windows-nt/Source/XPSP1/NT/net/sfm/atalk/sys/ddp.c

3775 lines
86 KiB
C
Raw Permalink Normal View History

2020-09-26 03:20:57 -05:00
/*++
Copyright (c) 1992 Microsoft Corporation
Module Name:
ddp.c
Abstract:
This module implements the ddp protocol.
Author:
Jameel Hyder (jameelh@microsoft.com)
Nikhil Kamkolkar (nikhilk@microsoft.com)
Revision History:
19 Jun 1992 Initial Version
Notes: Tab stop: 4
--*/
#include <atalk.h>
#pragma hdrstop
#define FILENUM DDP
#ifdef ALLOC_PRAGMA
#pragma alloc_text(PAGEINIT, AtalkDdpInitCloseAddress)
#pragma alloc_text(PAGEINIT, atalkDdpInitCloseComplete)
#pragma alloc_text(PAGEINIT, AtalkInitDdpOpenStaticSockets)
#endif
//
// AtalkDdpOpenAddress()
// This opens a DDP address object and returns a pointer to it in
// DdpAddrObject. The AppletalkSocket is created and will be the
// address of this object.
//
ATALK_ERROR
AtalkDdpOpenAddress(
IN PPORT_DESCRIPTOR pPortDesc,
IN BYTE Socket,
IN OUT PATALK_NODEADDR pDesiredNode OPTIONAL,
IN DDPAO_HANDLER pSktHandler OPTIONAL,
IN PVOID pSktCtx OPTIONAL,
IN BYTE Protocol OPTIONAL,
IN PATALK_DEV_CTX pDevCtx,
OUT PDDP_ADDROBJ * ppDdpAddr
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
PATALK_NODE pAtalkNode, pNextNode;
PDDP_ADDROBJ pDdpAddr = NULL;
ATALK_ERROR error = ATALK_NO_ERROR;
DBGPRINT(DBG_COMP_DDP, DBG_LEVEL_INFO,
("AtalkDdpOpenAddress: Opening DDP socket %d on port %lx\n",
Socket, pPortDesc));
do
{
// Verify the Appletalk socket number
if (!IS_VALID_SOCKET(Socket))
{
error = ATALK_SOCKET_INVALID;
break;
}
// Allocate space for the address object
if ((pDdpAddr = AtalkAllocZeroedMemory(sizeof(DDP_ADDROBJ))) == NULL)
{
error = ATALK_RESR_MEM;
break;
}
if (pDesiredNode != NULL)
{
AtalkNodeReferenceByAddr(pPortDesc,
pDesiredNode,
&pAtalkNode,
&error);
if (ATALK_SUCCESS(error))
{
ASSERT(VALID_ATALK_NODE(pAtalkNode));
// try to allocate the socket on this node.
error = atalkDdpAllocSocketOnNode(pPortDesc,
Socket,
pAtalkNode,
pSktHandler,
pSktCtx,
Protocol,
pDevCtx,
pDdpAddr);
// Remove the reference on the node.
AtalkNodeDereference(pAtalkNode);
}
break;
}
else
{
KIRQL OldIrql;
// We can open the socket on any one of our
// nodes.
// We first get the port lock
// Then we go through all the nodes on the port
// reference a node, let go of the port lock
// acquire the node lock, try to open the socket
// on it. If we succeed, we return, else we fail.
ACQUIRE_SPIN_LOCK(&pPortDesc->pd_Lock, &OldIrql);
do
{
// Try to get a referenced node. null if no non-closing node found.
AtalkNodeReferenceNextNc(pPortDesc->pd_Nodes, &pAtalkNode, &error);
while (ATALK_SUCCESS(error))
{
// We do not use this node if it is orphaned or if
// it is a router node and we are trying to open a
// user socket (dynamic or non-reserved).
if (((pAtalkNode->an_Flags & (AN_ORPHAN_NODE | AN_ROUTER_NODE)) == 0) ||
((Socket != UNKNOWN_SOCKET) && (Socket <= LAST_APPLE_RESD_SOCKET)))
{
RELEASE_SPIN_LOCK(&pPortDesc->pd_Lock, OldIrql);
// try to allocate the socket on this node. PortLock held!
error = atalkDdpAllocSocketOnNode(pPortDesc,
Socket,
pAtalkNode,
pSktHandler,
pSktCtx,
Protocol,
pDevCtx,
pDdpAddr);
if (ATALK_SUCCESS(error))
{
// Done! Break out of the loop. Remove the ref we added.
AtalkNodeDereference(pAtalkNode);
ACQUIRE_SPIN_LOCK(&pPortDesc->pd_Lock, &OldIrql);
break;
}
ACQUIRE_SPIN_LOCK(&pPortDesc->pd_Lock, &OldIrql);
}
// Gotta get to the next node.
AtalkNodeReferenceNextNc(pAtalkNode->an_Next, &pNextNode, &error);
RELEASE_SPIN_LOCK(&pPortDesc->pd_Lock, OldIrql);
AtalkNodeDereference(pAtalkNode);
ACQUIRE_SPIN_LOCK(&pPortDesc->pd_Lock, &OldIrql);
pAtalkNode = pNextNode;
}
} while (FALSE);
RELEASE_SPIN_LOCK(&pPortDesc->pd_Lock, OldIrql);
}
} while (FALSE);
if (ATALK_SUCCESS(error))
{
if (ppDdpAddr != NULL)
*ppDdpAddr = pDdpAddr;
}
else
{
DBGPRINT(DBG_COMP_DDP, DBG_LEVEL_ERR,
("AtalkDdpOpenAddress: failed with error %lx\n", error));
if (pDdpAddr)
AtalkFreeMemory(pDdpAddr);
}
return error;
}
ATALK_ERROR
AtalkDdpCleanupAddress(
IN PDDP_ADDROBJ pDdpAddr
)
/*++
Routine Description:
Releases any pending requests on the address.
Arguments:
Return Value:
--*/
{
KIRQL OldIrql;
// Free all pending ddp reads.
ACQUIRE_SPIN_LOCK(&pDdpAddr->ddpao_Lock, &OldIrql);
while (!IsListEmpty(&pDdpAddr->ddpao_ReadLinkage))
{
PLIST_ENTRY p;
PDDP_READ pRead;
p = RemoveHeadList(&pDdpAddr->ddpao_ReadLinkage);
RELEASE_SPIN_LOCK(&pDdpAddr->ddpao_Lock, OldIrql);
pRead = CONTAINING_RECORD(p, DDP_READ, dr_Linkage);
(*pRead->dr_RcvCmp)(ATALK_FAILURE,
pRead->dr_OpBuf,
0,
NULL,
pRead->dr_RcvCtx);
AtalkDdpDereference(pDdpAddr);
AtalkFreeMemory(pRead);
ACQUIRE_SPIN_LOCK(&pDdpAddr->ddpao_Lock, &OldIrql);
}
RELEASE_SPIN_LOCK(&pDdpAddr->ddpao_Lock, OldIrql);
return ATALK_NO_ERROR;
}
ATALK_ERROR
AtalkDdpCloseAddress(
IN PDDP_ADDROBJ pDdpAddr,
IN GENERIC_COMPLETION pCloseCmp OPTIONAL,
IN PVOID pCloseCtx OPTIONAL
)
/*++
Routine Description:
Called to close an open ddp address object. This will complete after all
requests on the object are done/cancelled, and the Appletalk Socket is
closed.
Arguments:
Return Value:
--*/
{
KIRQL OldIrql;
BOOLEAN closing;
BOOLEAN pnpZombie;
ASSERT (VALID_DDP_ADDROBJ(pDdpAddr));
ACQUIRE_SPIN_LOCK(&pDdpAddr->ddpao_Lock, &OldIrql);
closing = ((pDdpAddr->ddpao_Flags & DDPAO_CLOSING) != 0) ? TRUE : FALSE;
pnpZombie = ((pDdpAddr->ddpao_Flags & DDPAO_SOCK_PNPZOMBIE) != 0) ? TRUE: FALSE;
ASSERTMSG("DdpAddr is already closing!\n", ((!closing) || pnpZombie));
if (!closing)
{
// Set the closing flag and remember the completion routines.
pDdpAddr->ddpao_Flags |= DDPAO_CLOSING;
pDdpAddr->ddpao_CloseComp = pCloseCmp;
pDdpAddr->ddpao_CloseCtx = pCloseCtx;
}
RELEASE_SPIN_LOCK(&pDdpAddr->ddpao_Lock, OldIrql);
if (!closing)
{
// Release any pending reads
AtalkDdpCleanupAddress(pDdpAddr);
AtalkNbpCloseSocket(pDdpAddr);
// Remove reference for the creation
AtalkDdpDereference(pDdpAddr);
}
// is this socket in a zombie state? if so, deref it so it'll get freed
if (pnpZombie)
{
ASSERT(closing == TRUE);
DBGPRINT(DBG_COMP_DDP, DBG_LEVEL_ERR,
("AtalkDdpClose..: zombie addr %lx (%lx) deref'ed\n",
pDdpAddr,pDdpAddr->ddpao_Handler));
AtalkDdpDereference(pDdpAddr);
}
return ATALK_PENDING;
}
ATALK_ERROR
AtalkDdpPnPSuspendAddress(
IN PDDP_ADDROBJ pDdpAddr
)
/*++
Routine Description:
Called to "suspend" an open ddp address object. This is called during PnP,
to "suspend" "external" sockets. The nodes associated with this address are
released (deref'ed) and this socket is cleaned up but kept around because
the client might close it. When the client does close it, it gets freed.
Arguments:
Return Value:
--*/
{
KIRQL OldIrql;
PATALK_NODE pNode = pDdpAddr->ddpao_Node;
BOOLEAN closing;
ASSERT (VALID_DDP_ADDROBJ(pDdpAddr));
ACQUIRE_SPIN_LOCK(&pDdpAddr->ddpao_Lock, &OldIrql);
closing = ((pDdpAddr->ddpao_Flags & DDPAO_CLOSING) != 0) ? TRUE : FALSE;
ASSERTMSG("DdpAddr is already closing!\n", !closing);
if (!closing)
{
// Set the closing flag and remember the completion routines.
pDdpAddr->ddpao_Flags |= DDPAO_CLOSING;
// this call is only for external sockets
ASSERT((pDdpAddr->ddpao_Flags & DDPAO_SOCK_INTERNAL) == 0);
pDdpAddr->ddpao_Flags |= DDPAO_SOCK_PNPZOMBIE;
}
RELEASE_SPIN_LOCK(&pDdpAddr->ddpao_Lock, OldIrql);
if (!closing)
{
PDDP_ADDROBJ * ppDdpAddr;
int index;
// Release any pending reads
AtalkDdpCleanupAddress(pDdpAddr);
AtalkNbpCloseSocket(pDdpAddr);
ACQUIRE_SPIN_LOCK(&pNode->an_Lock, &OldIrql);
index = HASH_ATALK_ADDR(&pDdpAddr->ddpao_Addr) % NODE_DDPAO_HASH_SIZE;
for (ppDdpAddr = &pNode->an_DdpAoHash[index];
*ppDdpAddr != NULL;
ppDdpAddr = &((*ppDdpAddr)->ddpao_Next))
{
if (*ppDdpAddr == pDdpAddr)
{
*ppDdpAddr = pDdpAddr->ddpao_Next;
// to catch weirdnesses!
pDdpAddr->ddpao_Next = (PDDP_ADDROBJ)0x081294;
break;
}
}
RELEASE_SPIN_LOCK(&pNode->an_Lock, OldIrql);
if (pDdpAddr->ddpao_EventInfo != NULL)
{
AtalkFreeMemory(pDdpAddr->ddpao_EventInfo);
pDdpAddr->ddpao_EventInfo = NULL;
}
// Call the completion routines
if (pDdpAddr->ddpao_CloseComp != NULL)
{
(*pDdpAddr->ddpao_CloseComp)(ATALK_NO_ERROR, pDdpAddr->ddpao_CloseCtx);
pDdpAddr->ddpao_CloseComp = NULL;
}
// Dereference the node for this address
AtalkNodeDereference(pNode);
DBGPRINT(DBG_COMP_DDP, DBG_LEVEL_ERR,
("AtalkDdpPnp..: addr %lx (%lx) put in zombie state\n",
pDdpAddr,pDdpAddr->ddpao_Handler));
}
return ATALK_PENDING;
}
ATALK_ERROR
AtalkDdpInitCloseAddress(
IN PPORT_DESCRIPTOR pPortDesc,
IN PATALK_ADDR pAtalkAddr
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
ATALK_ERROR error;
PDDP_ADDROBJ pDdpAddr;
// !!!This should only be called during initialization!!!
KEVENT Event = {0};
// Try to see if the socket exists.
AtalkDdpRefByAddr(pPortDesc, pAtalkAddr, &pDdpAddr, &error);
if (ATALK_SUCCESS(error))
{
ASSERT(KeGetCurrentIrql() < DISPATCH_LEVEL);
KeInitializeEvent(&Event, NotificationEvent, FALSE);
// Call close with the appropriate completion routine.
error = AtalkDdpCloseAddress(pDdpAddr,
atalkDdpInitCloseComplete,
(PVOID)&Event);
// Remove the reference we added.
