windows-nt/Source/XPSP1/NT/shell/osshell/accesory/ratpak/basex.c

411 lines
12 KiB
C
Raw Permalink Normal View History

2020-09-26 03:20:57 -05:00
//-----------------------------------------------------------------------------
// Package Title ratpak
// File basex.c
// Author Timothy David Corrie Jr. (timc@microsoft.com)
// Copyright (C) 1995-97 Microsoft
// Date 03-14-97
//
//
// Description
//
// Contains number routines for internal base computations, these assume
// internal base is a power of 2.
//
//-----------------------------------------------------------------------------
#if defined( DOS )
#include <dosstub.h>
#else
#include <windows.h>
#endif
#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <stdlib.h>
#include <ratpak.h>
// WARNING: This assumes return of a 64 bit entity is in edx:eax
// This assumption SHOULD always be true on X86
#pragma warning( disable : 4035 )
DWORDLONG __inline Mul32x32( IN DWORD a, IN DWORD b )
{
#ifdef _X86_
__asm {
mov eax, b
mul a
}
#else
return (DWORDLONG)a * b;
#endif
}
#pragma warning( default : 4035 )
// Yeah well when the F__KING COMPILER gets a clue I'll change this back to
// an inline (as opposed to the compiler looking at fastcall putting the args
// in registers, oh and then a) not making this inline, and b) pushing the
// values anyway!
#ifdef _X86_
#define Shr32xbase(x) \
__asm { mov eax,DWORD PTR [x] } \
__asm { mov edx,DWORD PTR [x+4] } \
__asm { shrd eax,edx,BASEXPWR } \
__asm { shr edx,BASEXPWR } \
__asm { mov DWORD PTR [x],eax } \
__asm { mov DWORD PTR [x+4],edx }
#else
#define Shr32xbase(x) (x >>= BASEXPWR);
#endif
void _mulnumx( PNUMBER *pa, PNUMBER b );
//----------------------------------------------------------------------------
//
// FUNCTION: mulnumx
//
// ARGUMENTS: pointer to a number and a second number, the
// base is always BASEX.
//
// RETURN: None, changes first pointer.
//
// DESCRIPTION: Does the number equivalent of *pa *= b.
// This is a stub which prevents multiplication by 1, this is a big speed
// improvement.
//
//----------------------------------------------------------------------------
void __inline mulnumx( PNUMBER *pa, PNUMBER b )
{
if ( b->cdigit > 1 || b->mant[0] != 1 || b->exp != 0 )
{
// If b is not one we multiply
if ( (*pa)->cdigit > 1 || (*pa)->mant[0] != 1 || (*pa)->exp != 0 )
{
// pa and b are both nonone.
_mulnumx( pa, b );
}
else
{
// if pa is one and b isn't just copy b. and adjust the sign.
long sign = (*pa)->sign;
DUPNUM(*pa,b);
(*pa)->sign *= sign;
}
}
else
{
// B is +/- 1, But we do have to set the sign.
(*pa)->sign *= b->sign;
}
}
//----------------------------------------------------------------------------
//
// FUNCTION: _mulnumx
//
// ARGUMENTS: pointer to a number and a second number, the
// base is always BASEX.
//
// RETURN: None, changes first pointer.
//
// DESCRIPTION: Does the number equivalent of *pa *= b.
// Assumes the base is BASEX of both numbers. This algorithm is the
// same one you learned in gradeschool, except the base isn't 10 it's
// BASEX.
//
//----------------------------------------------------------------------------
void _mulnumx( PNUMBER *pa, PNUMBER b )
{
PNUMBER c=NULL; // c will contain the result.
PNUMBER a=NULL; // a is the dereferenced number pointer from *pa
MANTTYPE *ptra; // ptra is a pointer to the mantissa of a.
MANTTYPE *ptrb; // ptrb is a pointer to the mantissa of b.
