windows-nt/Source/XPSP1/NT/base/wow64/mscpu/math/ieeemisc.c

475 lines
8.9 KiB
C
Raw Normal View History

2020-09-26 03:20:57 -05:00
/*++
Copyright (c) 1999 Microsoft Corporation
Module Name:
ieeemisc.c
Abstract:
IEEE miscellaneous recommended functions
Author:
Revision History:
29-sept-1999 ATM Shafiqul Khalid [askhalid] copied from rtl library.
--*/
#include <trans.h>
#include <math.h>
#include <float.h>
/***
* _copysign - copy sign
*
*Purpose:
* copysign(x,y) returns x with the sign of y. Hence, abs(x) := copysign
* even if x is NaN [IEEE std 854-1987 Appendix]
*
*
*Entry:
*
*Exit:
*
*Exceptions:
* No exceptions, even if one of the arguments is NaN.
*
* (Currently the i386 compiler returns doubles on the fp stack
* so the fld instruction at the end will cause an invalid operation
* if x is NaN. However this compiler calling convention will change
* soon)
*
*******************************************************************************/
double _copysign (double x, double y)
{
double retval;
*D_LO(retval) = *D_LO(x);
*D_HI(retval) = *D_HI(x) & ~(1<<31) |
*D_HI(y) & (1<<31) ;
return retval;
}
/***
* _chgsign - change sign
*
*Purpose:
* x is copied with its sign reversed, not 0-x; the distinction is germane
* when x is +0, -0, or NaN
*
*Entry:
*
*Exit:
*
*Exceptions:
* No exceptions, even if x is NaN.
*
* (Currently the i386 compiler returns doubles on the fp stack
* so the fld instruction at the end will cause an invalid operation
* if x is NaN. However this compiler calling convention will change
* soon)
*
*******************************************************************************/
double _chgsign (double x)
{
double retval;
*D_LO(retval) = *D_LO(x);
*D_HI(retval) = *D_HI(x) & ~(1 << 31) |
~*D_HI(x) & (1<<31);
return retval;
}
/***
* _scalb - scale by power of 2
*
*Purpose:
* _scalb(x,n) returns x * 2^n for integral values of n without
* computing 2^n
* Special case:
* If x is infinity or zero, _scaleb returns x
*
*
*Entry:
* double x
* int n
*
*Exit:
*
*Exceptions:
* Invalid operation, Overflow, Underflow
*
*******************************************************************************/
double _scalb(double x, long n)
{
//
// It turns out that our implementation of ldexp matces the IEEE
// description of _scalb. The only problem with calling ldexp
// is that if an exception occurs, the operation code reported
// to the handler will be the one that corresponds to ldexp
// (i.e., we do not define a new operation code for _scalb
//
return ldexp(x,n);
}
/***
* _logb - extract exponent
*
*Purpose:
* _logb(x) returns the unbiased exponent of x, a signed integer in the
* format of x, except that logb(NaN) is a NaN, logb(+INF) is +INF,and
* logb(0) is is -INF and signals the division by zero exception.
* For x positive and finite, 1<= abs(scalb(x, -logb(x))) < 2
*
*
*Entry:
* double x
* int n
*
*Exit:
*
*Exceptions:
* Invalid operation, Division by zero
*
*******************************************************************************/
double _logb(double x)
{
unsigned int savedcw;
int exp;
double retval;
/* save user fp control word */
savedcw = _maskfp();
/* check for infinity or NAN */
if (IS_D_SPECIAL(x)){
switch (_sptype(x)) {
case T_PINF:
case T_NINF:
RETURN(savedcw, x);
case T_QNAN:
return _handle_qnan1(OP_LOGB, x, savedcw);
default: //T_SNAN
return _except1(FP_I, OP_LOGB, x, _s2qnan(x), savedcw);
}
}
if (x == 0) {
return _except1(FP_Z, OP_LOGB, x, -D_INF, savedcw);
}
(void) _decomp(x, &exp);
//
// x == man * 2^exp, where .5 <= man < 1. According to the spec
// of this function, we should compute the exponent so that
// 1<=man<2, i.e., we should decrement the computed exp by one
//
retval = (double) (exp - 1);
RETURN(savedcw, retval);
}
/***
* _nextafter - next representable neighbor
*
*Purpose:
* _nextafter(x,y) returns the next representable neighbor of x in
* the direction toward y. The following special cases arise: if
* x=y, then the result is x without any exception being signaled;
* otherwise, if either x or y is a quiet NaN, then the result is
* one or the other of the input NaNs. Overflow is sibnaled when x
* is finite but nextafter(x,y) is infinite; underflow is signaled
* when nextafter(x,y) lies strictly between -2^Emin, 2^Emin; in
* both cases, inexact is signaled.
