( ppTargetAdapt != NULL );
SAFEASSERT( targetMAC != NULL );
// Decode the xid (bytes 5 through 8)
xid = 0L;
xid |= pBootPData[4] << 24;
xid |= pBootPData[5] << 16;
xid |= pBootPData[6] << 8;
xid |= pBootPData[7];
// Byte 0 is the operation; 1 for a request, 2 for a reply
if( pBootPData[0] == 0x01 )
{
BOOLEAN bIsNewEntry;
// This is a request. We need to note the correspondence betweeen
// this client's XID and its adapter and MAC address
pEntry = (PDHCP_TABLE_ENTRY)BrdgHashRefreshOrInsert( gPendingDHCPTable, (PUCHAR)&xid, &bIsNewEntry,
&LockState );
if( pEntry != NULL )
{
if( bIsNewEntry )
{
// Initialize the entry.
// The client's hardware address is at offset 29
NdisAllocateSpinLock( &pEntry->lock );
ETH_COPY_NETWORK_ADDRESS( pEntry->requestorMAC, &pBootPData[28] );
pEntry->pRequestorAdapt = pAdapt; // Can be NULL for local machine
DBGPRINT(COMPAT, ("Saw new DHCP XID: %x\n", xid));
}
else
{
//
// An entry already existed for this XID. This is fine if the existing information
// matches what we're trying to record, but it's also possible that two stations
// decided independently to use the same XID, or that the same station changed
// apparent MAC address and/or adapter due to topology changes. Our scheme breaks
// down under these circumstances.
//
// Either way, use the most recent information possible; clobber the existing
// information with the latest.
//
NdisAcquireSpinLock( &pEntry->lock );
#if DBG
{
UINT Result;
ETH_COMPARE_NETWORK_ADDRESSES_EQ( pEntry->requestorMAC, &pBootPData[28], &Result );
// Warn if the data changed, as this probably signals a problem
if( Result != 0 )
{
DBGPRINT(COMPAT, ("[COMPAT] WARNING: Station with MAC address %02x:%02x:%02x:%02x:%02x:%02x is using DHCP XID %x at the same time as station %02x:%02x:%02x:%02x:%02x:%02x!\n",
pBootPData[28], pBootPData[29], pBootPData[30], pBootPData[31], pBootPData[32], pBootPData[33],
xid, pEntry->requestorMAC[0], pEntry->requestorMAC[1], pEntry->requestorMAC[2],
pEntry->requestorMAC[3], pEntry->requestorMAC[4], pEntry->requestorMAC[5] ));
}
else if( pEntry->pRequestorAdapt != pAdapt )
{
DBGPRINT(COMPAT, ("[COMPAT] WARNING: Station with MAC address %02x:%02x:%02x:%02x:%02x:%02x appeared to change from adapter %p to adapter %p during DHCP request!\n",
pBootPData[28], pBootPData[29], pBootPData[30],
pBootPData[31], pBootPData[32], pBootPData[33],
pEntry->pRequestorAdapt, pAdapt ));
}
}
#endif
ETH_COPY_NETWORK_ADDRESS( pEntry->requestorMAC, &pBootPData[28] );
pEntry->pRequestorAdapt = pAdapt; // Can be NULL for local machine
NdisReleaseSpinLock( &pEntry->lock );
}
NdisReleaseReadWriteLock( &gPendingDHCPTable->tableLock, &LockState );
}
else
{
// This packet could not be processed
DBGPRINT(COMPAT, ("Couldn't create table entry for BOOTP packet!\n"));
return FALSE;
}
*pbIsRequest = TRUE;
// ppTargetAdapt and targetMAC are not defined for this case
return TRUE;
}
else if ( pBootPData[0] == 0x02 )
{
// Look up the xid for this transaction to recover the MAC address of the client
pEntry = (PDHCP_TABLE_ENTRY)BrdgHashFindEntry( gPendingDHCPTable, (PUCHAR)&xid, &LockState );
if( pEntry != NULL )
{
NdisAcquireSpinLock( &pEntry->lock );
ETH_COPY_NETWORK_ADDRESS( targetMAC, pEntry->requestorMAC );
*ppTargetAdapt = pEntry->pRequestorAdapt;
NdisReleaseSpinLock( &pEntry->lock );
//
// We will use this adapter outside the table lock. NULL is a permissible
// value that indicates that the local machine is the requestor for
// this xid.
//
if( *ppTargetAdapt != NULL )
{
BrdgAcquireAdapterInLock( *ppTargetAdapt );
}
NdisReleaseReadWriteLock( &gPendingDHCPTable->tableLock, &LockState );
}
if( pEntry != NULL )
{
*pbIsRequest = FALSE;
return TRUE;
}
else
{
DBGPRINT(COMPAT, ("Couldn't find a table entry for XID %x!\n", xid));
return FALSE;
}
}
else
{
// Someone passed us a crummy packet
return FALSE;
}
}
// ===========================================================================
//
// INBOUND PACKET PROCESSING
//
// ===========================================================================
VOID
BrdgCompSendProxyARPRequests(
IN PARPINFO pai,
IN PADAPT pOriginalAdapt,
IN BOOLEAN bSendToNonCompat
)
/*++
Routine Description:
Floods ARP requests out appropriate adapters in response to an ARP request
for which we did not have information about the target.