AtalkDdpDereference(pDdpAddr);
if (error == ATALK_PENDING)
{
// Wait on event, completion routine will set NdisRequestEvent
KeWaitForSingleObject(&Event,
Executive,
KernelMode,
TRUE,
NULL);
// Assume socket closed successfully.
error = ATALK_NO_ERROR;
}
}
return error;
}
VOID
atalkDdpInitCloseComplete(
ATALK_ERROR Error,
PVOID Ctx
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
PKEVENT pEvent = (PKEVENT)Ctx;
if (!ATALK_SUCCESS(Error))
{
DBGPRINT(DBG_COMP_DDP, DBG_LEVEL_INFO,
("atalkDdpInitCloseComplete: Closed with error %lx\n", Error));
}
KeSetEvent(pEvent, 0L, FALSE);
}
ATALK_ERROR
AtalkInitDdpOpenStaticSockets(
IN PPORT_DESCRIPTOR pPortDesc,
IN OUT PATALK_NODE pNode
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
PDDP_ADDROBJ pDdpAddr, pDdpAddr1, pDdpAddr2, pDdpAddr3;
ATALK_ERROR error = ATALK_NO_ERROR;
// This is called whenever a new node is created.
do
{
error = AtalkDdpOpenAddress(pPortDesc,
NAMESINFORMATION_SOCKET,
&pNode->an_NodeAddr,
AtalkNbpPacketIn,
NULL,
DDPPROTO_ANY,
NULL,
&pDdpAddr);
if (!ATALK_SUCCESS(error))
break;
// mark the fact that this is an "internal" socket
pDdpAddr->ddpao_Flags |= DDPAO_SOCK_INTERNAL;
// A lot of devices today work around the fact that a macintosh uses socket 254
// for lookups from chooser. Agfa is one such beast. To make this work, we reserve
// this socket for Nbp lookups ourselves.
error = AtalkDdpOpenAddress(pPortDesc,
LAST_DYNAMIC_SOCKET,
&pNode->an_NodeAddr,
AtalkNbpPacketIn,
NULL,
DDPPROTO_ANY,
NULL,
&pDdpAddr1);
if (!ATALK_SUCCESS(error))
{
AtalkDdpCloseAddress(pDdpAddr, NULL, NULL);
break;
}
// mark the fact that this is an "internal" socket
pDdpAddr1->ddpao_Flags |= DDPAO_SOCK_INTERNAL;
error = AtalkDdpOpenAddress(pPortDesc,
ECHOER_SOCKET,
&pNode->an_NodeAddr,
AtalkAepPacketIn,
NULL,
DDPPROTO_ANY,
NULL,
&pDdpAddr2);
if (!ATALK_SUCCESS(error))
{
AtalkDdpCloseAddress(pDdpAddr, NULL, NULL);
AtalkDdpCloseAddress(pDdpAddr1, NULL, NULL);
break;
}
// mark the fact that this is an "internal" socket
pDdpAddr2->ddpao_Flags |= DDPAO_SOCK_INTERNAL;
// NOTE: RTMP uses two protocol types.
error = AtalkDdpOpenAddress(pPortDesc,
RTMP_SOCKET,
&pNode->an_NodeAddr,
AtalkRtmpPacketIn,
NULL,
DDPPROTO_ANY,
NULL,
&pDdpAddr3);
if (!ATALK_SUCCESS(error))
{
AtalkDdpCloseAddress(pDdpAddr, NULL, NULL);
AtalkDdpCloseAddress(pDdpAddr1, NULL, NULL);
AtalkDdpCloseAddress(pDdpAddr2, NULL, NULL);
}
// mark the fact that this is an "internal" socket
pDdpAddr3->ddpao_Flags |= DDPAO_SOCK_INTERNAL;
} while (FALSE);
return error;
}
//
// AtalkDdpReceive()
// Called by an external caller to the stack.
// PAMDL is an Appletalk Memory Descriptor List. On NT, it will be an MDL.
//
ATALK_ERROR
AtalkDdpReceive(
IN PDDP_ADDROBJ pDdpAddr,
IN PAMDL pAmdl,
IN USHORT AmdlLen,
IN ULONG RecvFlags,
IN RECEIVE_COMPLETION pRcvCmp,
IN PVOID pRcvCtx OPTIONAL
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
ATALK_ERROR error;
PDDP_READ pRead;
NTSTATUS status;
ULONG bytesCopied;
ATALK_ADDR remoteAddr;
KIRQL OldIrql;
BOOLEAN completeRecv = FALSE,
DerefAddr = FALSE;
BOOLEAN pendingDgram = FALSE;
do
{
if (pRcvCmp == NULL)
{
error = ATALK_DDP_INVALID_PARAM;
break;
}
AtalkDdpReferenceByPtr(pDdpAddr, &error);
if (!ATALK_SUCCESS(error))
{
break;
}
DerefAddr = TRUE;
error = ATALK_NO_ERROR;
ACQUIRE_SPIN_LOCK(&pDdpAddr->ddpao_Lock, &OldIrql);
if (pDdpAddr->ddpao_Flags & DDPAO_DGRAM_PENDING)
{
if (AmdlLen < pDdpAddr->ddpao_EventInfo->ev_IndDgramLen)
{
error = ATALK_BUFFER_TOO_SMALL;
}
AmdlLen = MIN(AmdlLen, pDdpAddr->ddpao_EventInfo->ev_IndDgramLen);
status = TdiCopyBufferToMdl(
pDdpAddr->ddpao_EventInfo->ev_IndDgram,
0,
AmdlLen,
pAmdl,
0,
&bytesCopied);
remoteAddr = pDdpAddr->ddpao_EventInfo->ev_IndSrc;
pDdpAddr->ddpao_Flags &= ~DDPAO_DGRAM_PENDING;
completeRecv = TRUE;
}
else
{
// This case never really will be executed for non-blocking sockets.
// Dont bother about this alloc with spinlock held for now.
// RACE CONDITION is with a packet coming in and setting DGRAM_PENDING.
if ((pRead = AtalkAllocMemory(sizeof(DDP_READ))) == NULL)
{
RELEASE_SPIN_LOCK(&pDdpAddr->ddpao_Lock, OldIrql);
error = ATALK_RESR_MEM;
break;
}
InsertTailList(&pDdpAddr->ddpao_ReadLinkage, &pRead->dr_Linkage);
DerefAddr = FALSE;
pRead->dr_OpBuf = pAmdl;
pRead->dr_OpBufLen = AmdlLen;
pRead->dr_RcvCmp = pRcvCmp;
pRead->dr_RcvCtx = pRcvCtx;
error = ATALK_PENDING;
}
RELEASE_SPIN_LOCK(&pDdpAddr->ddpao_Lock, OldIrql);
} while (FALSE);
if (completeRecv)
{
ASSERT((error == ATALK_NO_ERROR) || (error == ATALK_BUFFER_TOO_SMALL));
(*pRcvCmp)(error,
pAmdl,
AmdlLen,
&remoteAddr,
pRcvCtx);
// And return pending for sure!
error = ATALK_PENDING;
DerefAddr = TRUE;
}
if (DerefAddr)
{
AtalkDdpDereference(pDdpAddr);
}
return error;
}
//
// DdpSend()
// This function is used to deliver packets submitted by the ddp clients.
// The packets are assummed to either be destined for one of the nodes on
// the port, or need to be routed to another port (if router is on), or to
// be transmitted onto the physical medium.
//
// This takes a buffer descriptor as an input. This can contain either a
// PAMDL or a PBYTE depending on where the data is coming from (user space
// or router code respectively). In addition, it will take an optional header
// buffer that will be appended to the ddp header. The buffer descriptor is
// optional, that if NULL, it will be construed as a zero-length send.
//
ATALK_ERROR
AtalkDdpSend(
IN PDDP_ADDROBJ pDdpAddr,
IN PATALK_ADDR pDestAddr,
IN BYTE Protocol,
IN BOOLEAN DefinitelyRemoteAddr,
IN PBUFFER_DESC pBuffDesc OPTIONAL,
IN PBYTE pOptHdr OPTIONAL,
IN USHORT OptHdrLen OPTIONAL,
IN PBYTE pMcastAddr OPTIONAL,
IN PSEND_COMPL_INFO pSendInfo OPTIONAL
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
ATALK_ERROR error;
BOOLEAN shouldBeRouted;
PPORT_DESCRIPTOR pPortDesc;
ATALK_ADDR srcAddr;
KIRQL OldIrql;
BOOLEAN delivered = FALSE;
// NULL buffer descriptor => 0-length send.
ASSERT((pBuffDesc == NULL) || (pBuffDesc->bd_Length > 0));
#ifdef DDP_STRICT
// Check destination address
if (INVALID_ADDRESS(pDestAddr))
{
return ATALK_DDP_INVALID_ADDR;
}
// Check the datagram length.
if (pBuffDesc)
{
USHORT dgramLen;
AtalkSizeOfBuffDescData(pBuffDesc, &dgramLen);
if (dgramLen > MAX_DGRAM_SIZE)
{
return ATALK_BUFFER_TOO_BIG;
}
}
#endif
//
// if this socket is in a zombie state (pnp changes are over) then reject
// this send
//
if (pDdpAddr->ddpao_Flags & DDPAO_SOCK_PNPZOMBIE)
{
return ATALK_DDP_INVALID_ADDR;
}
// Get a pointer to the port on which the socket exists.
pPortDesc = pDdpAddr->ddpao_Node->an_Port;
// Get the source address
srcAddr = pDdpAddr->ddpao_Addr;
if (!DefinitelyRemoteAddr)
{
// All socket handlers assume that they are called at DISPACTH. Make it so.
KeRaiseIrql(DISPATCH_LEVEL, &OldIrql);
AtalkDdpOutBufToNodesOnPort(pPortDesc,
&srcAddr,
pDestAddr,
Protocol,
pBuffDesc,
pOptHdr,
OptHdrLen,
&delivered);
KeLowerIrql(OldIrql);
if (delivered)
{
// Ok, packet meant for one of our own nodes on this port,
// and we delivered it. Call the completion routine.
if (pSendInfo != NULL)
{
(*pSendInfo->sc_TransmitCompletion)(NDIS_STATUS_SUCCESS, pSendInfo);
}
return ATALK_PENDING;
}
}
ASSERT (!delivered);
// Can our router handle it?
shouldBeRouted = ((pPortDesc->pd_Flags & PD_ROUTER_RUNNING) &&
(pDestAddr->ata_Network != CABLEWIDE_BROADCAST_NETWORK) &&
!(WITHIN_NETWORK_RANGE(pDestAddr->ata_Network,
&pPortDesc->pd_NetworkRange)) &&
!(WITHIN_NETWORK_RANGE(pDestAddr->ata_Network,
&AtalkStartupNetworkRange)));
DBGPRINT(DBG_COMP_DDP, DBG_LEVEL_INFO,
("AtalkDdpSend: destNet %lx shouldBeRouted %s\n",
pDestAddr->ata_Network, shouldBeRouted ? "Yes" : "No"));
if (shouldBeRouted)
{
ASSERT (!((WITHIN_NETWORK_RANGE(pDestAddr->ata_Network, &pPortDesc->pd_NetworkRange)) &&
(pDestAddr->ata_Node == ATALK_BROADCAST_NODE)));
// If we're a router and the packet isn't destined for the target ports
// local network, let our router handle it -- rather than sending to
// whatever the "best router" is or to "a router".
do
{
// This algorithm is taken from the "Appletalk Phase 2 Specification".
// If the destination network number is within the range of the reception
// port's network range and the destination node number is broadcast, then
// we can drop the packet on the floor -- it is a network specific broadcast
// not for this router. Note that we've already delivered the packet, and
// thus not gotten here, if it was really addressed to the network of any
// node owned by the reception port (in AtalkDdpPacketIn).
// Also:
// Try to find an entry in the routing table that contains the target
// network. If not found, discard the packet.
PDDP_ADDROBJ pRouteDdpAddr;
PRTE pRte;
PPORT_DESCRIPTOR pDestPortDesc;
PATALK_NODE pRouterNode;
ATALK_ADDR actualDest;
if ((pRte = AtalkRtmpReferenceRte(pDestAddr->ata_Network)) == NULL)
{
DBGPRINT(DBG_COMP_ROUTER, DBG_LEVEL_FATAL,
("AtalkDdpRouter: %lx RtmpRte/Not in ThisCableRange\n",
pDestAddr->ata_Network));
error = ATALK_RESR_MEM;
break;
}
do
{
// Get the port descriptor corres. to the RTE
pDestPortDesc = pRte->rte_PortDesc;
ASSERT(VALID_PORT(pDestPortDesc));
// If the target network's hop count is non-zero, we really need to send
// the beast, so, just do it!
if (pRte->rte_NumHops != 0)
{
// Too many hops?
error = AtalkDdpTransmit(pDestPortDesc,
&srcAddr,
pDestAddr,
Protocol,
pBuffDesc,
pOptHdr,
OptHdrLen,
1, // HopCount
NULL, // pZoneMcastAddr
&pRte->rte_NextRouter,
pSendInfo);
break;
}
// If the destination node is zero, the packet is really destined for the
// router's node on this port.
if (pDestAddr->ata_Node == ANY_ROUTER_NODE)
{
// Try to reference this port, if not successful, its probably
// closing down. Grab the port lock and read the router node address.
