windows-nt/Source/XPSP1/NT/printscan/inc/psutil/cntutils.h

374 lines
8.8 KiB
C
Raw Normal View History

2020-09-26 03:20:57 -05:00
/*****************************************************************************
*
* (C) COPYRIGHT MICROSOFT CORPORATION, 2000
*
* TITLE: cntutils.h
*
* VERSION: 1.0
*
* AUTHOR: LazarI
*
* DATE: 23-Dec-2000
*
* DESCRIPTION: Containers and algorithms utility templates
*
*****************************************************************************/
#ifndef _CNTUTILS_H
#define _CNTUTILS_H
// the generic smart pointers & handles
#include "gensph.h"
////////////////////////////////////////////////
// Algorithms
//
namespace Alg
{
///////////////////////////////////////////////////////////////
// CDefaultAdaptor<T,K> - default adaptor class.
//
// T - type
// K - key for sorting
//
template <class T, class K = T>
class CDefaultAdaptor
{
public:
// assumes the key is the item itself
static const K& Key(const T &i) { return (const K&)i; }
// assumes K has less operator defined
static int Compare(const K &k1, const K &k2) { return (k2 < k1) - (k1 < k2); }
// assumes assignment operator defined
static T& Assign(T &i1, const T &i2) { return (i1 = i2); }
};
//////////////////////////////////////////////////////////
// _LowerBound<T,K,A> - lowerbound search alg.
// assumes the array is sorted.
//
// returns the position where this key (item) should be inserted.
// all the items before that position will be less or equal to the input key
//
// T - type
// K - key for sorting
// A - adaptor
//
template <class T, class K, class A>
int _LowerBound(const K &k, const T *base, int lo, int hi)
{
while( lo <= hi )
{
if( lo == hi )
{
// boundary case
if( A::Compare(k, A::Key(base[lo])) >= 0 )
{
// k >= lo
lo++;
}
break;
}
else
{
// divide & conquer
int mid = (lo+hi)/2;
if( A::Compare(k, A::Key(base[mid])) < 0 )
{
// k < mid
hi = mid;
}
else
{
// k >= mid
lo = mid+1;
}
}
}
return lo;
}
///////////////////////////////////////////////////////////////
// CSearchAlgorithms<T,K,A> - search alg.
//
// T - type
// K - key for sorting
// A - adaptor
//
// default template arguments are allowed only on classes
template <class T, class K = T, class A = CDefaultAdaptor<T,K> >
class CSearchAlgorithms
{
public:
// lower bound
static int LowerBound(const K &k, const T *base, int count)
{
return _LowerBound<T,K,A>(k, base, 0, count-1);
}
// binary search
static bool Find(const K &k, const T *base, int count, int *pi)
{
int iPos = _LowerBound<T,K,A>(k, base, 0, count-1)-1;
bool bFound = (0 <= iPos && iPos < count && 0 == A::Compare(k, A::Key(base[iPos])));
if( bFound && pi ) *pi = iPos;
return bFound;
};
};
} // namespace Alg
////////////////////////////////////////////////
//
// class CSimpleArray
//
// a simple array implementation based on
// shell DSA_* stuff (not MT safe)
//
// turn off debugging new for a while
#if defined(_DEBUG) && defined(_CRTDBG_MAP_ALLOC)
#undef new
#endif
template <class T>
class CSimpleArray
{
// in-place construct/destruct wrapper
class CWrapper
{
public:
// proper copy semantics
CWrapper() { }
CWrapper(const T &t): m_t(t) { }
T& operator = (const T &t) { m_t = t; return t; }
// placed new & delete
void *operator new(size_t, CWrapper *p) { ASSERT(p); return p; }
void operator delete(void *p) { }
T m_t;
};
public:
enum { DEFAULT_GROW = 32 };
typedef int (*PFN_COMPARE)(const T &i1, const T &i2);
CSimpleArray(int iGrow = DEFAULT_GROW) { Create(iGrow); }
~CSimpleArray() { Destroy(); }
HRESULT Create(int iGrow = DEFAULT_GROW)
{
m_shDSA = DSA_Create(sizeof(CWrapper), iGrow);
return m_shDSA ? S_OK : E_OUTOFMEMORY;
}
HRESULT Destroy()
{
if( m_shDSA )
{
DeleteAll();
m_shDSA = NULL;
}
return S_OK;
}
// the array interface
int Count() const
{
ASSERT(m_shDSA);
return _DSA_GetItemCount(m_shDSA);
}
const T& operator [] (int i) const
{
return _GetWrapperAt(i)->m_t;
}