Arguments:
pai Info on the inbound request
pOriginalAdapt Adapter the request was indicated on
bSendToNonCompat Whether we need to send the request to all adapters
or just compatibility adapters
Return Value:
None
--*/
{
UINT numTargets = 0L, i;
PADAPT pAdapt;
PADAPT SendList[MAX_ADAPTERS];
LOCK_STATE LockState;
SAFEASSERT( pai->type == ArpRequest );
//
// First we need a list of the adapters we intend to send this packet to
//
NdisAcquireReadWriteLock( &gAdapterListLock, FALSE /*Read only*/, &LockState );
// Note each adapter to send to
for( pAdapt = gAdapterList; pAdapt != NULL; pAdapt = pAdapt->Next )
{
// Don't need to acquire the global adapter characteristics lock to read the
// media state because we don't care about the global consistency of the
// adapters' characteristics here
if( (pAdapt != pOriginalAdapt ) && // Don't send on the original adapter
(pAdapt->MediaState == NdisMediaStateConnected) && // Don't send to disconnected adapters
(pAdapt->State == Forwarding) && // Adapter must be in relaying state
(! pAdapt->bResetting) ) // Adapter must not be resetting
{
// If we're not trying to send to every single adapter, make sure
// this one is in compatibility mode
if( bSendToNonCompat || (pAdapt->bCompatibilityMode) )
{
if( numTargets < MAX_ADAPTERS )
{
// We will use this adapter outside the list lock; bump its refcount
BrdgAcquireAdapterInLock(pAdapt);
SendList[numTargets] = pAdapt;
numTargets++;
}
else
{
// Too many copies to send!
SAFEASSERT( FALSE );
}
}
}
}
// Can let go of the adapter list now; we have copied out all the target adapters
// and incremented the refcount for the adapters we will be using.
NdisReleaseReadWriteLock( &gAdapterListLock, &LockState );
for( i = 0; i < numTargets; i++ )
{
// For each adapter, the source MAC address is the adapter's MAC address
ETH_COPY_NETWORK_ADDRESS( pai->macSource, SendList[i]->MACAddr );
// Send the ARP request
BrdgCompTransmitARPPacket( SendList[i], pai );
// Done with this adapter
BrdgReleaseAdapter( SendList[i] );
}
}
VOID
BrdgCompAnswerPendingARP(
IN PHASH_TABLE_ENTRY pEntry,
IN PVOID pData
)
/*++
Routine Description:
Sends a reply to a station that is waiting for an ARP reply. Called when we find
an entry to this effect in our pending-ARP table.
We do not send an ARP reply to the discovering station if it turns out that the
station it is looking for is on the same segment as it.
Arguments:
pEntry The entry in the pending-ARP table telling us about
the station waiting for information
pData The adapter we received an ARP reply on that
triggered this operation
Return Value:
None
--*/
{
PARP_TABLE_ENTRY pate = (PARP_TABLE_ENTRY)pEntry;
PADAPT pReceivedAdapt = (PADAPT)pData;
PARP_TABLE_KEY pKey;
pKey = (PARP_TABLE_KEY)pate->hte.key;
if( pKey->ipReqestor != 0L )
{
PADAPT pOriginalAdapt;
UCHAR originalMAC[ETH_LENGTH_OF_ADDRESS];
// Copy the information out of the table entry
NdisAcquireSpinLock( &pate->lock );
pOriginalAdapt = pate->pOriginalAdapt;
ETH_COPY_NETWORK_ADDRESS( originalMAC, pate->originalMAC );
NdisReleaseSpinLock( &pate->lock );
//
// The station we just discovered must be on a different segment
// from the discovering station for us to send back a reply.
//
if( pOriginalAdapt != pReceivedAdapt )
{
PDEFERRED_ARP pda;
NDIS_STATUS Status;
// The adapters are different. We should send a reply.
// We need to defer the actual transmission of the reply so we
// don't perform it with a lock held on the pending ARP
// table.
Status = NdisAllocateMemoryWithTag( &pda, sizeof(DEFERRED_ARP), 'gdrB' );
if( Status == NDIS_STATUS_SUCCESS )
{
pda->pTargetAdapt = pOriginalAdapt;
// We will use the adapter pointer outside the table lock
BrdgAcquireAdapterInLock( pda->pTargetAdapt );
pda->ai.ipTarget = pKey->ipReqestor;
ETH_COPY_NETWORK_ADDRESS( pda->ai.macTarget, originalMAC );
// Pretend to be the IP address the requestor is looking for
pda->ai.ipSource = pKey->ipTarget;
ETH_COPY_NETWORK_ADDRESS( pda->ai.macSource, pda->pTargetAdapt->MACAddr );
pda->ai.type = ArpReply;
// Queue up the call to BrdgCompTransmitDeferredARP
BrdgDeferFunction( BrdgCompTransmitDeferredARP, pda );
}
else
{
// We failed the allocation. Not much we can do.
DBGPRINT(COMPAT, ("Memory allocation failed in BrdgCompAnswerPendingARP!\n"));
}
}
// else the discovering station and the station we discovered are on the same
// adapter; don't reply.
}
else
{
// This entry exists only to indicate that the local machine is also trying to discover
// this IP address. Ignore it.
}
}
BOOLEAN
BrdgCompIndicateInboundARPReply(
IN PNDIS_PACKET pPacket,
IN PADAPT pAdapt,
IN BOOLEAN bCanRetain,
IN PUCHAR pPacketData,
IN UINT packetLen
)
/*++
Routine Description:
Indicates an ARP reply to the local machine
Arguments:
pPacket The ARP reply packet
pAdapt The receiving adapter
bCanRetain If we can retain the packet
pPacketData The packet's data buffer
packetLen Size of data in buffer
Return Value:
Whether we retained the packet
--*/
{
PUCHAR pTargetMAC;
UINT Result;
if( ! bCanRetain )
{
// We're not allowed to use the packet we're given to indicate.