// No need to reference, just ensure its not null.
ACQUIRE_SPIN_LOCK(&pDestPortDesc->pd_Lock, &OldIrql);
if ((pDestPortDesc->pd_Flags & PD_CLOSING) == 0)
{
ASSERT(pDestPortDesc->pd_RefCount > 0);
pDestPortDesc->pd_RefCount++;
}
else
{
ASSERTMSG("AtalkDdpRouter: Could not ref port!\n", 0);
error = ATALK_PORT_CLOSING;
RELEASE_SPIN_LOCK(&pDestPortDesc->pd_Lock, OldIrql);
break;
}
pRouterNode = pDestPortDesc->pd_RouterNode;
if (pRouterNode != NULL)
{
actualDest.ata_Network = pRouterNode->an_NodeAddr.atn_Network;
actualDest.ata_Node = pRouterNode->an_NodeAddr.atn_Node;
// Set the actual destination socket.
actualDest.ata_Socket = pDestAddr->ata_Socket;
}
else
{
ASSERTMSG("AtalkDdpRouter: pRouter node is null!\n", 0);
error = ATALK_DDP_NOTFOUND;
}
if (ATALK_SUCCESS(error))
{
AtalkDdpRefByAddrNode(pDestPortDesc,
&actualDest,
pRouterNode,
&pRouteDdpAddr,
&error);
}
RELEASE_SPIN_LOCK(&pDestPortDesc->pd_Lock, OldIrql);
if (ATALK_SUCCESS(error))
{
KIRQL OldIrql;
// Socket handlers assume that they are called at DISPATCH. Make it so.
KeRaiseIrql(DISPATCH_LEVEL, &OldIrql);
AtalkDdpInvokeHandlerBufDesc(pDestPortDesc,
pRouteDdpAddr,
&srcAddr,
pDestAddr, // Pass in the actual destination
Protocol,
pBuffDesc,
pOptHdr,
OptHdrLen);
// Remove the reference on the socket
AtalkDdpDereferenceDpc(pRouteDdpAddr);
KeLowerIrql(OldIrql);
}
else
{
ASSERTMSG("AtalkDdpRouter: pSocket on router node is null!\n", 0);
}
break;
}
// Okay, now walk through the nodes on the target port, looking for a
// home for this packet.
if (!DefinitelyRemoteAddr)
{
// All socket handlers assume that they are called at DISPACTH. Make it so.
KeRaiseIrql(DISPATCH_LEVEL, &OldIrql);
AtalkDdpOutBufToNodesOnPort(pDestPortDesc,
&srcAddr,
pDestAddr,
Protocol,
pBuffDesc,
pOptHdr,
OptHdrLen,
&delivered);
KeLowerIrql(OldIrql);
if (delivered)
{
if (pSendInfo != NULL)
{
(*pSendInfo->sc_TransmitCompletion)(NDIS_STATUS_SUCCESS, pSendInfo);
}
error = ATALK_NO_ERROR;
break;
}
}
// We need to deliver this packet to a local ports network.
error = AtalkDdpTransmit(pDestPortDesc,
&srcAddr,
pDestAddr,
Protocol,
pBuffDesc,
pOptHdr,
OptHdrLen,
1, // HopCount
NULL, // pZoneMcastAddr,
NULL,
pSendInfo);
} while (FALSE);
INTERLOCKED_INCREMENT_LONG_DPC(
&pDestPortDesc->pd_PortStats.prtst_NumPktRoutedOut,
&AtalkStatsLock.SpinLock);
AtalkRtmpDereferenceRte(pRte, FALSE); // Lock held?
} while (FALSE);
INTERLOCKED_INCREMENT_LONG_DPC(
&pPortDesc->pd_PortStats.prtst_NumPktRoutedIn,
&AtalkStatsLock.SpinLock);
}
else
{
error = AtalkDdpTransmit(pPortDesc,
&srcAddr,
pDestAddr,
Protocol,
pBuffDesc,
pOptHdr,
OptHdrLen,
0, // HopCnt,
pMcastAddr,
NULL, // pXmitDestNode,
pSendInfo);
}
return error;
}
//
// DdpTransmit()
// This function is called to build the headers for the packet and send it
// out via the depend level functions. It is assumed at this point that the
// packet is destined for nodes not currently controlled by this stack.
//
// KnownMulticastAddress: Although the DDP destination is encoded using
// 'Destination', if this parameter is non-null, the packet is actually
// sent to this address.
//
// TransmitDestination: Again, as above, the router uses this to pass on the
// packet to the next router it needs to go to, if 'Destination' is still one
// or more hops away.
//
// This is only called from within ddp send or by the router code (rtmp/zip/router).
//
ATALK_ERROR
AtalkDdpTransmit(
IN PPORT_DESCRIPTOR pPortDesc,
IN PATALK_ADDR pSrcAddr,
IN PATALK_ADDR pDestAddr,
IN BYTE Protocol,
IN PBUFFER_DESC pBuffDesc OPTIONAL,
IN PBYTE pOptHdr OPTIONAL,
IN USHORT OptHdrLen OPTIONAL,
IN USHORT HopCnt,
IN PBYTE pMcastAddr OPTIONAL,
IN PATALK_NODEADDR pXmitDestNode OPTIONAL,
IN PSEND_COMPL_INFO pSendInfo OPTIONAL
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
PBYTE pDgram, pDgramStart, pLinkDdpOptHdr;
PBUFFER_DESC pPktDesc;
USHORT linkLen;
ATALK_NODEADDR srcNode;
ATALK_NODEADDR destNode;
USHORT actualLength;
ATALK_NODEADDR actualDest;
PBUFFER_DESC probe;
PBRE routerNode;
USHORT bufLen = 0;
USHORT checksum = 0;
PBYTE knownAddress = NULL;
PBYTE knownRouteInfo = NULL;
USHORT knownRouteInfoLen = 0;
BOOLEAN broadcast = FALSE;
ATALK_ERROR error = ATALK_NO_ERROR;
BOOLEAN shortDdpHeader = FALSE;
BOOLEAN errorFreePkt = FALSE;
PARAPCONN pArapConn = NULL;
PATCPCONN pAtcpConn = NULL;
DWORD StatusCode;
DWORD dwFlags;
USHORT SrpLen;
PBYTE pTmpPtr;
NDIS_STATUS status;
BOOLEAN fThisIsPPP;
PVOID pRasConn;
//
// The basic transmit algorithum is:
//
// if (non-extended-network)
// {
// if ((destination-network is 0 or
// destination-network is NetworkRange.firstNetwork) and
// (source-network is 0 or
// source-network is NetworkRange.firstNetwork))
// {
// <send short form DDP packet to local network>
// return-okay
// }
// }
// if (destination-network is CableWideBroadcastNetworkNumber or
// destination-network in NetworkRange or
// destination-network in SartupRange or
// {
// <send long form DDP packet to local network>
// return-okay
// }
// if (destination-network-and-node in best-router-cache)
// {
// <send long form DDP packet to best router>
// return-okay
// }
// if (seen-a-router-recently)
// {
// <send long form DDP packet to a-router>
// return-okay
// }
// return-error
destNode.atn_Network = pDestAddr->ata_Network;
destNode.atn_Node = pDestAddr->ata_Node;
actualDest.atn_Network = UNKNOWN_NETWORK;
actualDest.atn_Node = UNKNOWN_NODE;
do
{
if (pBuffDesc != NULL)
{
// Get the buffer length. Check the datagram length.
AtalkSizeOfBuffDescData(pBuffDesc, &bufLen);
ASSERT(bufLen > 0);
}
#ifdef DDP_STRICT
// Check destination address
if (INVALID_ADDRESS(pDestAddr) || INVALID_ADDRESS(pSrcAddr))
{
error = ATALK_DDP_INVALID_ADDR;
break;
}
if (pBuffDesc != NULL)
{
// Ensure we do not have a chained datagram.
if (pBuffDesc->bd_Next != NULL)
{
KeBugCheck(0);
}
if (bufLen > MAX_DGRAM_SIZE)
{
error = ATALK_BUFFER_TOO_BIG;
break;
}
}
if (OptHdrLen > MAX_OPTHDR_LEN)
{
error = ATALK_BUFFER_TOO_BIG;
break;
}
#endif
//
// is the desination one of our dial-in clients?
//
pRasConn = FindAndRefRasConnByAddr(destNode, &dwFlags, &fThisIsPPP);
if ((pRasConn == NULL) && (pPortDesc->pd_Flags & PD_RAS_PORT))
{
DBGPRINT(DBG_COMP_RAS, DBG_LEVEL_ERR,
("AtalkDdpTransmit: pArapConn is NULL! Network, Node = %lx %lx\n",
pDestAddr->ata_Network,pDestAddr->ata_Node));
error = ATALK_FAILURE;
break;
}
pArapConn = NULL;
pAtcpConn = NULL;
// if this is a dial-in client, see if it's PPP or ARAP
if (pRasConn)
{
if (fThisIsPPP)
{
pAtcpConn = (PATCPCONN)pRasConn;
// we can send only if the PPP connection is up
if (!(dwFlags & ATCP_CONNECTION_UP))
{
DerefPPPConn(pAtcpConn);
pAtcpConn = NULL;
}
}
else
{
pArapConn = (PARAPCONN)pRasConn;
}
}
//
// if the destination is a dial-in client, we have more work to do
//
// PPP client?
if (pAtcpConn != NULL)
{
// the buffer that will hold both the link and ddp hdrs.
shortDdpHeader = FALSE;
AtalkNdisAllocBuf(&pPktDesc);
if (pPktDesc == NULL)
{
error = ATALK_FAILURE;
break;
}
// In cases of error, free the allocated packet.
errorFreePkt = TRUE;
actualLength = bufLen + LDDP_HDR_LEN + OptHdrLen;
pLinkDdpOptHdr = pPktDesc->bd_CharBuffer;
AtalkNdisBuildPPPPHdr(pLinkDdpOptHdr, pAtcpConn);
linkLen = WAN_LINKHDR_LEN;
break;
}
// nope, ARAP client?
else if ( pArapConn != NULL )
{
shortDdpHeader = FALSE; // ARAP mandates always long form
AtalkNdisAllocBuf(&pPktDesc);
if (pPktDesc == NULL)
{
error = ATALK_FAILURE;
break;
}
// In cases of error, free the allocated packet.
errorFreePkt = TRUE;
actualLength = bufLen + LDDP_HDR_LEN + OptHdrLen;
pLinkDdpOptHdr = pTmpPtr = pPktDesc->bd_CharBuffer;
linkLen = ARAP_LAP_HDRSIZE + ARAP_HDRSIZE;
// don't count the 2 length bytes
SrpLen = actualLength + linkLen - sizeof(USHORT);
//
// put the 2 SRP bytes and the 1 byte DGroup flag (we have enough room)
//
PUTSHORT2SHORT(pTmpPtr, SrpLen);
pTmpPtr += sizeof(USHORT);
// the Dgroup byte
*pTmpPtr++ = (ARAP_SFLAG_PKT_DATA | ARAP_SFLAG_LAST_GROUP);
// the LAP hdr
*pTmpPtr++ = 0;
*pTmpPtr++ = 0;
*pTmpPtr++ = 2;
break;
}
// For non-extended networks, we may want to send a short DDP header.
if (!(EXT_NET(pPortDesc)) &&
((pDestAddr->ata_Network == UNKNOWN_NETWORK) ||
(pDestAddr->ata_Network == pPortDesc->pd_NetworkRange.anr_FirstNetwork)) &&
((pSrcAddr->ata_Network == UNKNOWN_NETWORK) ||
(pSrcAddr->ata_Network == pPortDesc->pd_NetworkRange.anr_FirstNetwork)))
{
// Use a short ddp header. Call the port handler to first alloc
// the buffer that will hold both the link and ddp hdrs.
shortDdpHeader = TRUE;
AtalkNdisAllocBuf(&pPktDesc);
if (pPktDesc == NULL)
{
error = ATALK_FAILURE;
break;
}
// In cases of error, free the allocated packet.
errorFreePkt = TRUE;
// pPkt will be the beginning of the packet and pDgram is where
// we fill in the ddp header.
actualLength = bufLen + SDDP_HDR_LEN + OptHdrLen;
pLinkDdpOptHdr = pPktDesc->bd_CharBuffer;
linkLen = 0;
ASSERT (pPortDesc->pd_NdisPortType == NdisMediumLocalTalk);
// Build the LAP header. This will build it from pDgram backwards,
// and set the pPkt pointer as the packet to be freed in the
// built buffer descriptor.
linkLen = AtalkNdisBuildLTHdr(pLinkDdpOptHdr,
&pDestAddr->ata_Node,
pSrcAddr->ata_Node,
ALAP_SDDP_HDR_TYPE);
DBGPRINT(DBG_COMP_DDP, DBG_LEVEL_INFO,
("AtalkDdpTransmit: Sending short hdr on non-ext net! %ld\n",
pDestAddr->ata_Node, pDestAddr->ata_Network));
break;
}
// LONG DDP HEADER
// Compute the extended AppleTalk node number that we'll really need to
// send the packet to.