T& operator [] (int i)
{
return _GetWrapperAt(i)->m_t;
}
// returns true if created/initialized
operator bool () const
{
return m_shDSA;
}
// returns -1 if failed to grow - i.e. out of memory
int Append(const T &item)
{
ASSERT(m_shDSA);
int i = DSA_InsertItem(m_shDSA, DA_LAST, (void *)_GetZeroMemWrapper()); // allocate
if( -1 != i )
{
new (_GetWrapperAt(i)) CWrapper(item); // construct
}
return i;
}
// returns -1 if failed to grow - i.e. out of memory
int Insert(int i, const T &item)
{
ASSERT(m_shDSA && 0 <= i && i <= _DSA_GetItemCount(m_shDSA));
i = DSA_InsertItem(m_shDSA, i, (void *)_GetZeroMemWrapper()); // allocate
if( -1 != i )
{
new (_GetWrapperAt(i)) CWrapper(item); // construct
}
return i;
}
BOOL Delete(int i)
{
ASSERT(m_shDSA && 0 <= i && i < _DSA_GetItemCount(m_shDSA));
delete _GetWrapperAt(i); // destruct
return DSA_DeleteItem(m_shDSA, i); // free
}
void DeleteAll()
{
ASSERT(m_shDSA);
// destruct all
if( Count() )
{
int i, iCount = Count();
CWrapper *p = _GetWrapperAt(0);
for( i=0; i<iCount; i++ )
{
delete (p+i);
}
}
// free all
DSA_DeleteAllItems(m_shDSA);
}
HRESULT Sort(PFN_COMPARE pfnCompare)
{
// would be nice to have it
return E_NOTIMPL;
}
private:
static CWrapper* _GetZeroMemWrapper()
{
// returns zero initialized memory of size - sizeof(CWrapper)
static BYTE buffer[sizeof(CWrapper)];
return reinterpret_cast<CWrapper*>(buffer);
}
CWrapper* _GetWrapperAt(int i) const
{
ASSERT(m_shDSA && 0 <= i && i < _DSA_GetItemCount(m_shDSA));
return reinterpret_cast<CWrapper*>(DSA_GetItemPtr(m_shDSA, i));
}
int _DSA_GetItemCount(HDSA hdsa) const
{
// DSA_GetItemCount is a macro, which is casting to int* (somewhat illegal),
// so we need to do a static cast here, so our casting operator gets invoked
return DSA_GetItemCount(static_cast<HDSA>(m_shDSA));
}
CAutoHandleHDSA m_shDSA; // shell dynamic structure array
};
// turn back on debugging new
#if defined(_DEBUG) && defined(_CRTDBG_MAP_ALLOC)
#define new new(_NORMAL_BLOCK, __FILE__, __LINE__)
#endif
////////////////////////////////////////////////
//
// class CSortedArray<T,K,A>
//
// a sorted array implementation based on DSA_*
// (not MT safe)
//
// T - type
// K - key for sorting
// A - adaptor
//
template <class T, class K = T, class A = Alg::CDefaultAdaptor<T,K> >
class CSortedArray: public CSimpleArray<T>
{
public:
CSortedArray() { }
CSortedArray(int iGrow): CSimpleArray<T>(iGrow) { }
~CSortedArray() { }
// returns -1 if failed to grow - i.e. out of memory
int SortedInsert(const T &item)
{
return CSimpleArray<T>::Insert(
Count() ? Alg::CSearchAlgorithms<T,K,A>::LowerBound(A::Key(item), &operator[](0), Count()) : 0,
item);
}
// true if found and false otherwise
bool FindItem(const K &k, int *pi) const
{
return Count() ? Alg::CSearchAlgorithms<T,K,A>::Find(k, &operator[](0), Count(), pi) : false;
}
private:
// those APIs shouldn't be visible, so make them private.
int Append(const T &item) { CSimpleArray<T>::Append(item); }
int Insert(int i, const T &item) { CSimpleArray<T>::Insert(i, item); }
HRESULT Sort(PFN_COMPARE pfnCompare) { CSimpleArray<T>::Sort(pfnCompare); }
};
////////////////////////////////////////////////
//
// class CFastHeap<T>
//
// fast cached heap for fixed chunks
// of memory (MT safe)
//
template <class T>
class CFastHeap
{
public:
enum { DEFAULT_CACHE_SIZE = 32 };
// construction/destruction
CFastHeap(int iCacheSize = DEFAULT_CACHE_SIZE);
~CFastHeap();
// the fast heap interface
HRESULT Alloc(const T &data, HANDLE *ph);
HRESULT Free(HANDLE h);
HRESULT GetItem(HANDLE h, T **ppData);
#if DBG
int m_iPhysicalAllocs;
int m_iLogicalAllocs;
#else
private:
#endif
// private stuff/impl.
struct HeapItem
{
HeapItem *pNext;
T data;
};
CCSLock m_csLock;
HeapItem *m_pFreeList;
int m_iCacheSize;
int m_iCached;
};
// include the implementation of the template classes here
#include "cntutils.inl"
#endif // endif _CNTUTILS_H