// Allocate a new one to hold the data.
pPacket = BrdgFwdMakeCompatCopyPacket( pPacket, &pPacketData, &packetLen, FALSE );
if( pPacket == NULL )
{
// We failed to get a packet.
return FALSE;
}
}
// Rewrite the target MAC address in the ARP reply. This portion
// of the packet is at offset 32.
pTargetMAC = pPacketData + 32;
// Check to see if the target MAC address is the adapter's MAC address,
// as it should be
ETH_COMPARE_NETWORK_ADDRESSES_EQ( pTargetMAC, pAdapt->MACAddr, &Result );
if( Result == 0 )
{
// Rewrite the target MAC address to the bridge's MAC address
ETH_COPY_NETWORK_ADDRESS( pTargetMAC, gCompMACAddress );
}
else
{
DBGPRINT(COMPAT, ("WARNING: Mismatch between frame MAC target and ARP payload target in ARP reply!\n"));
}
BrdgCompIndicatePacket( pPacket, pPacketData, pAdapt );
return bCanRetain;
}
BOOLEAN
BrdgCompProcessInboundARPRequest(
IN PARPINFO pai,
IN PNDIS_PACKET pPacket,
IN PADAPT pAdapt,
IN BOOLEAN bCanRetain,
IN PUCHAR pPacketData,
IN UINT packetLen
)
/*++
Routine Description:
Processes an inbound ARP request
Arguments:
pai The decoded info
pPacket The ARP request packet
pAdapt The receiving adapter
bCanRetain If we can retain the packet
pPacketData The packet's data buffer
packetLen Size of data in buffer
Return Value:
Whether we retained the packet
--*/
{
PIP_TABLE_ENTRY pipte;
LOCK_STATE LockState;
BOOLEAN bSendReply = FALSE;
SAFEASSERT( pai->type == ArpRequest );
// See if we already have the target IP address in our table
pipte = (PIP_TABLE_ENTRY)BrdgHashFindEntry( gIPForwardingTable, (PUCHAR)&pai->ipTarget,
&LockState );
if( pipte != NULL )
{
//
// Compare the adapter the target is reachable on to the adapter that
// we got the request on while we still have the table lock.
//
// We should only send an ARP reply if the requesting station is on
// a different adapter than the station he is trying to discover.
//
bSendReply = (BOOLEAN)(pipte->pAdapt != pAdapt);
// Release the table lock.
NdisReleaseReadWriteLock( &gIPForwardingTable->tableLock, &LockState );
}
if( bSendReply )
{
IPADDRESS ipTransmitter = pai->ipSource;
DBGPRINT(COMPAT, ("ANSWERING ARP request for %i.%i.%i.%i\n",
((PUCHAR)&pai->ipTarget)[3], ((PUCHAR)&pai->ipTarget)[2],
((PUCHAR)&pai->ipTarget)[1], ((PUCHAR)&pai->ipTarget)[0] ));
// We found the target station. Use our ARPINFO structure to build a
// reply right back to the sending station.
pai->type = ArpReply;
// Pretend to be the IP station the transmitting station is asking for
pai->ipSource = pai->ipTarget;
// Send to the requesting station
ETH_COPY_NETWORK_ADDRESS( pai->macTarget, pai->macSource );
pai->ipTarget = ipTransmitter;
// Fill in the adapter's own MAC address as the source
ETH_COPY_NETWORK_ADDRESS( pai->macSource, pAdapt->MACAddr );
// Transmit the answer right now!
BrdgCompTransmitARPPacket( pAdapt, pai );
}
else
{
// We didn't find the address the transmitting station is asking for.
// We'll need to proxy the request onto other adapters to discover
// the target station.
// We need to proxy onto regular adapters too if the original adapter
// was compatibility-mode.
BOOLEAN bSendToNonCompat = pAdapt->bCompatibilityMode;
PARP_TABLE_ENTRY pEntry;
LOCK_STATE LockState;
BOOLEAN bIsNewEntry;
ARP_TABLE_KEY atk;
// Record the fact that we've proxied out this request
atk.ipReqestor = pai->ipSource;
atk.ipTarget = pai->ipTarget;
pEntry = (PARP_TABLE_ENTRY)BrdgHashRefreshOrInsert( gPendingARPTable, (PUCHAR)&atk,
&bIsNewEntry, &LockState );
if( pEntry != NULL )
{
if( bIsNewEntry )
{
// This is a new table entry, as expected. Initialize it.
NdisAllocateSpinLock( &pEntry->lock );
pEntry->pOriginalAdapt = pAdapt;
ETH_COPY_NETWORK_ADDRESS( pEntry->originalMAC, pai->macSource );
}
else
{
// There was already a pending-ARP entry for this source and target
// IP address. Refresh the information in the entry on the slim
// chance that the requesting machine has changed apparent MAC
// address or adapter due to topology changes or the like.
NdisAcquireSpinLock( &pEntry->lock );
pEntry->pOriginalAdapt = pAdapt;
ETH_COPY_NETWORK_ADDRESS( pEntry->originalMAC, pai->macSource );
NdisReleaseSpinLock( &pEntry->lock );
}
// We are responsible for releasing the table lock since
// BrdgHashRefreshOrInsert() came back non-NULL
NdisReleaseReadWriteLock( &gPendingARPTable->tableLock, &LockState );
}
// This function twiddles the ARPINFO structure you pass it,
// but that's OK by us.
BrdgCompSendProxyARPRequests( pai, pAdapt, bSendToNonCompat );
}
// Always indicate ARP requests to the local machine so it can note the
// information about the sender and reply if it wants.
return BrdgCompIndicatePacketOrPacketCopy( pPacket, pPacketData, bCanRetain, pAdapt, NULL, NULL );
}
// Returns whether the packet was retained
BOOLEAN
BrdgCompProcessInboundARPPacket(
IN PNDIS_PACKET pPacket,
IN PADAPT pAdapt,
IN BOOLEAN bCanRetain,
IN PUCHAR pPacketData,
IN UINT packetLen
)
/*++
Routine Description:
Processes an inbound ARP packet
Arguments:
pPacket The ARP request packet
pAdapt The receiving adapter
bCanRetain If we can retain the packet
pPacketData The packet's data buffer
packetLen Size of data in buffer
Return Value:
Whether we retained the packet
--*/
{
ARPINFO ai;
if( BrdgCompDecodeARPPacket(pPacketData, packetLen, &ai) )
{
BOOLEAN bRetained;
// Regardless of what kind of packet this is, we always note
// the correspondence between the sender's IP address and
// MAC address.