DBGPRINT(DBG_COMP_DDP, DBG_LEVEL_INFO,
("AtalkDdpTransmit: Building a long ddp header for bufdesc %lx on port %lx\n",
pBuffDesc, pPortDesc));
do
{
if (pMcastAddr != NULL)
{
knownAddress = pMcastAddr ;
break;
}
if (pXmitDestNode != NULL)
{
actualDest = *pXmitDestNode;
break;
}
if ((WITHIN_NETWORK_RANGE(pDestAddr->ata_Network,
&pPortDesc->pd_NetworkRange)) ||
(pDestAddr->ata_Network == CABLEWIDE_BROADCAST_NETWORK) ||
(WITHIN_NETWORK_RANGE(pDestAddr->ata_Network,
&AtalkStartupNetworkRange)))
{
actualDest.atn_Node = pDestAddr->ata_Node;
actualDest.atn_Network = pDestAddr->ata_Network;
broadcast = (pDestAddr->ata_Node == ATALK_BROADCAST_NODE);
break;
}
atalkDdpFindInBrc(pPortDesc, destNode.atn_Network, &routerNode);
if (routerNode != NULL)
{
// Okay, we know where to go.
knownAddress = routerNode->bre_RouterAddr;
knownRouteInfo = (PBYTE)routerNode + sizeof(BRE);
knownRouteInfoLen = routerNode->bre_RouteInfoLen;
break;
}
if (pPortDesc->pd_Flags & PD_SEEN_ROUTER_RECENTLY)
{
actualDest = pPortDesc->pd_ARouter;
break;
}
// No router known. What do we do ? If its not an extended net,
// just send it - else return error.
if (EXT_NET(pPortDesc))
{
error = ATALK_DDP_NO_ROUTER;
break;
}
actualDest.atn_Node = pDestAddr->ata_Node;
actualDest.atn_Network = pDestAddr->ata_Network;
broadcast = (pDestAddr->ata_Node == ATALK_BROADCAST_NODE);
} while (FALSE);
if (error != ATALK_NO_ERROR)
{
break;
}
AtalkNdisAllocBuf(&pPktDesc);
if (pPktDesc == NULL)
{
error = ATALK_FAILURE;
break;
}
// In cases of error, free the allocated packet.
errorFreePkt = TRUE;
pLinkDdpOptHdr = pPktDesc->bd_CharBuffer;
linkLen = 0;
actualLength = bufLen + LDDP_HDR_LEN + OptHdrLen;
// If we already know where we're headed, just blast it out. Also,
// if we're broadcasting, just do it. "knownAddress" will be NULL
// if we're broadcasting and that will cause the BuildHeader to make
// a broadcast packet.
if (EXT_NET(pPortDesc) &&
((knownAddress != NULL) ||
broadcast ||
(actualDest.atn_Network == CABLEWIDE_BROADCAST_NETWORK)))
{
// Build the LAP header.
AtalkNdisBuildHdr(pPortDesc,
pLinkDdpOptHdr,
linkLen,
actualLength,
knownAddress,
knownRouteInfo,
knownRouteInfoLen,
APPLETALK_PROTOCOL);
break;
}
// On non-extended networks, just send the packet to the desired node --
// no AARP games here.
if (!EXT_NET(pPortDesc))
{
DBGPRINT(DBG_COMP_DDP, DBG_LEVEL_INFO,
("AtalkDdpTransmit: Sending long hdr on non-ext net! %ld\n",
actualDest.atn_Network, actualDest.atn_Node));
ASSERT (pPortDesc->pd_NdisPortType == NdisMediumLocalTalk);
linkLen = AtalkNdisBuildLTHdr(pLinkDdpOptHdr,
&actualDest.atn_Node,
pSrcAddr->ata_Node,
ALAP_LDDP_HDR_TYPE);
break;
}
// We're sending to a particular node on an extended network.
// Do we know its hardware address ? If so, send it out.
{
KIRQL OldIrql;
USHORT index;
PAMT pAmt;
// Go through the AMT and find the entry for the destination
// address if present.
index = HASH_ATALK_NODE(&actualDest) % PORT_AMT_HASH_SIZE;
ACQUIRE_SPIN_LOCK(&pPortDesc->pd_Lock, &OldIrql);
for (pAmt = pPortDesc->pd_Amt[index];
pAmt != NULL;
pAmt = pAmt->amt_Next)
{
if (ATALK_NODES_EQUAL(&pAmt->amt_Target, &actualDest))
{
ASSERT(EXT_NET(pPortDesc));
AtalkNdisBuildHdr(pPortDesc,
pLinkDdpOptHdr,
linkLen,
actualLength,
pAmt->amt_HardwareAddr,
(PBYTE)pAmt+sizeof(AMT),
pAmt->amt_RouteInfoLen,
APPLETALK_PROTOCOL);
error = ATALK_NO_ERROR;
break;
}
}
RELEASE_SPIN_LOCK(&pPortDesc->pd_Lock, OldIrql);
if (pAmt == NULL)
{
DBGPRINT(DBG_COMP_AARP, DBG_LEVEL_WARN,
("atalkDdpFindInAmt: Could not find %lx.%lx\n",
actualDest.atn_Network, actualDest.atn_Node));
error = ATALK_DDP_NO_AMT_ENTRY;
}
else break; // Found the actual h/w address we want to go to.
}
// Free up the allocated header buffer.
errorFreePkt = TRUE;
ASSERT(!ATALK_SUCCESS(error));
// We dont have the hardware address for the logical address that we
// need to send the packet to. Send out aarp requests and drop this packet.
// The higher layers can retry later if they have to.
srcNode.atn_Network = pSrcAddr->ata_Network;
srcNode.atn_Node = pSrcAddr->ata_Node;
probe = BUILD_AARPREQUEST(pPortDesc,
MAX_HW_ADDR_LEN,
srcNode,
actualDest);
if (probe != NULL)
{
#ifdef PROFILING
INTERLOCKED_INCREMENT_LONG(
&pPortDesc->pd_PortStats.prtst_NumAarpProbesOut,
&AtalkStatsLock.SpinLock);
#endif
// Send the aarp packet.
error = AtalkNdisSendPacket(pPortDesc,
probe,
AtalkAarpSendComplete,
NULL);
if (!ATALK_SUCCESS(error))
{
TMPLOGERR()
AtalkAarpSendComplete(NDIS_STATUS_FAILURE,
probe,
NULL);
}
}
DBGPRINT(DBG_COMP_DDP, DBG_LEVEL_WARN,
("AMT Entry not found for %lx.%lx\n",
pDestAddr->ata_Network, pDestAddr->ata_Node));
error = ATALK_DDP_NO_AMT_ENTRY;
break;
} while (FALSE);
// Do we need to send the packet?
if (ATALK_SUCCESS(error))
{
ASSERT(HopCnt <= RTMP_MAX_HOPS);
// Remember the beginning of the dgram
pDgramStart = pDgram = pLinkDdpOptHdr + linkLen;
if (!shortDdpHeader)
{
*pDgram++ = (DDP_HOP_COUNT(HopCnt) + DDP_MSB_LEN(actualLength));
PUTSHORT2BYTE(pDgram, actualLength);
pDgram++;
ASSERT(checksum == 0);
PUTSHORT2SHORT(pDgram, checksum);
pDgram += sizeof(USHORT);
PUTSHORT2SHORT(pDgram, pDestAddr->ata_Network);
pDgram += sizeof(USHORT);
PUTSHORT2SHORT(pDgram, pSrcAddr->ata_Network);
pDgram += sizeof(USHORT);
*pDgram++ = pDestAddr->ata_Node;
*pDgram++ = pSrcAddr->ata_Node;
*pDgram++ = pDestAddr->ata_Socket;
*pDgram++ = pSrcAddr->ata_Socket;
*pDgram++ = Protocol;
// Copy the optional header if present
if (OptHdrLen > 0)
{
ASSERT(pOptHdr != NULL);
RtlCopyMemory(pDgram, pOptHdr, OptHdrLen);
}
// Set length in the buffer descriptor.
AtalkSetSizeOfBuffDescData(pPktDesc,
linkLen + LDDP_HDR_LEN + OptHdrLen);
}
else
{
*pDgram++ = DDP_MSB_LEN(actualLength);
PUTSHORT2BYTE(pDgram, actualLength);
pDgram++;
*pDgram++ = pDestAddr->ata_Socket;
*pDgram++ = pSrcAddr->ata_Socket;
*pDgram++ = Protocol;
// Copy the optional header if present
if (OptHdrLen > 0)
{
ASSERT(pOptHdr != NULL);
RtlCopyMemory(pDgram, pOptHdr, OptHdrLen);
}
// Set length in the buffer descriptor.
AtalkSetSizeOfBuffDescData(pPktDesc,
linkLen + SDDP_HDR_LEN + OptHdrLen);
}
// Chain the passed in buffer desc onto the tail of the one
// returned above.
AtalkPrependBuffDesc(pPktDesc, pBuffDesc);
// Okay, set checksum if needed.
if (pPortDesc->pd_Flags & PD_SEND_CHECKSUMS)
{
// Temporary skip over the leading unchecksumed bytes.
checksum = AtalkDdpCheckSumBufferDesc(pPktDesc,
(USHORT)(linkLen + LEADING_UNCHECKSUMED_BYTES));
DBGPRINT(DBG_COMP_DDP, DBG_LEVEL_INFO,
("AtalkDdpTransmit: checksum %lx\n", checksum));
PUTSHORT2SHORT(&pDgramStart[LDDP_CHECKSUM_OFFSET], checksum);
}
INTERLOCKED_ADD_STATISTICS(&pPortDesc->pd_PortStats.prtst_DataOut,
AtalkSizeBuffDesc(pPktDesc),
&AtalkStatsLock.SpinLock);
//
// is this packet going to an Arap client? If so, we may need to compress,
// and do other processing
//
if (pArapConn)
{
StatusCode = ArapSendPrepare( pArapConn,
pPktDesc,
ARAP_SEND_PRIORITY_HIGH );
if (StatusCode == ARAPERR_NO_ERROR)
{
// Send the packet(s)
ArapNdisSend(pArapConn, &pArapConn->HighPriSendQ);
status = NDIS_STATUS_SUCCESS;
}
else
{
status = NDIS_STATUS_FAILURE;
}
AtalkDdpSendComplete(status, pPktDesc, pSendInfo);
// Return pending here
error = ATALK_PENDING;
}
else
{
// PPP packets need to go over the RAS port
if (pAtcpConn)
{
pPortDesc = RasPortDesc;
}
// Send the packet. The completion routine will handle freeing
// the buffer chain.
error = AtalkNdisSendPacket(pPortDesc,
pPktDesc,
AtalkDdpSendComplete,
pSendInfo);
if (!ATALK_SUCCESS(error))
{
DBGPRINT(DBG_COMP_RAS, DBG_LEVEL_ERR,
("AtalkDdpTransmit: AtalkNdisSendPacket failed %ld\n",error));
AtalkDdpSendComplete(NDIS_STATUS_FAILURE,
pPktDesc,
pSendInfo);
// Return pending. We've alredy called the completion
// routine here, which will have called the callers
// completion routine.
error = ATALK_PENDING;
}
}
}
// Ras connection? remove the refcount put by FindAndRefRasConnByAddr
if (pAtcpConn)
{
DerefPPPConn(pAtcpConn);
}
else if (pArapConn)
{
DerefArapConn(pArapConn);
}
// Do we need to free the allocated header packet?
if (!ATALK_SUCCESS(error) && (errorFreePkt))
{
AtalkNdisFreeBuf(pPktDesc);
}
return error;
}
VOID
AtalkDdpSendComplete(
NDIS_STATUS Status,
PBUFFER_DESC pBuffDesc,
PSEND_COMPL_INFO pInfo
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
// Free up the buffer descriptor for the first part
// and call the specified completion. One of the contexts
// should be the remaining part of the buffer descriptor
// chain.
// There will always be atleast the ddp header, although the next
// part could be null. Thats upto the completion routine to care
// about.
ASSERT(pBuffDesc != NULL);
pBuffDesc->bd_Next = NULL;
ASSERT(pBuffDesc->bd_Flags & BD_CHAR_BUFFER);
AtalkNdisFreeBuf(pBuffDesc);
// If null, just return.
if (pInfo != NULL)
{
// Call the completion routine for the transmit if present
if (pInfo->sc_TransmitCompletion)
(pInfo->sc_TransmitCompletion)(Status, pInfo);
}
}
VOID
AtalkDdpInvokeHandlerBufDesc(
IN PPORT_DESCRIPTOR pPortDesc,
IN PDDP_ADDROBJ pDdpAddr,
IN PATALK_ADDR pSrc,
IN PATALK_ADDR pDest,
IN BYTE Protocol,
IN PBUFFER_DESC pBuffDesc OPTIONAL,
IN PBYTE pOptHdr OPTIONAL,
IN USHORT OptHdrLen OPTIONAL
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
USHORT pktLen = 0;
PBYTE pPkt = NULL;
BOOLEAN freePkt = FALSE;
// This is only called from directly or indirectly throught
// the router in AtalkDdpSend. Both of these cases indicate
// that we have completion routines to deal with. We just make
// a copy and assume caller will deal with its buffer descriptor.