*
*
*Entry:
*
*Exit:
*
*Exceptions:
* O, U, I, P
*
*******************************************************************************/
double _nextafter(double x, double y)
{
unsigned int savedcw;
double result;
/* save user fp control word */
savedcw = _maskfp();
/* check for infinity or NAN */
if (IS_D_SPECIAL(x) || IS_D_SPECIAL(y)){
if (IS_D_SNAN(x) || IS_D_SNAN(y)){
return _except2(FP_I,OP_NEXTAFTER,x,y,_d_snan2(x,y),savedcw);
}
if (IS_D_QNAN(x) || IS_D_QNAN(y)){
return _handle_qnan2(OP_NEXTAFTER,x,y,savedcw);
}
//
// infinite arguments are not treated as special cases
//
}
if (y == x) {
//
// no exceptions are raised in this case
//
RETURN(savedcw, x);
}
if (x == 0) {
*D_LO(result) = 1;
if (y > x) {
*D_HI(result) = 0;
}
else {
//
// result should be negative
//
*D_HI(result) = (unsigned long)(1<<31);
}
}
//
// At this point x!=y, and x!=0. x can be treated as a 64bit
// integer in sign/magnitude representation. To get the next
// representable neighbor we add or subtract one from this
// integer. (Note that for boundary cases like x==INF, need to
// add one will never occur --this would mean that y should
// be greater than INF, which is impossible)
//
if (x > 0 && y < x ||
x < 0 && y > x) {
//
// decrease value by one
//
*D_LO(result) = *D_LO(x) - 1;
*D_HI(result) = *D_HI(x);
if (*D_LO(x) == 0) {
//
// a borrow should propagate to the high order dword
//
(*D_HI(result)) --;
}
}
else if (x > 0 && y > x ||
x < 0 && y < x) {
//
// increase value by one
//
*D_LO(result) = *D_LO(x) + 1;
*D_HI(result) = *D_HI(x);
if (*D_LO(result) == 0) {
//
// a carry should propagate to the high order dword
//
(*D_HI(result)) ++;
}
}
//
// check if an exception should be raised
//
if ( IS_D_DENORM(result) ) {
//
// should signal underflow and inexact
// and provide a properly scaled value
//
double mant;
int exp;
mant = _decomp(result, &exp);
result = _set_exp(mant, exp+IEEE_ADJUST);
return _except2(FP_U|FP_P,OP_NEXTAFTER,x,y,result,savedcw);
}
if ( IS_D_INF(result) || IS_D_MINF(result) ) {
//
// should signal overflow and inexact
// and provide a properly scaled value
//
double mant;
int exp;
mant = _decomp(result, &exp);
result = _set_exp(mant, exp-IEEE_ADJUST);
return _except2(FP_O|FP_P,OP_NEXTAFTER,x,y,result,savedcw);
}
RETURN(savedcw, result);
}
/***
* _finite -
*
*Purpose:
* finite(x) returns the value TRUE if -INF < x < +INF and returns
* false otherwise [IEEE std]
*
*Entry:
*
*Exit:
*
*Exceptions:
*
* This routine is treated as a nonarithmetic operation, therefore
* it does not signal any floating point exceptions
*
*******************************************************************************/
int _finite(double x)
{
if (IS_D_SPECIAL(x)) {
//
// x is INF or NaN
//
return 0;
}
return 1;
}
/***
* _isnan -
*
*Purpose:
* isnan(x) returns the value TRUE if x is a NaN, and returns FALSE
* otherwise.
*
*
*Entry:
*
*Exit:
*
*Exceptions:
*
* This routine is treated as a nonarithmetic operation, therefore
* it does not signal any floating point exceptions
*
*******************************************************************************/
int _isnan(double x)
{
if (IS_D_SNAN(x) || IS_D_QNAN(x)) {
return 1;
}
return 0;
}
/***
*double _fpclass(double x) - floating point class
*
*Purpose:
* Compute the floating point class of a number, according
* to the recommendations of the IEEE std. 754
*
*Entry:
*
*Exit:
*
*Exceptions:
* This function is never exceptional, even when the argument is SNAN
*
*******************************************************************************/
int _fpclass(double x)
{
int sign;
if (IS_D_SPECIAL(x)){
switch (_sptype(x)) {
case T_PINF:
return _FPCLASS_PINF;
case T_NINF:
return _FPCLASS_NINF;
case T_QNAN:
return _FPCLASS_QNAN;
default: //T_SNAN
return _FPCLASS_SNAN;
}
}
sign = (*D_EXP(x)) & 0x8000;
if (IS_D_DENORM(x))
return sign? _FPCLASS_ND : _FPCLASS_PD;
if (x == 0.0)
return sign? _FPCLASS_NZ : _FPCLASS_PZ;
return sign? _FPCLASS_NN : _FPCLASS_PN;
}