BrdgCompRefreshOrInsertIPEntry( ai.ipSource, pAdapt, ai.macSource );
// Always see if the information we just learned would let us
// proxy back a reply to a station doing a discovery.
BrdgHashPrefixMultiMatch( gPendingARPTable, (PUCHAR)&ai.ipSource, sizeof(IPADDRESS),
BrdgCompAnswerPendingARP, pAdapt );
if( ai.type == ArpReply )
{
BOOLEAN bIndicateReply;
ARP_TABLE_KEY atk;
LOCK_STATE LockState;
//
// The packet is an ARP reply.
//
// See if there's a table entry indicating that the local machine is trying to
// resolve this target address
atk.ipTarget = ai.ipSource;
atk.ipReqestor = 0L;
if( BrdgHashFindEntry(gPendingARPTable, (PUCHAR)&atk, &LockState) != NULL )
{
bIndicateReply = TRUE;
NdisReleaseReadWriteLock( &gPendingARPTable->tableLock, &LockState );
}
else
{
bIndicateReply = FALSE;
}
// We can't indicate the reply if we don't have the bridge's overall
// MAC address available
if( bIndicateReply && gCompHaveMACAddress )
{
bRetained = BrdgCompIndicateInboundARPReply( pPacket, pAdapt, bCanRetain, pPacketData, packetLen );
}
else
{
bRetained = FALSE;
}
}
else
{
//
// The packet is an ARP request.
//
// This function trashes ai, but that's OK.
bRetained = BrdgCompProcessInboundARPRequest( &ai, pPacket, pAdapt, bCanRetain, pPacketData, packetLen );
}
// Sanity
if( ! bCanRetain )
{
SAFEASSERT( !bRetained );
}
return bRetained;
}
else
{
// The inbound ARP packet is somehow invalid. Process it as a regular packet
// (which should indicate it to the local machine) in case it's carrying something
// we don't understand.
return BrdgCompProcessInboundNonARPPacket( pPacket, pAdapt, bCanRetain, pPacketData, packetLen );
}
}
BOOLEAN
BrdgCompProcessInboundIPPacket(
IN PNDIS_PACKET pPacket,
IN PIP_HEADER_INFO piphi,
IN PADAPT pAdapt,
IN BOOLEAN bCanRetain,
IN PUCHAR pPacketData,
IN UINT packetLen,
IN PPER_ADAPT_EDIT_FUNC pEditFunc,
IN PVOID pData
)
/*++
Routine Description:
Processes an inbound IP packet
Arguments:
pPacket The IP packet
piphi Decoded IP header information
pAdapt The receiving adapter
bCanRetain If we can retain the packet
pPacketData The packet's data buffer
packetLen Size of data in buffer
pEditFunc Optional function that must be called
for each adapter before transmission
pData Context cookie for pEditFunc
Return Value:
Whether we retained the packet
--*/
{
BOOLEAN bRetained;
PIP_TABLE_ENTRY pipte;
LOCK_STATE LockState;
//
// We refresh our forwarding table with each IP packet we see. Find the entry
// for this IP address
//
if( BrdgCompIsUnicastIPAddress(piphi->ipSource) )
{
pipte = (PIP_TABLE_ENTRY)BrdgHashFindEntry( gIPForwardingTable, (PUCHAR)&piphi->ipSource, &LockState );
if( pipte != NULL )
{
BOOLEAN bInfoMatches = FALSE;
//
// Make sure the information in this entry is correct. If it's not, we do NOT clobber the old
// information, nor do we refresh the old entry; we want it to time out in due course.
//
// We only create IP forwarding table entries in response to ARP packets, as that is the only
// officially sanctioned way of learning the correspondence between an IP address and a MAC address.
//
NdisAcquireSpinLock( &pipte->lock );
if( pipte->pAdapt == pAdapt )
{
UINT Result;
ETH_COMPARE_NETWORK_ADDRESSES_EQ( pipte->macAddr, &pPacketData[ETH_LENGTH_OF_ADDRESS], &Result );
if( Result == 0 )
{
bInfoMatches = TRUE;
}
}
NdisReleaseSpinLock( &pipte->lock );
if( bInfoMatches )
{
// Refresh the entry
BrdgHashRefreshEntry( (PHASH_TABLE_ENTRY)pipte );
}
else
{
// The info is mismatched; let the entry fester
THROTTLED_DBGPRINT(COMPAT, ("WARNING: Saw a packet from %i.%i.%i.%i that did not match its forwarding table entry! Table is %02x:%02x:%02x:%02x:%02x:%02x, packet is %02x:%02x:%02x:%02x:%02x:%02x\n",
((PUCHAR)&piphi->ipSource)[3], ((PUCHAR)&piphi->ipSource)[2], ((PUCHAR)&piphi->ipSource)[1],
((PUCHAR)&piphi->ipSource)[0], pipte->macAddr[0], pipte->macAddr[1], pipte->macAddr[2],
pipte->macAddr[3], pipte->macAddr[4], pipte->macAddr[5], pPacketData[ETH_LENGTH_OF_ADDRESS],
pPacketData[ETH_LENGTH_OF_ADDRESS + 1], pPacketData[ETH_LENGTH_OF_ADDRESS + 2], pPacketData[ETH_LENGTH_OF_ADDRESS + 3],
pPacketData[ETH_LENGTH_OF_ADDRESS + 4], pPacketData[ETH_LENGTH_OF_ADDRESS + 5] ));
}
NdisReleaseReadWriteLock( &gIPForwardingTable->tableLock, &LockState );
}
else
{
// CONSIDER: Make a forwarding table entry here? Are there cases where this would be undesirable?
//
//THROTTLED_DBGPRINT(COMPAT, ("WARNING: Saw IP packet before ARP from %i.%i.%i.%i\n",
// ((PUCHAR)&piphi->ipSource)[3], ((PUCHAR)&piphi->ipSource)[2], ((PUCHAR)&piphi->ipSource)[1],
// ((PUCHAR)&piphi->ipSource)[0] ));
}
}
else
{
//
// The source IP address on this packet is to be ignored.
