windows-nt/Source/XPSP1/NT/public/sdk/inc/crt/map

337 lines
11 KiB
Plaintext
Raw Permalink Normal View History

2020-09-26 03:20:57 -05:00
// map standard header
#ifndef _MAP_
#define _MAP_
#include <functional>
#include <xtree>
#ifdef _MSC_VER
#pragma pack(push,8)
#endif /* _MSC_VER */
_STD_BEGIN
// TEMPLATE CLASS map
template<class _K, class _Ty, class _Pr = less<_K>,
class _A = allocator<_Ty> >
class map {
public:
typedef map<_K, _Ty, _Pr, _A> _Myt;
typedef pair<const _K, _Ty> value_type;
struct _Kfn : public unary_function<value_type, _K> {
const _K& operator()(const value_type& _X) const
{return (_X.first); }
};
class value_compare
: public binary_function<value_type, value_type, bool> {
friend class map<_K, _Ty, _Pr, _A>;
public:
bool operator()(const value_type& _X,
const value_type& _Y) const
{return (comp(_X.first, _Y.first)); }
_PROTECTED:
value_compare(_Pr _Pred)
: comp(_Pred) {}
_Pr comp;
};
typedef _K key_type;
typedef _Ty referent_type;
typedef _Pr key_compare;
typedef _A allocator_type;
typedef _A::reference _Tref;
typedef _Tree<_K, value_type, _Kfn, _Pr, _A> _Imp;
typedef _Imp::size_type size_type;
typedef _Imp::difference_type difference_type;
typedef _Imp::reference reference;
typedef _Imp::const_reference const_reference;
typedef _Imp::iterator iterator;
typedef _Imp::const_iterator const_iterator;
typedef _Imp::reverse_iterator reverse_iterator;
typedef _Imp::const_reverse_iterator const_reverse_iterator;
typedef pair<iterator, bool> _Pairib;
typedef pair<iterator, iterator> _Pairii;
typedef pair<const_iterator, const_iterator> _Paircc;
explicit map(const _Pr& _Pred = _Pr(), const _A& _Al = _A())
: _Tr(_Pred, false, _Al) {}
typedef const value_type *_It;
map(_It _F, _It _L, const _Pr& _Pred = _Pr(),
const _A& _Al = _A())
: _Tr(_Pred, false, _Al)
{for (; _F != _L; ++_F)
_Tr.insert(*_F); }
_Myt& operator=(const _Myt& _X)
{_Tr = _X._Tr;
return (*this); }
iterator begin()
{return (_Tr.begin()); }
const_iterator begin() const
{return (_Tr.begin()); }
iterator end()
{return (_Tr.end()); }
const_iterator end() const
{return (_Tr.end()); }
reverse_iterator rbegin()
{return (_Tr.rbegin()); }
const_reverse_iterator rbegin() const
{return (_Tr.rbegin()); }
reverse_iterator rend()
{return (_Tr.rend()); }
const_reverse_iterator rend() const
{return (_Tr.rend()); }
size_type size() const
{return (_Tr.size()); }
size_type max_size() const
{return (_Tr.max_size()); }
bool empty() const
{return (_Tr.empty()); }
_A get_allocator() const
{return (_Tr.get_allocator()); }
_Tref operator[](const key_type& _Kv)
{iterator _P = insert(value_type(_Kv, _Ty())).first;
return ((*_P).second); }
_Pairib insert(const value_type& _X)
{_Imp::_Pairib _Ans = _Tr.insert(_X);
return (_Pairib(_Ans.first, _Ans.second)); }
iterator insert(iterator _P, const value_type& _X)
{return (_Tr.insert((_Imp::iterator&)_P, _X)); }
void insert(_It _F, _It _L)
{for (; _F != _L; ++_F)
_Tr.insert(*_F); }
iterator erase(iterator _P)
{return (_Tr.erase((_Imp::iterator&)_P)); }
iterator erase(iterator _F, iterator _L)
{return (_Tr.erase((_Imp::iterator&)_F,
(_Imp::iterator&)_L)); }
size_type erase(const _K& _Kv)
{return (_Tr.erase(_Kv)); }
void clear()
{_Tr.clear(); }
void swap(_Myt& _X)
{std::swap(_Tr, _X._Tr); }
friend void swap(_Myt& _X, _Myt& _Y)
{_X.swap(_Y); }
key_compare key_comp() const
{return (_Tr.key_comp()); }
value_compare value_comp() const
{return (value_compare(_Tr.key_comp())); }
iterator find(const _K& _Kv)
{return (_Tr.find(_Kv)); }
const_iterator find(const _K& _Kv) const
{return (_Tr.find(_Kv)); }
size_type count(const _K& _Kv) const