MANTTYPE *ptrc; // ptrc is a pointer to the mantissa of c.
MANTTYPE *ptrcoffset; // ptrcoffset, is the anchor location of the next
// single digit multiply partial result.
long iadigit=0; // Index of digit being used in the first number.
long ibdigit=0; // Index of digit being used in the second number.
MANTTYPE da=0; // da is the digit from the fist number.
TWO_MANTTYPE cy=0; // cy is the carry resulting from the addition of
// a multiplied row into the result.
TWO_MANTTYPE mcy=0; // mcy is the resultant from a single
// multiply, AND the carry of that multiply.
long icdigit=0; // Index of digit being calculated in final result.
a=*pa;
ibdigit = a->cdigit + b->cdigit - 1;
createnum( c, ibdigit + 1 );
c->cdigit = ibdigit;
c->sign = a->sign * b->sign;
c->exp = a->exp + b->exp;
ptra = MANT(a);
ptrcoffset = MANT(c);
for ( iadigit = a->cdigit; iadigit > 0; iadigit-- )
{
da = *ptra++;
ptrb = MANT(b);
// Shift ptrc, and ptrcoffset, one for each digit
ptrc = ptrcoffset++;
for ( ibdigit = b->cdigit; ibdigit > 0; ibdigit-- )
{
cy = 0;
mcy = Mul32x32( da, *ptrb );
if ( mcy )
{
icdigit = 0;
if ( ibdigit == 1 && iadigit == 1 )
{
c->cdigit++;
}
}
// If result is nonzero, or while result of carry is nonzero...
while ( mcy || cy )
{
// update carry from addition(s) and multiply.
cy += (TWO_MANTTYPE)ptrc[icdigit]+((DWORD)mcy&((DWORD)~BASEX));
// update result digit from
ptrc[icdigit++]=(MANTTYPE)((DWORD)cy&((DWORD)~BASEX));
// update carries from
Shr32xbase( mcy );
Shr32xbase( cy );
}
*ptrb++;
*ptrc++;
}
}
// prevent different kinds of zeros, by stripping leading duplicate zeroes.
// digits are in order of increasing significance.
while ( c->cdigit > 1 && MANT(c)[c->cdigit-1] == 0 )
{
c->cdigit--;
}
destroynum( *pa );
*pa=c;
}
//-----------------------------------------------------------------------------
//
// FUNCTION: numpowlongx
//
// ARGUMENTS: root as number power as long
// number.
//
// RETURN: None root is changed.
//
// DESCRIPTION: changes numeric representation of root to
// root ** power. Assumes base BASEX
// decomposes the exponent into it's sums of powers of 2, so on average
// it will take n+n/2 multiplies where n is the highest on bit.
//
//-----------------------------------------------------------------------------
void numpowlongx( IN OUT PNUMBER *proot, IN long power )
{
PNUMBER lret=NULL;
lret = longtonum( 1, BASEX );
// Once the power remaining is zero we are done.
while ( power > 0 )
{
// If this bit in the power decomposition is on, multiply the result
// by the root number.
if ( power & 1 )
{
mulnumx( &lret, *proot );
}
// multiply the root number by itself to scale for the next bit (i.e.
// square it.
mulnumx( proot, *proot );
// move the next bit of the power into place.
power >>= 1;
}
destroynum( *proot );
*proot=lret;
}
void _divnumx( PNUMBER *pa, PNUMBER b );
//----------------------------------------------------------------------------
//
// FUNCTION: divnumx
//
// ARGUMENTS: pointer to a number a second number.
//
// RETURN: None, changes first pointer.
//
// DESCRIPTION: Does the number equivalent of *pa /= b.
// Assumes nRadix is the internal nRadix representation.
// This is a stub which prevents division by 1, this is a big speed
// improvement.