// Just about the only thing we expect is the zero address
//
if( piphi->ipSource != 0L )
{
THROTTLED_DBGPRINT(COMPAT, ("Saw a packet with a non-unicast source IP address %i.%i.%i.%i on adapter %p!\n",
((PUCHAR)&piphi->ipSource)[3], ((PUCHAR)&piphi->ipSource)[2], ((PUCHAR)&piphi->ipSource)[1],
((PUCHAR)&piphi->ipSource)[0], pAdapt));
}
}
//
// Now that we have refreshed the IP forwarding table entry for the sending station,
// figure out where to send the packet based on its destination.
//
// The target MAC address is the first thing in the Ethernet frame
if( ETH_IS_BROADCAST(pPacketData) || ETH_IS_MULTICAST(pPacketData) )
{
//
// Packet is broadcast / multicast at the Ethernet level.
//
// We need to send it on all other compatibility-mode adapters
// (and regular adapters too if this came in on a compatibility
// adapter)
//
bRetained = BrdgCompSendToMultipleAdapters( pPacket, pAdapt, pPacketData,
bCanRetain && (!pAdapt->bCompatibilityMode), // TRUE == can retain
// If this is a compat adapter, send to all adapters
pAdapt->bCompatibilityMode,
pEditFunc, pData );
if( (!bCanRetain) || (pAdapt->bCompatibilityMode) )
{
SAFEASSERT( !bRetained );
}
if( pAdapt->bCompatibilityMode )
{
// It's our job to indicate this packet.
bRetained = BrdgCompIndicatePacketOrPacketCopy(pPacket, pPacketData, bCanRetain, pAdapt, pEditFunc, pData );
}
// else the regular-mode processing will indicate this frame
}
else
{
//
// Packet is unicast at the Ethernet level. Verify that it's targeted at a unicast IP address.
//
BOOLEAN bIsUnicast = BrdgCompIsUnicastIPAddress(piphi->ipTarget);
if( !bIsUnicast )
{
//
// Strange; this packet is unicast to us at the Ethernet level but is for a
// broadcast, multicast or zero target IP address.
//
// We will have no entries for this in our forwarding table, and we assume the
// IP stack will have no next-hop information for this address, so we just indicate
// it right away and let the IP driver figure out what this thing is.
//
THROTTLED_DBGPRINT(COMPAT, ("Packet with non-unicast target IP address %i.%i.%i.%i received in unicast Ethernet frame on adapter %p",
((PUCHAR)&piphi->ipTarget)[3], ((PUCHAR)&piphi->ipTarget)[2], ((PUCHAR)&piphi->ipTarget)[1],
((PUCHAR)&piphi->ipTarget)[0], pAdapt ));
// Process the packet below as if it were unicast to us.
}
if( (!bIsUnicast) || BrdgCompIsLocalIPAddress(piphi->ipTarget) )
{
//
// It's only appropriate for us to indicate the packet if the adapter
// on which the packet was received is a compatibility-mode adapter.
// Otherwise, the packet is indicated along regular codepaths without
// the need to edit it in any way.
//
if( pAdapt->bCompatibilityMode )
{
bRetained = BrdgCompIndicatePacketOrPacketCopy(pPacket, pPacketData, bCanRetain, pAdapt, pEditFunc, pData );
}
else
{
bRetained = FALSE;
}
}
else
{
//
// This packet is not for us. Look it up in our forwarding table to see if
// we know where the target machine is.
//
pipte = (PIP_TABLE_ENTRY)BrdgHashFindEntry( gIPForwardingTable, (PUCHAR)&piphi->ipTarget, &LockState );
if( pipte != NULL )
{
PADAPT pTargetAdapt;
UCHAR targetMAC[ETH_LENGTH_OF_ADDRESS];
// Copy out the information we need within the spin lock
NdisAcquireSpinLock( &pipte->lock );
pTargetAdapt = pipte->pAdapt;
ETH_COPY_NETWORK_ADDRESS( targetMAC, pipte->macAddr );
NdisReleaseSpinLock( &pipte->lock );
// We will use the adapter outside the table lock
BrdgAcquireAdapterInLock( pTargetAdapt );
// Done with the table entry
NdisReleaseReadWriteLock( &gIPForwardingTable->tableLock, &LockState );
// It is strange to receive traffic that needs to be retransmitted on the same adapter.
if( pTargetAdapt == pAdapt )
{
THROTTLED_DBGPRINT(COMPAT, ("WARNING: retransmitting traffic for %i.%i.%i.%i on Adapter %p\n",
((PUCHAR)&piphi->ipTarget)[3], ((PUCHAR)&piphi->ipTarget)[2],
((PUCHAR)&piphi->ipTarget)[1], ((PUCHAR)&piphi->ipTarget)[0], pAdapt));
}
bRetained = BrdgCompEditAndSendPacketOrPacketCopy(pPacket, pPacketData, bCanRetain, targetMAC,
pTargetAdapt, pEditFunc, pData );
BrdgReleaseAdapter( pTargetAdapt );
}
else
{
IPADDRESS ipNextHop;
//
// This packet was unicast to us at the Ethernet level but is for an IP address
// that isn't in our forwarding table. Assuming the transmitting station had a
// good reason for sending us this packet, and that our forward tables are working
// correctly and aren't corrupt, two possibilities remain:
//
// a) The packet needs to be routed off the subnet by the local machine (this is
// why the target IP address doesn't appear in our tables; one does not ARP for
// an off-subnet machine before transmitting to it; one sends packets to one's
// default gateway)
//
// b) The packet needs to be routed off the subnet by some other machine. Unfortunately
// we don't know which one, since all packets that come to us have the same target
// MAC address and the target IP address is no use; what we really want is the
// first-hop IP address.