// Alloc and copy the buffer descriptor data into pPkt.
// optimization: If the buffer descriptor is not a chain
// and contains a PBYTE and OptHdrLen = 0,
// then pass that directly.
// Or if buffer descriptor is NULL indicating 0-length
// sends.
do
{
if ((pBuffDesc != NULL) &&
(pBuffDesc->bd_Next == NULL) &&
(pBuffDesc->bd_Flags & BD_CHAR_BUFFER) &&
(OptHdrLen == 0))
{
DBGPRINT(DBG_COMP_DDP, DBG_LEVEL_INFO,
("AtalkDdpInvokeHandlerBufDesc: one element, opt hdr null %ld\n",
pBuffDesc->bd_Length));
pPkt = pBuffDesc->bd_CharBuffer;
pktLen = pBuffDesc->bd_Length;
}
else if ((pBuffDesc != NULL) || (OptHdrLen != 0))
{
// Make a copy! Either the buffer descriptor of the Optional Header
// is non null. Or both or non-null.
if (pBuffDesc != NULL)
{
AtalkSizeOfBuffDescData(pBuffDesc, &pktLen);
ASSERT(pktLen > 0);
}
// Add the optHdrLen
pktLen += OptHdrLen;
DBGPRINT(DBG_COMP_DDP, DBG_LEVEL_INFO,
("AtalkDdpInvokeHandlerBufDesc: Size (incl opt hdr len) %ld\n",
pktLen));
if ((pPkt = AtalkAllocMemory(pktLen)) != NULL)
{
// First copy the OptHdr if present
if (pOptHdr != NULL)
{
RtlCopyMemory(pPkt, pOptHdr, OptHdrLen);
}
if (pBuffDesc != NULL)
{
AtalkCopyBuffDescToBuffer(pBuffDesc,
0, // SrcOff
pktLen - OptHdrLen,
pPkt + OptHdrLen);
}
freePkt = TRUE;
}
else
{
break;
}
}
else
{
ASSERT((pBuffDesc == NULL) && (OptHdrLen == 0));
ASSERT(pPkt == NULL);
ASSERT(pktLen == 0);
}
AtalkDdpInvokeHandler(pPortDesc,
pDdpAddr,
pSrc,
pDest,
Protocol,
pPkt,
pktLen);
} while (FALSE);
if (freePkt)
{
AtalkFreeMemory(pPkt);
}
}
VOID
AtalkDdpInvokeHandler(
IN PPORT_DESCRIPTOR pPortDesc,
IN PDDP_ADDROBJ pDdpAddr,
IN PATALK_ADDR pSrc,
IN PATALK_ADDR pDest,
IN BYTE Protocol,
IN PBYTE pPkt OPTIONAL,
IN USHORT PktLen OPTIONAL
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
PLIST_ENTRY p;
PDDP_READ pRead;
NTSTATUS status;
ATALK_ERROR error;
ULONG bytesCopied;
BOOLEAN eventDone = FALSE;
ASSERT(KeGetCurrentIrql() == DISPATCH_LEVEL);
// The address object should be referenced, and we just assume
// it will be valid during the lifetime of this call.
// Check if protocol type is valid.
if ((pDdpAddr->ddpao_Protocol != Protocol) &&
(pDdpAddr->ddpao_Protocol != DDPPROTO_ANY))
{
return;
}
// First check for queued ddp reads
ACQUIRE_SPIN_LOCK_DPC(&pDdpAddr->ddpao_Lock);
if (!IsListEmpty(&pDdpAddr->ddpao_ReadLinkage))
{
p = RemoveHeadList(&pDdpAddr->ddpao_ReadLinkage);
RELEASE_SPIN_LOCK_DPC(&pDdpAddr->ddpao_Lock);
error = ATALK_NO_ERROR;
pRead = CONTAINING_RECORD(p, DDP_READ, dr_Linkage);
// Do copy if > 0 bytes
if (PktLen > 0)
{
if (PktLen > pRead->dr_OpBufLen)
{
error = ATALK_BUFFER_TOO_SMALL;
}
PktLen = MIN(PktLen, pRead->dr_OpBufLen);
status = TdiCopyBufferToMdl(pPkt,
0,
PktLen,
GET_MDL_FROM_OPAQUE(pRead->dr_OpBuf),
0,
&bytesCopied);
ASSERT(status == STATUS_SUCCESS);
}
(*pRead->dr_RcvCmp)(error, pRead->dr_OpBuf, PktLen, pSrc, pRead->dr_RcvCtx);
AtalkFreeMemory(pRead);
return;
}
// If a handler was set on this socket,call it.
else if (pDdpAddr->ddpao_Handler != NULL)
{
RELEASE_SPIN_LOCK_DPC(&pDdpAddr->ddpao_Lock);
(*pDdpAddr->ddpao_Handler)(pPortDesc,
pDdpAddr,
pPkt,
PktLen,
pSrc,
pDest,
ATALK_NO_ERROR,
Protocol,
pDdpAddr->ddpao_HandlerCtx,
FALSE,
NULL);
}
else
{
// if there is an event handler on this address object call it.
// If there is already a buffered datagram, drop this packet.
// If not, save this datagram as the buffered one, and then
// indicate,
if (pDdpAddr->ddpao_Flags & DDPAO_DGRAM_EVENT)
{
do
{
// We have datagram event handler set on this AO.
if (pDdpAddr->ddpao_Flags & (DDPAO_DGRAM_ACTIVE |
DDPAO_DGRAM_PENDING))
{
// We are already indicating an event. Or we
// have a buffered datagram. Drop this pkt.
break;
}
else
{
PTDI_IND_RECEIVE_DATAGRAM RcvHandler;
PVOID RcvCtx;
ULONG bytesTaken;
PIRP rcvDgramIrp;
TA_APPLETALK_ADDRESS srcTdiAddr;
NTSTATUS status;
ASSERT(pDdpAddr->ddpao_EventInfo != NULL);
pDdpAddr->ddpao_Flags |= (DDPAO_DGRAM_ACTIVE |
DDPAO_DGRAM_PENDING);
RcvHandler = pDdpAddr->ddpao_EventInfo->ev_RcvDgramHandler;
RcvCtx = pDdpAddr->ddpao_EventInfo->ev_RcvDgramCtx;
ATALKADDR_TO_TDI(&srcTdiAddr, pSrc);
// Save the dgram in the event info.
RtlCopyMemory(pDdpAddr->ddpao_EventInfo->ev_IndDgram, pPkt, PktLen);
pDdpAddr->ddpao_EventInfo->ev_IndDgramLen = PktLen;
pDdpAddr->ddpao_EventInfo->ev_IndSrc = *pSrc;
pDdpAddr->ddpao_EventInfo->ev_IndProto = Protocol;
RELEASE_SPIN_LOCK_DPC(&pDdpAddr->ddpao_Lock);
status = (*RcvHandler)(RcvCtx,
sizeof(TA_APPLETALK_ADDRESS),
&srcTdiAddr,
0, // Options length
NULL, // Options
0, // Datagram flags
(ULONG)PktLen, // Bytes indicated
(ULONG)PktLen, // Bytes available
(ULONG *)&bytesTaken,
pPkt,
&rcvDgramIrp);
ASSERT((bytesTaken == 0) || (bytesTaken == PktLen));
if (status == STATUS_MORE_PROCESSING_REQUIRED)
{
if (rcvDgramIrp != NULL)
{
// Post the receive as if it came from the io system
status= AtalkDispatchInternalDeviceControl(
(PDEVICE_OBJECT)AtalkDeviceObject[ATALK_DEV_DDP],
rcvDgramIrp);
ASSERT(status == STATUS_PENDING);
}
}
else if (status == STATUS_SUCCESS)
{
if (bytesTaken != 0)
{
// Assume all of the data was read.
pDdpAddr->ddpao_Flags &= ~DDPAO_DGRAM_PENDING;
}
}
else if (status == STATUS_DATA_NOT_ACCEPTED)
{
// Client may have posted a receive in the indication. Or
// it will post a receive later on. Do nothing here.
DBGPRINT(DBG_COMP_DDP, DBG_LEVEL_ERR,
("atalkDdpRecvData: Indication status %lx\n", status));
}
ACQUIRE_SPIN_LOCK_DPC(&pDdpAddr->ddpao_Lock);
}
} while (FALSE);
// reset the event flags
pDdpAddr->ddpao_Flags &= ~DDPAO_DGRAM_ACTIVE;
}
RELEASE_SPIN_LOCK_DPC(&pDdpAddr->ddpao_Lock);
}
}
VOID
AtalkDdpPacketIn(
IN PPORT_DESCRIPTOR pPortDesc,
IN PBYTE pLinkHdr,
IN PBYTE pPkt,
IN USHORT PktLen,
IN BOOLEAN fWanPkt
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
USHORT dgramLen, ddpHdrLen;
USHORT hopCnt, checksum;
BYTE Protocol;
ATALK_ADDR destAddr, srcAddr;
PBYTE pDdpHdr;
// Only for localtalk
BYTE alapSrcNode;
BYTE alapDestNode;
PBUFFER_DESC pBufCopy = NULL;
SEND_COMPL_INFO SendInfo;
PBYTE pOrgPkt;
USHORT srcOffset;
BOOLEAN extHdr = TRUE;
PBYTE pRouteInfo;
USHORT routeLen = 0;
BOOLEAN delivered = FALSE;
BOOLEAN broadcast = FALSE;
BOOLEAN shouldBeRouted = FALSE;
BOOLEAN sendOnDefAdptr = FALSE;
ATALK_ERROR error = ATALK_NO_ERROR;
KIRQL OldIrql;
TIME TimeS, TimeE, TimeD;
TimeS = KeQueryPerformanceCounter(NULL);
if (PORT_CLOSING(pPortDesc))
{
// If we are not active, return!
return;
}
// save the packet starting
pOrgPkt = pPkt;
do
{
ASSERT((PktLen > 0) || ((PktLen == 0) && (pPkt == NULL)));
if (PktLen > (MAX_DGRAM_SIZE + LDDP_HDR_LEN))
{
DBGPRINT(DBG_COMP_DDP, DBG_LEVEL_WARN,
("AtalkDdpPacketIn: Invalid size %lx\n", PktLen));
error = ATALK_DDP_INVALID_LEN;
break;
}
// Get to the ddp header
pDdpHdr = pPkt;
// Short and long header formats have the length in the same place,
dgramLen = DDP_GET_LEN(pDdpHdr);
hopCnt = DDP_GET_HOP_COUNT(pDdpHdr);
// Is the packet too long?
if ((hopCnt > RTMP_MAX_HOPS) || (dgramLen > PktLen))
{
error = ATALK_DDP_INVALID_LEN;
break;
}
// First glean the information. Check for route info if
// tokenring network.
switch (pPortDesc->pd_NdisPortType)
{
case NdisMedium802_5:
if (pLinkHdr[TLAP_SRC_OFFSET] & TLAP_SRC_ROUTING_MASK)
{
routeLen = (pLinkHdr[TLAP_ROUTE_INFO_OFFSET] & TLAP_ROUTE_INFO_SIZE_MASK);
// First, glean any AARP information that we can, then handle the DDP
// packet. This guy also makes sure we have a good 802.2 header...
//
// Need to make a localcopy of the source address and then turn
// the source routing bit off before calling GleanAarpInfo
//
pLinkHdr[TLAP_SRC_OFFSET] &= ~TLAP_SRC_ROUTING_MASK;
pRouteInfo = pLinkHdr + TLAP_ROUTE_INFO_OFFSET;
}
ddpHdrLen = LDDP_HDR_LEN;
srcOffset = TLAP_SRC_OFFSET;
break;
case NdisMedium802_3:
// Check the length.
if ((dgramLen < LDDP_HDR_LEN) ||
(dgramLen > MAX_DGRAM_SIZE + LDDP_HDR_LEN))
{
error = ATALK_DDP_INVALID_LEN;
break;
}
ddpHdrLen = LDDP_HDR_LEN;
srcOffset = ELAP_SRC_OFFSET;
break;
case NdisMediumFddi:
// Check the length.
if ((dgramLen < LDDP_HDR_LEN) ||
(dgramLen > MAX_DGRAM_SIZE + LDDP_HDR_LEN))
{
error = ATALK_DDP_INVALID_LEN;
break;
}
ddpHdrLen = LDDP_HDR_LEN;
srcOffset = FDDI_SRC_OFFSET;
break;
case NdisMediumLocalTalk:
// Do we have an extended header?
extHdr = (BOOLEAN)(pLinkHdr[ALAP_TYPE_OFFSET] == ALAP_LDDP_HDR_TYPE);
if (extHdr)
{
ddpHdrLen = LDDP_HDR_LEN;
}
else
{
alapDestNode = *(pLinkHdr + ALAP_DEST_OFFSET);
alapSrcNode = *(pLinkHdr + ALAP_SRC_OFFSET);
if ((dgramLen < SDDP_HDR_LEN) ||
(dgramLen > (MAX_DGRAM_SIZE + SDDP_HDR_LEN)))
{
error = ATALK_DDP_INVALID_LEN;
break;
}
ddpHdrLen = SDDP_HDR_LEN;
}
break;
case NdisMediumWan:
// Check the length.
if ((dgramLen < LDDP_HDR_LEN) ||
(dgramLen > MAX_DGRAM_SIZE + LDDP_HDR_LEN))
{
error = ATALK_DDP_INVALID_LEN;
break;
}
ddpHdrLen = LDDP_HDR_LEN;
extHdr = TRUE; // always extended for ARAP
break;
default:
// Should never happen!