{return (_Tr.count(_Kv)); }
iterator lower_bound(const _K& _Kv)
{return (_Tr.lower_bound(_Kv)); }
const_iterator lower_bound(const _K& _Kv) const
{return (_Tr.lower_bound(_Kv)); }
iterator upper_bound(const _K& _Kv)
{return (_Tr.upper_bound(_Kv)); }
const_iterator upper_bound(const _K& _Kv) const
{return (_Tr.upper_bound(_Kv)); }
_Pairii equal_range(const _K& _Kv)
{return (_Tr.equal_range(_Kv)); }
_Paircc equal_range(const _K& _Kv) const
{return (_Tr.equal_range(_Kv)); }
protected:
_Imp _Tr;
};
// map TEMPLATE OPERATORS
template<class _K, class _Ty, class _Pr, class _A> inline
bool operator==(const map<_K, _Ty, _Pr, _A>& _X,
const map<_K, _Ty, _Pr, _A>& _Y)
{return (_X.size() == _Y.size()
&& equal(_X.begin(), _X.end(), _Y.begin())); }
template<class _K, class _Ty, class _Pr, class _A> inline
bool operator!=(const map<_K, _Ty, _Pr, _A>& _X,
const map<_K, _Ty, _Pr, _A>& _Y)
{return (!(_X == _Y)); }
template<class _K, class _Ty, class _Pr, class _A> inline
bool operator<(const map<_K, _Ty, _Pr, _A>& _X,
const map<_K, _Ty, _Pr, _A>& _Y)
{return (lexicographical_compare(_X.begin(), _X.end(),
_Y.begin(), _Y.end())); }
template<class _K, class _Ty, class _Pr, class _A> inline
bool operator>(const map<_K, _Ty, _Pr, _A>& _X,
const map<_K, _Ty, _Pr, _A>& _Y)
{return (_Y < _X); }
template<class _K, class _Ty, class _Pr, class _A> inline
bool operator<=(const map<_K, _Ty, _Pr, _A>& _X,
const map<_K, _Ty, _Pr, _A>& _Y)
{return (!(_Y < _X)); }
template<class _K, class _Ty, class _Pr, class _A> inline
bool operator>=(const map<_K, _Ty, _Pr, _A>& _X,
const map<_K, _Ty, _Pr, _A>& _Y)
{return (!(_X < _Y)); }
// TEMPLATE CLASS multimap
template<class _K, class _Ty, class _Pr = less<_K>,
class _A = allocator<_Ty> >
class multimap {
public:
typedef multimap<_K, _Ty, _Pr, _A> _Myt;
typedef pair<const _K, _Ty> value_type;
struct _Kfn : public unary_function<value_type, _K> {
const _K& operator()(const value_type& _X) const
{return (_X.first); }
};
class value_compare
: public binary_function<value_type, value_type, bool> {
friend class map<_K, _Ty, _Pr, _A>;
public:
bool operator()(const value_type& _X,
const value_type& _Y) const
{return (comp(_X.first, _Y.first)); }
_PROTECTED:
value_compare(_Pr _Pred)
: comp(_Pred) {}
_Pr comp;
};
typedef _K key_type;
typedef _Ty referent_type;
typedef _Pr key_compare;
typedef _A allocator_type;
typedef _Tree<_K, value_type, _Kfn, _Pr, _A> _Imp;
typedef _Imp::size_type size_type;
typedef _Imp::difference_type difference_type;
typedef _Imp::reference reference;
typedef _Imp::const_reference const_reference;
typedef _Imp::iterator iterator;
typedef _Imp::const_iterator const_iterator;
typedef _Imp::reverse_iterator reverse_iterator;
typedef _Imp::const_reverse_iterator const_reverse_iterator;
typedef pair<iterator, iterator> _Pairii;
typedef pair<const_iterator, const_iterator> _Paircc;
explicit multimap(const _Pr& _Pred = _Pr(),
const _A& _Al = _A())
: _Tr(_Pred, true, _Al) {}
typedef const value_type *_It;
multimap(_It _F, _It _L, const _Pr& _Pred = _Pr(),
const _A& _Al = _A())
: _Tr(_Pred, true, _Al)
{for (; _F != _L; ++_F)
_Tr.insert(*_F); }
_Myt& operator=(const _Myt& _X)
{_Tr = _X._Tr;
return (*this); }
iterator begin()
{return (_Tr.begin()); }
const_iterator begin() const
{return (_Tr.begin()); }
iterator end()
{return (_Tr.end()); }
const_iterator end() const
{return (_Tr.end()); }
reverse_iterator rbegin()
{return (_Tr.rbegin()); }
const_reverse_iterator rbegin() const
{return (_Tr.rbegin()); }
reverse_iterator rend()
{return (_Tr.rend()); }
const_reverse_iterator rend() const