//
// To sort this out, we call TCPIP to do a route lookup for the packet's target IP
// address. If the resulting next-hop IP address appears in our forwarding table
// (i.e., it is reachable on the bridged network), we send the packet on to that
// destination. If TCPIP gives us no first-hop, or the first-hop isn't in our table
// (as would occur if the next hop is reachable through some non-bridged adapter)
// we indicate the packet so TCPIP can deal with it. In such a case, the packet is
// either not routable (and IP will drop it) or was meant to be routed by the local
// machine (in which case IP will route it to its next hop).
//
if( BrdgCompGetNextHopForTarget(piphi->ipTarget, &ipNextHop) )
{
// We got a next-hop address. See if that address is in our forwarding table.
pipte = (PIP_TABLE_ENTRY)BrdgHashFindEntry( gIPForwardingTable, (PUCHAR)&ipNextHop, &LockState );
if( pipte != NULL )
{
PADAPT pNextHopAdapt;
UCHAR nextHopMAC[ETH_LENGTH_OF_ADDRESS];
// Must copy out the information inside the entry's spin lock
NdisAcquireSpinLock( &pipte->lock );
pNextHopAdapt = pipte->pAdapt;
ETH_COPY_NETWORK_ADDRESS( nextHopMAC, pipte->macAddr );
NdisReleaseSpinLock( &pipte->lock );
// We will use the adapter outside the table lock
BrdgAcquireAdapterInLock( pNextHopAdapt );
// We're done with the forwarding table
NdisReleaseReadWriteLock( &gIPForwardingTable->tableLock, &LockState );
// Something strange is afoot if the next hop is reachable through the same adapter
if( pNextHopAdapt == pAdapt )
{
THROTTLED_DBGPRINT(COMPAT, ("WARNING: retransmitting traffic for %i.%i.%i.%i on Adapter %p to next-hop %i.%i.%i.%i\n",
((PUCHAR)&piphi->ipTarget)[3], ((PUCHAR)&piphi->ipTarget)[2],
((PUCHAR)&piphi->ipTarget)[1], ((PUCHAR)&piphi->ipTarget)[0], pAdapt,
((PUCHAR)&ipNextHop)[3], ((PUCHAR)&ipNextHop)[2],
((PUCHAR)&ipNextHop)[1], ((PUCHAR)&ipNextHop)[0]));
}
// Send the packet out the appropriate adapter
bRetained = BrdgCompEditAndSendPacketOrPacketCopy( pPacket, pPacketData, bCanRetain, nextHopMAC,
pNextHopAdapt, pEditFunc, pData );
BrdgReleaseAdapter( pNextHopAdapt );
}
else
{
//
// The next hop isn't in our forwarding table. This means that the next hop machine
// isn't reachable on the bridged network, unless we're in a screwy state with
// respect to the transmitting machine (i.e., it never ARPed for the router it
// wanted because it had a static ARP entry or some other such weirdness).
// At any rate, conclude at this point that the local machine should handle the packet.
//
bRetained = BrdgCompIndicatePacketOrPacketCopy( pPacket, pPacketData, bCanRetain, pAdapt, pEditFunc, pData );
}
}
else
{
//
// No usable next-hop information. Conclude that the packet should be handled by
// the local machine. Indicate.
//
bRetained = BrdgCompIndicatePacketOrPacketCopy( pPacket, pPacketData, bCanRetain, pAdapt, pEditFunc, pData );
}
}
}
}
if( !bCanRetain )
{
SAFEASSERT( !bRetained );
}
return bRetained;
}
// Returns whether the packet was retained
BOOLEAN
BrdgCompProcessInboundNonARPPacket(
IN PNDIS_PACKET pPacket,
IN PADAPT pAdapt,
IN BOOLEAN bCanRetain,
IN PUCHAR pPacketData,
IN UINT packetLen
)
/*++
Routine Description:
Processes an inbound non-ARP packet
Arguments:
pPacket The packet
pAdapt The receiving adapter
bCanRetain If we can retain the packet
pPacketData The packet's data buffer
packetLen Size of data in buffer
Return Value:
Whether we retained the packet
--*/
{
BOOLEAN bRetained = FALSE;
IP_HEADER_INFO iphi;
SAFEASSERT( (pPacket != NULL) && (pPacketData != NULL) );
if( packetLen >= MINIMUM_SIZE_FOR_IP )
{
if( BrdgCompDecodeIPHeader(pPacketData + ETHERNET_HEADER_SIZE, &iphi) )
{
PUCHAR pBootPData;
pBootPData = BrdgCompIsBootPPacket( pPacketData, packetLen, &iphi );
if ( pBootPData != NULL )
{
// This is a BOOTP packet; do BOOTP-specific processing
bRetained = BrdgCompProcessInboundBootPPacket( pPacket, pAdapt, bCanRetain, pPacketData, packetLen, &iphi, pBootPData );
}
else
{
// Do generic IP processing
bRetained = BrdgCompProcessInboundIPPacket(pPacket, &iphi, pAdapt, bCanRetain, pPacketData, packetLen, NULL, NULL);
}
}
}
if( !bCanRetain )
{
SAFEASSERT( !bRetained );
}
return bRetained;
}
BOOLEAN
BrdgCompProcessInboundBootPPacket(
IN PNDIS_PACKET pPacket,
IN PADAPT pAdapt,
IN BOOLEAN bCanRetain,
IN PUCHAR pPacketData,
IN UINT packetLen,
IN PIP_HEADER_INFO piphi,
IN PUCHAR pBootPData
)
/*++
Routine Description:
Processes an inbound BOOTP packet
Arguments:
pPacket The packet
pAdapt The receiving adapter
bCanRetain If we can retain the packet
pPacketData The packet's data buffer
packetLen Size of data in buffer
piphi Decoded IP header info
pBootPData Pointer to BOOTP payload within the packet
Return Value:
Whether we retained the packet
--*/
{
UCHAR targetMAC[ETH_LENGTH_OF_ADDRESS];
BOOLEAN bIsRequest;
PADAPT pTargetAdapt = NULL;
if( BrdgCompPreprocessBootPPacket(pPacketData, piphi, pBootPData, pAdapt, &bIsRequest, &pTargetAdapt, targetMAC) )
{
if( bIsRequest )
{
//
// This is a request packet. It can be processed as a regular inbound IP packet,
// subject to appropriate rewriting at each step.