DBGPRINT(DBG_COMP_DDP, DBG_LEVEL_FATAL,
("AtalkDdpPacketIn: Unknown media\n"));
KeBugCheck(0);
break;
}
if (!ATALK_SUCCESS(error))
{
break;
}
// Advance packet to point to the data. Caller frees up packet.
pPkt += ddpHdrLen;
// Glean aarp information for non-localtalk and non-RAS ports
if ((pPortDesc->pd_NdisPortType != NdisMediumLocalTalk) && !fWanPkt)
{
AtalkAarpGleanInfo(pPortDesc,
pLinkHdr + srcOffset,
TLAP_ADDR_LEN,
pRouteInfo,
(USHORT)routeLen,
pDdpHdr,
(USHORT)ddpHdrLen);
}
pDdpHdr += 2; // Past off-cable & len
if (extHdr) // Long DDP header
{
// Get checksum, verification, if needed.
GETSHORT2SHORT(&checksum, pDdpHdr);
pDdpHdr += 2;
if (checksum != 0)
{
USHORT calcCheckSum;
// pDdpHdr has already moved passed LEADING_UNCHECKSUMED_BYTES.
// So we just need to decrease the header length field. Use
// dgramLen, NOT PktLen!
calcCheckSum = AtalkDdpCheckSumPacket(pDdpHdr,
(USHORT)(ddpHdrLen - LEADING_UNCHECKSUMED_BYTES),
pPkt,
(USHORT)(dgramLen - ddpHdrLen));
if (checksum != calcCheckSum)
{
DBGPRINT(DBG_COMP_DDP, DBG_LEVEL_ERR,
("AtalkDdpPacketIn: Checksums dont match! %lx.%lx\n",
checksum, calcCheckSum));
AtalkLogBadPacket(pPortDesc,
&srcAddr,
&destAddr,
pDdpHdr,
(USHORT)(ddpHdrLen - LEADING_UNCHECKSUMED_BYTES));
error = ATALK_DDP_PKT_DROPPED;
break;
}
}
// Build full source and destination AppleTalk address structures
// from our DDP header.
GETSHORT2SHORT(&destAddr.ata_Network, pDdpHdr);
pDdpHdr += 2;
GETSHORT2SHORT(&srcAddr.ata_Network, pDdpHdr);
pDdpHdr += 2;
destAddr.ata_Node = *pDdpHdr++;
srcAddr.ata_Node = *pDdpHdr++;
destAddr.ata_Socket = *pDdpHdr++;
srcAddr.ata_Socket = *pDdpHdr++;
// Get the protocol type.
Protocol = *pDdpHdr;
broadcast = (destAddr.ata_Node == ATALK_BROADCAST_NODE);
// Do we like what we see? Note "nnnn00" is now allowed and used by
// NBP.
if ((srcAddr.ata_Network > LAST_VALID_NETWORK) ||
(srcAddr.ata_Network < FIRST_VALID_NETWORK) ||
(srcAddr.ata_Node < MIN_USABLE_ATALKNODE) ||
(srcAddr.ata_Node > MAX_USABLE_ATALKNODE))
{
error = ATALK_DDP_INVALID_SRC;
DBGPRINT(DBG_COMP_DDP, DBG_LEVEL_ERR,
("DdpPacketIn: Received pkt with bad src addr %lx.%lx\n",
srcAddr.ata_Network,srcAddr.ata_Node));
break;
}
if ((destAddr.ata_Network > LAST_VALID_NETWORK) ||
((destAddr.ata_Node > MAX_USABLE_ATALKNODE) &&
!broadcast))
{
error = ATALK_DDP_INVALID_DEST;
DBGPRINT(DBG_COMP_DDP, DBG_LEVEL_ERR,
("DdpPacketIn: Received pkt with bad src addr %lx.%lx\n",
destAddr.ata_Network,destAddr.ata_Node));
break;
}
// Loop through all nodes that are on the reception port and see if
// anybody wants this packet. The algorithm is from the "AppleTalk
// Phase 2 Protocol Specification" with enhacements to support ports
// that have multiple nodes.
// "0000xx" (where "xx" isnt "FF") should not be accepted on an
// extended port... For some unknown reason, the spec would like
// us to pass this case onto the router (which will, no doubt,
// drop it on the floor because it won't find network zero in its
// routing table)... you know, bug-for-bug compatible!
if ((destAddr.ata_Network == UNKNOWN_NETWORK) &&
(pPortDesc->pd_Flags & PD_EXT_NET) &&
(!broadcast))
{
DBGPRINT(DBG_COMP_DDP, DBG_LEVEL_ERR,
("DdpPacketIn: Received pkt with net/node %lx.%lx on ext\n",
destAddr.ata_Network, destAddr.ata_Node));
shouldBeRouted = TRUE;
}
else
{
//
// if we have RAS port configured, and currently have dial-in
// client(s) connected then see if any (or all) of them are
// interested in this packet
// Make sure that any broadcasts we forward came on default port
//
if ( (RasPortDesc) &&
((!broadcast) ||
(broadcast && (pPortDesc == AtalkDefaultPort))) )
{
ACQUIRE_SPIN_LOCK(&RasPortDesc->pd_Lock, &OldIrql);
if (!IsListEmpty(&RasPortDesc->pd_PPPConnHead))
{
RELEASE_SPIN_LOCK(&RasPortDesc->pd_Lock, OldIrql);
// see if any PPP client(s) are interested
PPPRoutePacketToWan(
&destAddr,
&srcAddr,
Protocol,
pPkt, // only data, no DDP hdr
(USHORT)(dgramLen - ddpHdrLen), // only data length
hopCnt,
broadcast,
&delivered);
//
// if we delivered it to any of the PPP clients, and
// this was not a broadcast, then we 're done here
//
if (delivered && !broadcast)
{
break;
}
}
else
{
RELEASE_SPIN_LOCK(&RasPortDesc->pd_Lock, OldIrql);
}
ACQUIRE_SPIN_LOCK(&RasPortDesc->pd_Lock, &OldIrql);
if (!IsListEmpty(&RasPortDesc->pd_ArapConnHead))
{
RELEASE_SPIN_LOCK(&RasPortDesc->pd_Lock, OldIrql);
// see if any ARAP client(s) are interested
ArapRoutePacketToWan(
&destAddr,
&srcAddr,
Protocol,
pOrgPkt, // whole packet (with DDP hdr)
dgramLen, // whole packet length
broadcast,
&delivered);
//
// if we delivered it to any of the ARAP clients, and
// this was not a broadcast, then we 're done here
//
if (delivered && !broadcast)
{
break;
}
}
else
{
RELEASE_SPIN_LOCK(&RasPortDesc->pd_Lock, OldIrql);
}
}
// Now, on the packet in path, we either deliver the packet
// to one of our nodes on this port, or we pass it on to the
// router. Even if the packet is a broadcast, the delivered
// flag will be set to true. shouldBeRouter will be set to
// true, only if the packet *DOES NOT* seem to be destined for
// this port. We route the packet *ONLY IF* shouldBeRouter
// is true
AtalkDdpInPktToNodesOnPort(pPortDesc,
&destAddr,
&srcAddr,
Protocol,
pPkt,
(USHORT)(dgramLen - LDDP_HDR_LEN),
&shouldBeRouted);
}
//
// if this packet originated from a dial-in client and the packet wasn't
// claimed by any of our nodes then we need to send it over to the LAN net:
// see if we must
//
if (fWanPkt)
{
sendOnDefAdptr = FALSE;
//
// broadcasts are meant for the local net, so default adapter only
//
if (broadcast)
{
sendOnDefAdptr = TRUE;
}
//
// if destination is on the same net as the default adapter, or
// if the router is not running then send it on the default adapter
//
if (shouldBeRouted)
{
if ((WITHIN_NETWORK_RANGE(destAddr.ata_Network,
&pPortDesc->pd_NetworkRange)) ||
(!(pPortDesc->pd_Flags & PD_ROUTER_RUNNING)))
{
sendOnDefAdptr = TRUE;
}
}
//
// ok, we must send it on the default adapter.
//
if (sendOnDefAdptr)
{
// no need to send this packet to router: we're sending here
shouldBeRouted = FALSE;
pBufCopy = AtalkAllocBuffDesc(
NULL,
(USHORT)(dgramLen - LDDP_HDR_LEN),
(BD_FREE_BUFFER | BD_CHAR_BUFFER));
if (pBufCopy == NULL)
{
error = ATALK_RESR_MEM;
break;
}
AtalkCopyBufferToBuffDesc(pPkt,
(USHORT)(dgramLen - LDDP_HDR_LEN),
pBufCopy,
0);
SendInfo.sc_TransmitCompletion = atalkDdpRouteComplete;
SendInfo.sc_Ctx1 = pPortDesc;
SendInfo.sc_Ctx3 = NULL;
SendInfo.sc_Ctx2 = pBufCopy;
error = AtalkDdpTransmit(pPortDesc,
&srcAddr,
&destAddr,
Protocol,
pBufCopy,
NULL,
0,
0,
NULL,
NULL,
&SendInfo);
if (error != ATALK_PENDING)
{
AtalkFreeBuffDesc(pBufCopy);
break;
}
}
}
//
// if we still haven't been able to deliver the packet, and if we
// have routing enabled, give router a crack at it
//
if (shouldBeRouted && pPortDesc->pd_Flags & PD_ROUTER_RUNNING)
{
AtalkDdpRouteInPkt(pPortDesc,
&srcAddr,
&destAddr,
Protocol,
pPkt,
(USHORT)(dgramLen - LDDP_HDR_LEN),
hopCnt);
}
}
else // Short DDP header!
{
BYTE ThisNode;
ASSERT(!EXT_NET(pPortDesc));
if (pPortDesc->pd_Flags & PD_EXT_NET)
{
error = ATALK_DDP_SHORT_HDR;
break;
}
// Use network number for the node on this port for source/destination
// network numbers. When we search for the socket/address
// object, the concept net = 0, matches anything will come
// into play.
srcAddr.ata_Network = destAddr.ata_Network = NET_ON_NONEXTPORT(pPortDesc);
srcAddr.ata_Node = alapSrcNode;
ThisNode = NODE_ON_NONEXTPORT(pPortDesc);
if (alapDestNode == ATALK_BROADCAST_NODE)
{
destAddr.ata_Node = ThisNode;
}
else if (alapDestNode != ThisNode)
{
error = ATALK_DDP_INVALID_DEST;
break;
}
else
{
destAddr.ata_Node = alapDestNode;
}
DBGPRINT(DBG_COMP_DDP, DBG_LEVEL_WARN,
("AtalkDdpPacketIn: NonExtended Dest Net.Node %lx.%lx\n",
destAddr.ata_Network, destAddr.ata_Node));
// Get the socket numbers from the ddp header.
destAddr.ata_Socket = *pDdpHdr++;
srcAddr.ata_Socket = *pDdpHdr++;
// Get the protocol type
Protocol = *pDdpHdr;
// If the protocol type is 0, we have an error.
if (Protocol == 0)
{
error = ATALK_DDP_INVALID_PROTO;
break;
}
// Now the destination node address could be
// ALAP_BROADCAST_NODE (0xFF).
if ((srcAddr.ata_Node < MIN_USABLE_ATALKNODE) ||
(srcAddr.ata_Node > MAX_USABLE_ATALKNODE))
{
error = ATALK_DDP_INVALID_SRC;
break;
}
if (((destAddr.ata_Node < MIN_USABLE_ATALKNODE) ||
(destAddr.ata_Node > MAX_USABLE_ATALKNODE)) &&
(destAddr.ata_Node != ATALK_BROADCAST_NODE))
{
error = ATALK_DDP_INVALID_DEST;
break;
}
// On a non-extended port, there will be only one node.