//
//----------------------------------------------------------------------------
void __inline divnumx( PNUMBER *pa, PNUMBER b )
{
if ( b->cdigit > 1 || b->mant[0] != 1 || b->exp != 0 )
{
// b is not one.
if ( (*pa)->cdigit > 1 || (*pa)->mant[0] != 1 || (*pa)->exp != 0 )
{
// pa and b are both not one.
_divnumx( pa, b );
}
else
{
// if pa is one and b is not one, just copy b, and adjust the sign.
long sign = (*pa)->sign;
DUPNUM(*pa,b);
(*pa)->sign *= sign;
}
}
else
{
// b is one so don't divide, but set the sign.
(*pa)->sign *= b->sign;
}
}
//----------------------------------------------------------------------------
//
// FUNCTION: _divnumx
//
// ARGUMENTS: pointer to a number a second number.
//
// RETURN: None, changes first pointer.
//
// DESCRIPTION: Does the number equivalent of *pa /= b.
// Assumes nRadix is the internal nRadix representation.
//
//----------------------------------------------------------------------------
void _divnumx( PNUMBER *pa, PNUMBER b )
{
PNUMBER a=NULL; // a is the dereferenced number pointer from *pa
PNUMBER c=NULL; // c will contain the result.
PNUMBER lasttmp = NULL; // lasttmp allows a backup when the algorithm
// guesses one bit too far.
PNUMBER tmp = NULL; // current guess being worked on for divide.
PNUMBER rem = NULL; // remainder after applying guess.
long cdigits; // count of digits for answer.
MANTTYPE *ptrc; // ptrc is a pointer to the mantissa of c.
long thismax = maxout+ratio; // set a maximum number of internal digits
// to shoot for in the divide.
a=*pa;
if ( thismax < a->cdigit )
{
// a has more digits than precision specified, bump up digits to shoot
// for.
thismax = a->cdigit;
}
if ( thismax < b->cdigit )
{
// b has more digits than precision specified, bump up digits to shoot
// for.
thismax = b->cdigit;
}
// Create c (the divide answer) and set up exponent and sign.
createnum( c, thismax + 1 );
c->exp = (a->cdigit+a->exp) - (b->cdigit+b->exp) + 1;
c->sign = a->sign * b->sign;
ptrc = MANT(c) + thismax;
cdigits = 0;
DUPNUM( rem, a );
rem->sign = b->sign;
rem->exp = b->cdigit + b->exp - rem->cdigit;
while ( cdigits++ < thismax && !zernum(rem) )
{
long digit = 0;
*ptrc = 0;
while ( !lessnum( rem, b ) )
{
digit = 1;
DUPNUM( tmp, b );
destroynum( lasttmp );
lasttmp=longtonum( 0, BASEX );
while ( lessnum( tmp, rem ) )
{
destroynum( lasttmp );
DUPNUM(lasttmp,tmp);
addnum( &tmp, tmp, BASEX );
digit *= 2;
}
if ( lessnum( rem, tmp ) )
{
// too far, back up...
destroynum( tmp );
digit /= 2;
tmp=lasttmp;
lasttmp=NULL;
}
tmp->sign *= -1;
addnum( &rem, tmp, BASEX );
destroynum( tmp );
destroynum( lasttmp );
*ptrc |= digit;
}
rem->exp++;
ptrc--;
}
cdigits--;
if ( MANT(c) != ++ptrc )
{
memcpy( MANT(c), ptrc, (int)(cdigits*sizeof(MANTTYPE)) );
}
if ( !cdigits )
{
// A zero, make sure no wierd exponents creep in
c->exp = 0;
c->cdigit = 1;
}
else
{
c->cdigit = cdigits;
c->exp -= cdigits;
// prevent different kinds of zeros, by stripping leading duplicate
// zeroes. digits are in order of increasing significance.
while ( c->cdigit > 1 && MANT(c)[c->cdigit-1] == 0 )
{
c->cdigit--;
}
}
destroynum( rem );
destroynum( *pa );
*pa=c;
}