//
SAFEASSERT( pTargetAdapt == NULL );
return BrdgCompProcessInboundIPPacket( pPacket, piphi, pAdapt, bCanRetain, pPacketData, packetLen,
BrdgCompRewriteBootPPacketForAdapt, piphi );
}
else
{
BOOLEAN bUsingCopyPacket, bRetained;
//
// This is a reply packet. We can rewrite it once for all purposes.
//
// Make a copy if necessary so we can edit.
if( ! bCanRetain )
{
pPacket = BrdgFwdMakeCompatCopyPacket( pPacket, &pPacketData, &packetLen, FALSE );
if( (pPacket == NULL) || (pPacketData == NULL) )
{
// Free the target adapter before bailing out
if( pTargetAdapt != NULL )
{
BrdgReleaseAdapter( pTargetAdapt );
}
return FALSE;
}
bUsingCopyPacket = TRUE;
}
else
{
bUsingCopyPacket = FALSE;
}
// Rewrite the packet to the retrieved MAC address.
BrdgCompRewriteBootPClientAddress( pPacketData, piphi, targetMAC );
if( pTargetAdapt != NULL )
{
// If the reply was sent by broadcast, respect this, even if we think
// we know the unicast MAC address of the target.
if( ETH_IS_BROADCAST(pPacketData) || ETH_IS_MULTICAST(pPacketData) )
{
// Broadcast around the reply
bRetained = BrdgCompSendToMultipleAdapters( pPacket, pAdapt, pPacketData, TRUE, pAdapt->bCompatibilityMode,
NULL, NULL );
}
else
{
// Unicast back the reply
ETH_COPY_NETWORK_ADDRESS( pPacketData, targetMAC );
BrdgCompSendPacket( pPacket, pPacketData, pTargetAdapt );
bRetained = TRUE;
}
// The target adapter came back with an incremented refcount
BrdgReleaseAdapter( pTargetAdapt );
}
else
{
// This reply is for the local machine!
UINT Result;
// The recorded MAC address should be the MAC address of the bridge.
SAFEASSERT( gCompHaveMACAddress );
ETH_COMPARE_NETWORK_ADDRESSES_EQ( targetMAC, gCompMACAddress, &Result );
SAFEASSERT( Result == 0 );
// Indicate the edited reply
BrdgCompIndicatePacket( pPacket, pPacketData, pAdapt );
bRetained = TRUE;
}
if( bUsingCopyPacket )
{
if( !bRetained )
{
// Our copy packet was not retained.
BrdgFwdReleaseCompatPacket( pPacket );
}
// If we were using a copy packet, we definitely did not retain the packet passed in
bRetained = FALSE;
}
return bRetained;
}
}
else
{
// Something went wrong in the preprocessing.
return FALSE;
}
}
// ===========================================================================
//
// OUTBOUND PACKET PROCESSING
//
// ===========================================================================
BOOLEAN
BrdgCompProcessOutboundNonARPPacket(
IN PNDIS_PACKET pPacket,
IN PUCHAR pPacketData,
IN UINT packetLen,
IN PADAPT pTargetAdapt
)
/*++
Routine Description:
Processes an outbound non-ARP packet. This function may retain the
given packet if it wishes.
Arguments:
pPacket The packet
pPacketData The packet's data buffer
packetLen Length of the data buffer
pTargetAdapt The target adapter, as determined
by a previous MAC-table lookup
Return Value:
Whether we retained the packet
--*/
{
IP_HEADER_INFO iphi;
BOOLEAN bRetained = FALSE, bIsMulticast;
if( packetLen >= MINIMUM_SIZE_FOR_IP &&
BrdgCompDecodeIPHeader(pPacketData + ETHERNET_HEADER_SIZE, &iphi) )
{
PUCHAR pBootPData;
pBootPData = BrdgCompIsBootPPacket(pPacketData, packetLen, &iphi);
if( pBootPData != NULL )
{
// Do special BOOTP processing
return BrdgCompProcessOutboundBootPPacket( pPacket, pPacketData, packetLen, pTargetAdapt, pBootPData, &iphi );
}
}
bIsMulticast = (BOOLEAN)(ETH_IS_BROADCAST(pPacketData) || ETH_IS_MULTICAST(pPacketData));
// We edit and transmit the packet even if it doesn't appear to be IP.
if( (pTargetAdapt == NULL) || bIsMulticast )
{
// Don't expect a target adapter when the outbound frame is broadcast
if( bIsMulticast )
{
SAFEASSERT( pTargetAdapt == NULL );
}
// We need to send this packet to all compat adapters.
bRetained = BrdgCompSendToMultipleAdapters( pPacket, NULL, pPacketData, TRUE, /*Can retain*/
FALSE /* Compat-mode adapters only*/,
NULL /*No editing function*/, NULL );
}
else
{
BrdgCompSendPacket( pPacket, pPacketData, pTargetAdapt );
// The packet has been handed off to the forwarding engine
bRetained = TRUE;
}
return bRetained;
}
BOOLEAN
BrdgCompProcessOutboundARPPacket(
IN PNDIS_PACKET pPacket,
IN PUCHAR pPacketData,
IN UINT packetLen,
IN PADAPT pTargetAdapt
)
/*++
Routine Description:
Processes an outbound ARP packet. This function may retain the
given packet if it wishes.