AtalkDdpInPktToNodesOnPort(pPortDesc,
&destAddr,
&srcAddr,
Protocol,
pPkt,
(USHORT)(dgramLen - SDDP_HDR_LEN),
&shouldBeRouted); // This is a dud parameter
// for non-ext nets
}
} while (FALSE);
if (!ATALK_SUCCESS(error))
{
DBGPRINT(DBG_COMP_DDP, DBG_LEVEL_WARN,
("AtalkDdpPacketIn: Dropping packet %lx\n", error) );
}
TimeE = KeQueryPerformanceCounter(NULL);
TimeD.QuadPart = TimeE.QuadPart - TimeS.QuadPart;
INTERLOCKED_ADD_LARGE_INTGR_DPC(
&pPortDesc->pd_PortStats.prtst_DdpPacketInProcessTime,
TimeD,
&AtalkStatsLock.SpinLock);
INTERLOCKED_INCREMENT_LONG_DPC(
&pPortDesc->pd_PortStats.prtst_NumDdpPacketsIn,
&AtalkStatsLock.SpinLock);
}
VOID
AtalkDdpQuery(
IN PDDP_ADDROBJ pDdpAddr,
IN PAMDL pAmdl,
OUT PULONG BytesWritten
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
TDI_ADDRESS_INFO tdiInfo;
PTA_APPLETALK_ADDRESS pTaAddr;
ASSERT (VALID_DDP_ADDROBJ(pDdpAddr));
pTaAddr = (PTA_APPLETALK_ADDRESS)&tdiInfo.Address;
ATALKADDR_TO_TDI(pTaAddr, &pDdpAddr->ddpao_Addr);
TdiCopyBufferToMdl ((PBYTE)&tdiInfo,
0L,
sizeof(tdiInfo),
pAmdl,
0,
BytesWritten);
}
VOID
AtalkDdpOutBufToNodesOnPort(
IN PPORT_DESCRIPTOR pPortDesc,
IN PATALK_ADDR pSrc,
IN PATALK_ADDR pDest,
IN BYTE Protocol,
IN PBUFFER_DESC pBuffDesc OPTIONAL,
IN PBYTE pOptHdr OPTIONAL,
IN USHORT OptHdrLen OPTIONAL,
OUT PBOOLEAN Delivered
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
ATALK_ERROR error;
PATALK_NODE pAtalkNode, pNextNode;
PDDP_ADDROBJ pDdpAddr;
BOOLEAN fDeliver, fSpecific, needToRef;
BOOLEAN lockHeld = FALSE;
ASSERT (KeGetCurrentIrql() == DISPATCH_LEVEL);
// Do not internally loopback broadcast frames, these should come
// back to us from the mac.
if (pDest->ata_Node == ATALK_BROADCAST_NODE)
{
*Delivered = FALSE;
return;
}
fSpecific = (pDest->ata_Network != CABLEWIDE_BROADCAST_NETWORK);
// Walk through our nodes to see if we can deliver this packet.
// OPTIMIZATIONS:
// In most cases, this will not be true. Optimize for returning false.
// Also, a node closing is a rare occurence. If we run into one that is
// closing, we abort trying to deliver this packet to a node on our port,
// and instead return delivered = FALSE. DDP - unreliable, and node closing
// should be a transient state. We avoid the acquire/release code.
ACQUIRE_SPIN_LOCK_DPC(&pPortDesc->pd_Lock);
lockHeld = TRUE;
pNextNode = pPortDesc->pd_Nodes;
needToRef = TRUE;
for (; (pAtalkNode = pNextNode) != NULL; )
{
fDeliver = FALSE;
error = ATALK_NO_ERROR;
if (((pAtalkNode->an_NodeAddr.atn_Network == pDest->ata_Network) ||
!fSpecific) &&
(pAtalkNode->an_NodeAddr.atn_Node == pDest->ata_Node))
{
// Reference node. If we fail, we abort.
if (needToRef)
{
AtalkNodeRefByPtr(pAtalkNode, &error);
}
if (ATALK_SUCCESS(error))
{
fDeliver = TRUE;
// Set up for next node.
if (fSpecific)
{
pNextNode = NULL;
}
else
{
// Get next eligible node.
pNextNode = pAtalkNode->an_Next;
while (pNextNode != NULL)
{
if (pNextNode->an_NodeAddr.atn_Node == pDest->ata_Node)
{
AtalkNodeRefByPtr(pNextNode, &error);
if (!ATALK_SUCCESS(error))
{
pNextNode = NULL;
}
needToRef = FALSE;
break;
}
else
{
pNextNode = pNextNode->an_Next;
}
}
}
}
else
{
// Break out of the for loop.
break;
}
}
else
{
pNextNode = pAtalkNode->an_Next;
needToRef = TRUE;
}
if (fDeliver)
{
// Release port lock, deliver packet, and Deref the node.
// Find the ddp address object on this node corresponding
// to this address. This will get the node lock.
AtalkDdpRefByAddrNode(pPortDesc,
pDest,
pAtalkNode,
&pDdpAddr,
&error);
RELEASE_SPIN_LOCK_DPC(&pPortDesc->pd_Lock);
lockHeld = FALSE;
if (ATALK_SUCCESS(error))
{
// Invoke socket handler on this address object.
AtalkDdpInvokeHandlerBufDesc(pPortDesc,
pDdpAddr,
pSrc,
pDest,
Protocol,
pBuffDesc,
pOptHdr,
OptHdrLen);
// Remove the reference on the socket
AtalkDdpDereferenceDpc(pDdpAddr);
}
// Remove the reference on the node
AtalkNodeDereference(pAtalkNode);
// If we had to deliver to a specific node, we are done.
if (fSpecific)
{
break;
}
ACQUIRE_SPIN_LOCK_DPC(&pPortDesc->pd_Lock);
lockHeld = TRUE;
}
}
if (lockHeld)
{
RELEASE_SPIN_LOCK_DPC(&pPortDesc->pd_Lock);
}
*Delivered = (fSpecific && fDeliver);
}
VOID
AtalkDdpInPktToNodesOnPort(
IN PPORT_DESCRIPTOR pPortDesc,
IN PATALK_ADDR pDest,
IN PATALK_ADDR pSrc,
IN BYTE Protocol,
IN PBYTE pPkt OPTIONAL,
IN USHORT PktLen OPTIONAL,
OUT PBOOLEAN ShouldBeRouted
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
PATALK_NODE pAtalkNode, pNextNode;
PDDP_ADDROBJ pDdpAddr;
BOOLEAN broadcast;
BOOLEAN fSpecific, fDeliver, needToRef;
ATALK_ERROR error = ATALK_NO_ERROR;
BOOLEAN lockHeld = FALSE;
BOOLEAN shouldBeRouted = FALSE;
ASSERT (KeGetCurrentIrql() == DISPATCH_LEVEL);
broadcast = (pDest->ata_Node == ATALK_BROADCAST_NODE);
// is a directed packet to a socket on a particular node...?
fSpecific = (!broadcast &&
(pDest->ata_Network != UNKNOWN_NETWORK));
// OPTIMIZATIONS:
// In most cases, this will not be true. Optimize for returning false.
// Also, a node closing is a rare occurence. If we run into one that is
// closing, we abort trying to deliver this packet to a node on our port,
// and instead return delivered = FALSE. DDP - unreliable, and node closing
// should be a transient state. We avoid the acquire/release code.
ACQUIRE_SPIN_LOCK_DPC(&pPortDesc->pd_Lock);
lockHeld = TRUE;
pNextNode = pPortDesc->pd_Nodes;
needToRef = TRUE;
while ((pAtalkNode = pNextNode) != NULL)
{
fDeliver = FALSE;
error = ATALK_NO_ERROR;
// For incoming packet, we check to see if the destination
// net is 0, or destination net is our node's net, or we are
// non-extended and our node's net is zero. i.e. is the packet
// destined for a node on this port. If not, route it. Continue
// checking all nodes though, as a single port can have nodes with
// different network numbers.
if (((pAtalkNode->an_NodeAddr.atn_Network == pDest->ata_Network) ||
(pDest->ata_Network == UNKNOWN_NETWORK) ||
(!EXT_NET(pPortDesc) &&
(pAtalkNode->an_NodeAddr.atn_Network == UNKNOWN_NETWORK))) &&
(broadcast || (pAtalkNode->an_NodeAddr.atn_Node == pDest->ata_Node)))
{
// Reference node if we need to. Only happens for the first
// time we enter the loop. If we fail, we abort.
if (needToRef)
{
AtalkNodeRefByPtr(pAtalkNode, &error);
if (!ATALK_SUCCESS(error))
{
break;
}
}
fDeliver = TRUE;
// Set up for next node.
if (fSpecific)
{
// Only one node on a non-extended port. So set next to NULL.
pNextNode = NULL;
}
else
{
// Get next eligible node.
pNextNode = pAtalkNode->an_Next;
while (pNextNode != NULL)
{
if (((pNextNode->an_NodeAddr.atn_Network == pDest->ata_Network) ||
(pDest->ata_Network == UNKNOWN_NETWORK) ||
(!EXT_NET(pPortDesc) &&
(pNextNode->an_NodeAddr.atn_Network == UNKNOWN_NETWORK))) &&
(broadcast ||
(pNextNode->an_NodeAddr.atn_Node == pDest->ata_Node)))
{
AtalkNodeRefByPtr(pNextNode, &error);
if (!ATALK_SUCCESS(error))
{
pNextNode = NULL;
}
needToRef = FALSE;
break;
}
pNextNode = pNextNode->an_Next;
}
}
}
else
{
// The packet probably could be meant to be routed.
// This could be set multiple times - idempotent.
shouldBeRouted = TRUE;
needToRef = TRUE;
pNextNode = pAtalkNode->an_Next;
}
if (fDeliver)
{
// Release port lock, deliver packet, and Deref the node.
// Find the ddp address object on this node corresponding
// to this address. This will get the node lock.
if (broadcast)
pDest->ata_Node = pAtalkNode->an_NodeAddr.atn_Node;
AtalkDdpRefByAddrNode(pPortDesc,
pDest,
pAtalkNode,
&pDdpAddr,
&error);
// If we had changed the destination node, change it back.
if (broadcast)
pDest->ata_Node = ATALK_BROADCAST_NODE;
RELEASE_SPIN_LOCK_DPC(&pPortDesc->pd_Lock);
lockHeld = FALSE;
if (ATALK_SUCCESS(error))
{
// Invoke socket handler on this address object.
// Use the packet pointer directly!
AtalkDdpInvokeHandler(pPortDesc,
pDdpAddr,
pSrc,
pDest,
Protocol,
pPkt,
PktLen);
// Remove the reference on the socket
AtalkDdpDereferenceDpc(pDdpAddr);
}
// Remove the reference on the node
AtalkNodeDereference(pAtalkNode);
// If we had to deliver to a specific node, we are done.
if (fSpecific)
{
shouldBeRouted = FALSE;
break;
}
ACQUIRE_SPIN_LOCK_DPC(&pPortDesc->pd_Lock);
lockHeld = TRUE;
}
}
if (lockHeld)
{
RELEASE_SPIN_LOCK_DPC(&pPortDesc->pd_Lock);
}
*ShouldBeRouted = shouldBeRouted;
}
USHORT
AtalkDdpCheckSumBuffer(
IN PBYTE Buffer,
IN USHORT BufLen,
IN USHORT CurrentCheckSum
)
/*++
Routine Description:
Calculate the DDP checksum of a byte array
Arguments:
Return Value:
--*/
{
USHORT CheckSum = CurrentCheckSum;
ULONG i;
// The following algorithm is from Inside AppleTalk, Second Edition
// page 4-17
for (i = 0; i < BufLen; i++)
{
CheckSum += Buffer[i];
if (CheckSum & 0x8000) // 16-bit rotate left one bit
{
CheckSum <<= 1;
CheckSum ++;
}
else CheckSum <<= 1;
}
if (CheckSum == 0)
CheckSum = 0xFFFF;
return CheckSum;
}
USHORT
AtalkDdpCheckSumPacket(
IN PBYTE pHdr,
IN USHORT HdrLen,
IN PBYTE pPkt,
IN USHORT PktLen
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
USHORT checksum = 0;
// MAX_LDDP_PKT_SIZE is 600, so we use < instead of <=
ASSERT(HdrLen + PktLen < MAX_LDDP_PKT_SIZE);
if ((HdrLen + PktLen) < MAX_LDDP_PKT_SIZE)
{
if (HdrLen > 0)
{
checksum = AtalkDdpCheckSumBuffer(pHdr, HdrLen, 0);
}
if (PktLen > 0)
{
checksum = AtalkDdpCheckSumBuffer(pPkt, PktLen, checksum);
}
}
return checksum;
}
// Calculate the DDP checksum of the passed in buffer. The buffer is described
// by the buffer descriptor
USHORT
AtalkDdpCheckSumBufferDesc(
IN PBUFFER_DESC pBuffDesc,
IN USHORT Offset
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
PBYTE pBuf;
USHORT checksum = 0;
while (pBuffDesc != NULL)
{
if (pBuffDesc->bd_Flags & BD_CHAR_BUFFER)
{
pBuf = pBuffDesc->bd_CharBuffer;
}
else
{
pBuf = MmGetSystemAddressForMdlSafe(
pBuffDesc->bd_OpaqueBuffer,
NormalPagePriority);
}
if (pBuf != NULL) {
checksum = AtalkDdpCheckSumBuffer(pBuf, pBuffDesc->bd_Length, checksum);
pBuffDesc = pBuffDesc->bd_Next;
}
}
return checksum;
}
// This routine needs to verify that the socket does not already
// exist on the node. If it doesnt it will alloc the ddp address
// object and link it into the node and do all the required initialization.
// The node is guaranteed to be referenced.