{return (_Tr.rend()); }
size_type size() const
{return (_Tr.size()); }
size_type max_size() const
{return (_Tr.max_size()); }
bool empty() const
{return (_Tr.empty()); }
_A get_allocator() const
{return (_Tr.get_allocator()); }
iterator insert(const value_type& _X)
{return (_Tr.insert(_X).first); }
iterator insert(iterator _P, const value_type& _X)
{return (_Tr.insert((_Imp::iterator&)_P, _X)); }
void insert(_It _F, _It _L)
{for (; _F != _L; ++_F)
_Tr.insert(*_F); }
iterator erase(iterator _P)
{return (_Tr.erase((_Imp::iterator&)_P)); }
iterator erase(iterator _F, iterator _L)
{return (_Tr.erase((_Imp::iterator&)_F,
(_Imp::iterator&)_L)); }
size_type erase(const _K& _Kv = _K())
{return (_Tr.erase(_Kv)); }
void clear()
{_Tr.clear(); }
void swap(_Myt& _X)
{std::swap(_Tr, _X._Tr); }
friend void swap(_Myt& _X, _Myt& _Y)
{_X.swap(_Y); }
key_compare key_comp() const
{return (_Tr.key_comp()); }
value_compare value_comp() const
{return (value_compare(_Tr.key_comp())); }
iterator find(const _K& _Kv)
{return (_Tr.find(_Kv)); }
const_iterator find(const _K& _Kv) const
{return (_Tr.find(_Kv)); }
size_type count(const _K& _Kv) const
{return (_Tr.count(_Kv)); }
iterator lower_bound(const _K& _Kv)
{return (_Tr.lower_bound(_Kv)); }
const_iterator lower_bound(const _K& _Kv) const
{return (_Tr.lower_bound(_Kv)); }
iterator upper_bound(const _K& _Kv)
{return (_Tr.upper_bound(_Kv)); }
const_iterator upper_bound(const _K& _Kv) const
{return (_Tr.upper_bound(_Kv)); }
_Pairii equal_range(const _K& _Kv)
{return (_Tr.equal_range(_Kv)); }
_Paircc equal_range(const _K& _Kv) const
{return (_Tr.equal_range(_Kv)); }
protected:
_Imp _Tr;
};
// multimap TEMPLATE OPERATORS
template<class _K, class _Ty, class _Pr, class _A> inline
bool operator==(const multimap<_K, _Ty, _Pr, _A>& _X,
const multimap<_K, _Ty, _Pr, _A>& _Y)
{return (_X.size() == _Y.size()
&& equal(_X.begin(), _X.end(), _Y.begin())); }
template<class _K, class _Ty, class _Pr, class _A> inline
bool operator!=(const multimap<_K, _Ty, _Pr, _A>& _X,
const multimap<_K, _Ty, _Pr, _A>& _Y)
{return (!(_X == _Y)); }
template<class _K, class _Ty, class _Pr, class _A> inline
bool operator<(const multimap<_K, _Ty, _Pr, _A>& _X,
const multimap<_K, _Ty, _Pr, _A>& _Y)
{return (lexicographical_compare(_X.begin(), _X.end(),
_Y.begin(), _Y.end())); }
template<class _K, class _Ty, class _Pr, class _A> inline
bool operator>(const multimap<_K, _Ty, _Pr, _A>& _X,
const multimap<_K, _Ty, _Pr, _A>& _Y)
{return (_Y < _X); }
template<class _K, class _Ty, class _Pr, class _A> inline
bool operator<=(const multimap<_K, _Ty, _Pr, _A>& _X,
const multimap<_K, _Ty, _Pr, _A>& _Y)
{return (!(_Y < _X)); }
template<class _K, class _Ty, class _Pr, class _A> inline
bool operator>=(const multimap<_K, _Ty, _Pr, _A>& _X,
const multimap<_K, _Ty, _Pr, _A>& _Y)
{return (!(_X < _Y)); }
_STD_END
#ifdef _MSC_VER
#pragma pack(pop)
#endif /* _MSC_VER */
#endif /* _MAP_ */
/*
* Copyright (c) 1995 by P.J. Plauger. ALL RIGHTS RESERVED.
* Consult your license regarding permissions and restrictions.
*/
/*
* This file is derived from software bearing the following
* restrictions:
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this
* software and its documentation for any purpose is hereby
* granted without fee, provided that the above copyright notice
* appear in all copies and that both that copyright notice and
* this permission notice appear in supporting documentation.
* Hewlett-Packard Company makes no representations about the
* suitability of this software for any purpose. It is provided
* "as is" without express or implied warranty.
*/