Arguments:
pPacket The packet
pPacketData The packet's data buffer
packetLen Length of the data buffer
pTargetAdapt The target adapter, as determined
by a previous MAC-table lookup
Return Value:
Whether we retained the packet
--*/
{
BOOLEAN bRetained = FALSE, bIsMulticast;
ARPINFO ai;
if( packetLen < SIZE_OF_ARP_PACKET )
{
// Packet is too small to be ARP; process as non-ARP
return BrdgCompProcessOutboundNonARPPacket( pPacket, pPacketData, packetLen, pTargetAdapt );
}
if( BrdgCompDecodeARPPacket(pPacketData, packetLen, &ai) )
{
if( ai.type == ArpRequest )
{
ARP_TABLE_KEY atk;
PARP_TABLE_ENTRY pEntry;
LOCK_STATE LockState;
BOOLEAN bIsNewEntry;
// Note that the local machine is trying to resolve this target IP address by
// inserting or refreshing an entry with 0.0.0.0 as the requestor
atk.ipReqestor = 0L; // Special value for local machine
atk.ipTarget = ai.ipTarget;
pEntry = (PARP_TABLE_ENTRY)BrdgHashRefreshOrInsert( gPendingARPTable, (PUCHAR)&atk, &bIsNewEntry,
&LockState );
if( pEntry != NULL )
{
if( bIsNewEntry)
{
// Even though this entry isn't really ever used, initialize it so
// functions walking across table entries don't get confused or crash.
NdisAllocateSpinLock( &pEntry->lock );
pEntry->pOriginalAdapt = NULL;
pEntry->originalMAC[0] = pEntry->originalMAC[1] = pEntry->originalMAC[2] =
pEntry->originalMAC[3] = pEntry->originalMAC[4] =pEntry->originalMAC[5] = 0;
}
NdisReleaseReadWriteLock( &gPendingARPTable->tableLock, &LockState );
}
}
// Check if this frame looks like it should be relayed to all compat adapters
bIsMulticast = (BOOLEAN)(ETH_IS_BROADCAST(pPacketData) || ETH_IS_MULTICAST(pPacketData));
if( (pTargetAdapt == NULL) || bIsMulticast )
{
// Don't expect a target adapter when the outbound frame is broadcast
if( bIsMulticast )
{
SAFEASSERT( pTargetAdapt == NULL );
}
// We need to send this packet to all compat adapters.
bRetained = BrdgCompSendToMultipleAdapters( pPacket, NULL, pPacketData, TRUE,/*Can retain*/
FALSE /* Compat-mode adapters only*/,
BrdgCompRewriteOutboundARPPacket, NULL );
}
else
{
// Edit the packet for the outbound adapter
BrdgCompRewriteOutboundARPPacket( pPacketData, pTargetAdapt, NULL );
// Send the packet on its way
BrdgCompSendPacket( pPacket, pPacketData, pTargetAdapt );
// The packet has been handed off to the forwarding engine
bRetained = TRUE;
}
}
else
{
// The packet didn't look like an ARP packet. Process it otherwise.
return BrdgCompProcessOutboundNonARPPacket( pPacket, pPacketData, packetLen, pTargetAdapt );
}
return bRetained;
}
BOOLEAN
BrdgCompProcessOutboundBootPPacket(
IN PNDIS_PACKET pPacket,
IN PUCHAR pPacketData,
IN UINT packetLen,
IN PADAPT pTargetAdapt,
IN PUCHAR pBootPData,
IN PIP_HEADER_INFO piphi
)
/*++
Routine Description:
Processes an outbound BOOTP packet. This function may retain the
given packet if it wishes.
Arguments:
pPacket The packet
pPacketData The packet's data buffer
packetLen Length of the data buffer
pTargetAdapt The target adapter, as determined
by a previous MAC-table lookup
pBootPData Pointer to the BOOTP payload within the packet
piphi Decoded info from the packet's IP header
Return Value:
Whether we retained the packet
--*/
{
BOOLEAN bIsRequest, bRetained;
PADAPT pRequestorAdapt = NULL;
UCHAR macRequestor[ETH_LENGTH_OF_ADDRESS];
if( BrdgCompPreprocessBootPPacket( pPacketData, piphi, pBootPData, NULL, &bIsRequest, &pRequestorAdapt, macRequestor ) )
{
if( bIsRequest )
{
//
// This is a BOOTP request. Transmit as appropriate but rewrite for each adapter.
//
SAFEASSERT( pRequestorAdapt == NULL );
if( (pTargetAdapt == NULL) || ETH_IS_BROADCAST(pPacketData) || ETH_IS_MULTICAST(pPacketData) )
{
bRetained = BrdgCompSendToMultipleAdapters( pPacket, NULL, pPacketData, TRUE, FALSE, BrdgCompRewriteBootPPacketForAdapt,
piphi );
}
else
{
// Rewrite the packet before transmission
BrdgCompRewriteBootPPacketForAdapt( pPacketData, pTargetAdapt, piphi );
// Unicast out the packet
BrdgCompSendPacket( pPacket, pPacketData, pTargetAdapt );
bRetained = TRUE;
}
}
else
{
//
// This is a BOOTP reply. No editing is necessary; just send it.
//
if( (pTargetAdapt == NULL) || ETH_IS_BROADCAST(pPacketData) || ETH_IS_MULTICAST(pPacketData) )
{
bRetained = BrdgCompSendToMultipleAdapters( pPacket, NULL, pPacketData, TRUE, FALSE, NULL, NULL );
}
else
{
UINT Result;
// Verify for sanity that the target we're sending it to matches the information
// in the table.
ETH_COMPARE_NETWORK_ADDRESSES_EQ( macRequestor, pPacketData, &Result );
SAFEASSERT( Result == 0 );
SAFEASSERT( pTargetAdapt == pRequestorAdapt );
// This packet is unicast, probably part of an established conversation with a
// DHCP server.
BrdgCompSendPacket( pPacket, pPacketData, pTargetAdapt );
bRetained = TRUE;
}
// This comes back with its refcount incremented
if( pRequestorAdapt != NULL )
{
BrdgReleaseAdapter( pRequestorAdapt );
}
}
}
else
{
// Preprocessing failed
bRetained = FALSE;
}
return bRetained;
}