ATALK_ERROR
atalkDdpAllocSocketOnNode(
IN PPORT_DESCRIPTOR pPortDesc,
IN BYTE Socket,
IN PATALK_NODE pAtalkNode,
IN DDPAO_HANDLER pSktHandler OPTIONAL,
IN PVOID pSktCtx OPTIONAL,
IN BYTE Protocol OPTIONAL,
IN PATALK_DEV_CTX pDevCtx,
OUT PDDP_ADDROBJ pDdpAddr
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
ATALK_ADDR addr;
PDDP_ADDROBJ pDdpAddrx;
KIRQL OldIrql;
int i, j, index;
BOOLEAN found = TRUE;
ATALK_ERROR error = ATALK_NO_ERROR;
// See if the socket exists else, link our new socket into
// the node linkage. All within a critical section.
addr.ata_Network = pAtalkNode->an_NodeAddr.atn_Network;
addr.ata_Node = pAtalkNode->an_NodeAddr.atn_Node;
addr.ata_Socket = Socket;
// Now reference the node on which this socket will reside.
// This will go away when the socket is closed.
AtalkNodeReferenceByPtr(pAtalkNode, &error);
if (!ATALK_SUCCESS(error))
{
TMPLOGERR();
return error;
}
ACQUIRE_SPIN_LOCK(&pAtalkNode->an_Lock, &OldIrql);
if (Socket == DYNAMIC_SOCKET)
{
// Two attempts if we are at the end of the range and restart from
// the beginning.
for (j = 0; (j < NUM_USER_NODES) && found; j++)
{
for (i = pAtalkNode->an_NextDynSkt; i <= LAST_DYNAMIC_SOCKET; i++)
{
addr.ata_Socket = (BYTE)i;
index = HASH_ATALK_ADDR(&addr) % NODE_DDPAO_HASH_SIZE;
found = atalkDdpFindAddrOnList(pAtalkNode, index, (BYTE)i, &pDdpAddrx);
if (found)
continue;
Socket = (BYTE)i;
break;
}
// Now if still havent found the socket id, set NextDynSkt to
// beginning of the range and try again.
if (found)
{
pAtalkNode->an_NextDynSkt = FIRST_DYNAMIC_SOCKET;
continue;
}
// Not found. Increment next id to be used.
if (++(pAtalkNode->an_NextDynSkt) == 0)
{
// We wrapped! Set the value to the lowest dynamic
// socket. Thats what it should have been initialized
// to.
pAtalkNode->an_NextDynSkt = FIRST_DYNAMIC_SOCKET;
}
DBGPRINT(DBG_COMP_DDP, DBG_LEVEL_INFO,
("atalkDdpAllocSocketOnNode: Created dynamic socket %x\n", Socket));
// Done.
break;
}
if (found)
{
error = ATALK_SOCKET_NODEFULL;
}
}
else
{
index = HASH_ATALK_ADDR(&addr) % NODE_DDPAO_HASH_SIZE;
found = atalkDdpFindAddrOnList(pAtalkNode, index, (BYTE)Socket, &pDdpAddrx);
if (found)
{
error = ATALK_SOCKET_EXISTS;
}
}
if (ATALK_SUCCESS(error))
{
// Initialize and thread in the structure
pDdpAddr->ddpao_Signature = DDPAO_SIGNATURE;
pDdpAddr->ddpao_RefCount = 1; // Creation
pDdpAddr->ddpao_DevCtx = pDevCtx;
pDdpAddr->ddpao_Node = pAtalkNode;
pDdpAddr->ddpao_Addr.ata_Network = pAtalkNode->an_NodeAddr.atn_Network;
pDdpAddr->ddpao_Addr.ata_Node = pAtalkNode->an_NodeAddr.atn_Node;
pDdpAddr->ddpao_Addr.ata_Socket = Socket;
pDdpAddr->ddpao_Protocol = Protocol;
pDdpAddr->ddpao_Handler = pSktHandler;
pDdpAddr->ddpao_HandlerCtx = pSktCtx;
INITIALIZE_SPIN_LOCK(&pDdpAddr->ddpao_Lock);
InitializeListHead(&pDdpAddr->ddpao_ReadLinkage);
// We use 'index' to link this in.
pDdpAddr->ddpao_Next = pAtalkNode->an_DdpAoHash[index];
pAtalkNode->an_DdpAoHash[index] = pDdpAddr;
}
RELEASE_SPIN_LOCK(&pAtalkNode->an_Lock, OldIrql);
// If we failed, Dereference the node
if (!ATALK_SUCCESS(error))
AtalkNodeDereference(pAtalkNode);
return error;
}
BOOLEAN
atalkDdpFindAddrOnList(
IN PATALK_NODE pAtalkNode,
IN ULONG Index,
IN BYTE Socket,
OUT PDDP_ADDROBJ * ppDdpAddr
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
PDDP_ADDROBJ pDdpAddr;
BOOLEAN found = FALSE;
for (pDdpAddr = pAtalkNode->an_DdpAoHash[Index];
pDdpAddr != NULL;
pDdpAddr = pDdpAddr->ddpao_Next)
{
if (pDdpAddr->ddpao_Addr.ata_Socket == Socket)
{
*ppDdpAddr = pDdpAddr;
found = TRUE;
break;
}
}
return found;
}
VOID
AtalkDdpRefByAddr(
IN PPORT_DESCRIPTOR pPortDesc,
IN PATALK_ADDR pAtalkAddr,
OUT PDDP_ADDROBJ * ppDdpAddr,
OUT PATALK_ERROR pErr
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
ULONG index;
ATALK_NODEADDR node;
PATALK_NODE pAtalkNode;
PDDP_ADDROBJ pDdpAddr;
KIRQL OldIrql;
ATALK_ERROR ErrorCode;
node.atn_Network = pAtalkAddr->ata_Network;
node.atn_Node = pAtalkAddr->ata_Node;
// First find the node on this port given its address
AtalkNodeReferenceByAddr(pPortDesc,
&node,
&pAtalkNode,
&ErrorCode);
if (ATALK_SUCCESS(ErrorCode))
{
ASSERT(VALID_ATALK_NODE(pAtalkNode));
index = HASH_ATALK_ADDR(pAtalkAddr) % NODE_DDPAO_HASH_SIZE;
ACQUIRE_SPIN_LOCK(&pAtalkNode->an_Lock, &OldIrql);
if(atalkDdpFindAddrOnList(pAtalkNode,
index,
pAtalkAddr->ata_Socket,
&pDdpAddr))
{
AtalkDdpReferenceByPtr(pDdpAddr, &ErrorCode);
if (ATALK_SUCCESS(ErrorCode))
{
ASSERT (VALID_DDP_ADDROBJ(pDdpAddr));
*ppDdpAddr = pDdpAddr;
}
}
else
{
ErrorCode = ATALK_DDP_NOTFOUND;
}
RELEASE_SPIN_LOCK(&pAtalkNode->an_Lock, OldIrql);
// Remove the node reference
ASSERT(VALID_ATALK_NODE(pAtalkNode));
AtalkNodeDereference(pAtalkNode);
}
*pErr = ErrorCode;
}
VOID
AtalkDdpRefByAddrNode(
IN PPORT_DESCRIPTOR pPortDesc,
IN PATALK_ADDR pAtalkAddr,
IN PATALK_NODE pAtalkNode,
OUT PDDP_ADDROBJ * ppDdpAddr,
OUT PATALK_ERROR pErr
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
ULONG index;
KIRQL OldIrql;
PDDP_ADDROBJ pDdpAddr;
ASSERT(VALID_ATALK_NODE(pAtalkNode));
index = HASH_ATALK_ADDR(pAtalkAddr) % NODE_DDPAO_HASH_SIZE;
ACQUIRE_SPIN_LOCK(&pAtalkNode->an_Lock, &OldIrql);
if(atalkDdpFindAddrOnList(pAtalkNode,
index,
pAtalkAddr->ata_Socket,
&pDdpAddr))
{
AtalkDdpReferenceByPtr(pDdpAddr, pErr);
if (ATALK_SUCCESS(*pErr))
{
ASSERT (VALID_DDP_ADDROBJ(pDdpAddr));
*ppDdpAddr = pDdpAddr;
}
}
else
{
*pErr = ATALK_DDP_NOTFOUND;
}
RELEASE_SPIN_LOCK(&pAtalkNode->an_Lock, OldIrql);
}
VOID
AtalkDdpRefNextNc(
IN PDDP_ADDROBJ pDdpAddr,
IN PDDP_ADDROBJ * ppDdpAddr,
OUT PATALK_ERROR pErr
)
/*++
Routine Description:
MUST BE CALLED WITH THE NODE LOCK HELD!
Arguments:
Return Value:
--*/
{
*pErr = ATALK_FAILURE;
*ppDdpAddr = NULL;
for (; pDdpAddr != NULL; pDdpAddr = pDdpAddr->ddpao_Next)
{
AtalkDdpReferenceByPtrDpc(pDdpAddr, pErr);
if (ATALK_SUCCESS(*pErr))
{
// Ok, this address is referenced!
ASSERT (VALID_DDP_ADDROBJ(pDdpAddr));
*ppDdpAddr = pDdpAddr;
break;
}
}
}
VOID FASTCALL
AtalkDdpDeref(
IN OUT PDDP_ADDROBJ pDdpAddr,
IN BOOLEAN AtDpc
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
ATALK_ERROR error = ATALK_NO_ERROR;
PATALK_NODE pNode = pDdpAddr->ddpao_Node;
BOOLEAN done = FALSE;
KIRQL OldIrql;
ASSERT (VALID_DDP_ADDROBJ(pDdpAddr));
if (AtDpc)
{
ACQUIRE_SPIN_LOCK_DPC(&pDdpAddr->ddpao_Lock);
}
else
{
ACQUIRE_SPIN_LOCK(&pDdpAddr->ddpao_Lock, &OldIrql);
}
ASSERT(pDdpAddr->ddpao_RefCount > 0);
if (--(pDdpAddr->ddpao_RefCount) == 0)
{
done = TRUE;
}
if (AtDpc)
{
RELEASE_SPIN_LOCK_DPC(&pDdpAddr->ddpao_Lock);
}
else
{
RELEASE_SPIN_LOCK(&pDdpAddr->ddpao_Lock, OldIrql);
}
if (done)
{
PDDP_ADDROBJ * ppDdpAddr;
int index;
//
// if this is a zombie socket (that is, it was cleaned up but not freed
// because it's an external socket) then now is the time to free it.
// Cleanup is all done already.
//
if ((pDdpAddr->ddpao_Flags & DDPAO_SOCK_PNPZOMBIE) != 0)
{
DBGPRINT(DBG_COMP_DDP, DBG_LEVEL_ERR,
("AtalkDdpDeref..: zombie addr %lx (%lx) freed\n",
pDdpAddr,pDdpAddr->ddpao_Handler));
// Free the address structure
AtalkFreeMemory(pDdpAddr);
return;
}
ASSERT((pDdpAddr->ddpao_Flags & DDPAO_CLOSING) != 0);
if ((pDdpAddr->ddpao_Flags & DDPAO_CLOSING) == 0)
{
KeBugCheck(0);
}
// Remove this guy from the node linkage
if (AtDpc)
{
ACQUIRE_SPIN_LOCK_DPC(&pNode->an_Lock);
}
else
{
ACQUIRE_SPIN_LOCK(&pNode->an_Lock, &OldIrql);
}
index = HASH_ATALK_ADDR(&pDdpAddr->ddpao_Addr) % NODE_DDPAO_HASH_SIZE;
for (ppDdpAddr = &pNode->an_DdpAoHash[index];
*ppDdpAddr != NULL;
ppDdpAddr = &((*ppDdpAddr)->ddpao_Next))
{
if (*ppDdpAddr == pDdpAddr)
{
*ppDdpAddr = pDdpAddr->ddpao_Next;
break;
}
}
if (AtDpc)
{
RELEASE_SPIN_LOCK_DPC(&pNode->an_Lock);
}
else
{
RELEASE_SPIN_LOCK(&pNode->an_Lock, OldIrql);
}
DBGPRINT(DBG_COMP_DDP, DBG_LEVEL_INFO,
("AtalkDdpDeref: Closing ddp socket %lx\n", pDdpAddr->ddpao_Addr.ata_Socket));
if (pDdpAddr->ddpao_EventInfo != NULL)
{
AtalkFreeMemory(pDdpAddr->ddpao_EventInfo);
}
// Call the completion routines
if (*pDdpAddr->ddpao_CloseComp != NULL)
{
(*pDdpAddr->ddpao_CloseComp)(ATALK_NO_ERROR, pDdpAddr->ddpao_CloseCtx);
}
// Free the address structure
AtalkFreeMemory(pDdpAddr);
// Dereference the node for this address
AtalkNodeDereference(pNode);
}
}
VOID
AtalkDdpNewHandlerForSocket(
IN PDDP_ADDROBJ pDdpAddr,
IN DDPAO_HANDLER pSktHandler,
IN PVOID pSktHandlerCtx
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
KIRQL OldIrql;
ASSERT (VALID_DDP_ADDROBJ(pDdpAddr));
ACQUIRE_SPIN_LOCK(&pDdpAddr->ddpao_Lock, &OldIrql);
pDdpAddr->ddpao_Handler = pSktHandler;
pDdpAddr->ddpao_HandlerCtx = pSktHandlerCtx;
RELEASE_SPIN_LOCK(&pDdpAddr->ddpao_Lock, OldIrql);
}