windows-nt/Source/XPSP1/NT/base/wow64/mscpu/math/tan.c

136 lines
3.2 KiB
C
Raw Normal View History

2020-09-26 03:20:57 -05:00
/*++
Copyright (c) 1999 Microsoft Corporation
Module Name:
tan.c
Abstract:
This module implement tan function used in the wow64 mscpu.
Author:
Revision History:
29-sept-1999 ATM Shafiqul Khalid [askhalid] copied from rtl library.
--*/
#include <math.h>
#include <trans.h>
/* constants */
static double const TWO_OVER_PI = 0.63661977236758134308;
static double const EPS = 1.05367121277235079465e-8; /* 2^(-53/2) */
static double const YMAX = 2.98156826864790199324e8; /* 2^(53/2)*PI/2 */
//
// The sum of C1 and C2 is a representation of PI/2 with 66 bits in the
// significand (same as x87). (PI/2 = 2 * 0.c90fdaa2 2168c234 c h)
//
static _dbl _C1 = {SET_DBL (0x3ff921fb, 0x54400000)};
static _dbl _C2 = {SET_DBL (0x3dd0b461, 0x1a600000)};
#define C1 (_C1.dbl)
#define C2 (_C2.dbl)
/* constants for the rational approximation */
/* p0 = 1.0 is not used (avoid mult by 1) */
static double const p1 = -0.13338350006421960681e+0;
static double const p2 = 0.34248878235890589960e-2;
static double const p3 = -0.17861707342254426711e-4;
static double const q0 = 0.10000000000000000000e+1;
static double const q1 = -0.46671683339755294240e+0;
static double const q2 = 0.25663832289440112864e-1;
static double const q3 = -0.31181531907010027307e-3;
static double const q4 = 0.49819433993786512270e-6;
#define Q(g) ((((q4 * (g) + q3) * (g) + q2) * (g) + q1) * (g) + q0)
#define P(g,f) (((p3 * (g) + p2) * (g) + p1) * (g) * (f) + (f))
#define ISODD(i) ((i)&0x1)
/***
*double tan(double x) - tangent
*
*Purpose:
* Compute the tangent of a number.
* The algorithm (reduction / rational approximation) is
* taken from Cody & Waite.
*
*Entry:
*
*Exit:
*
*Exceptions:
* P, I, U
* if x is denormal: raise underflow
*******************************************************************************/
double Proxytan(double x)
{
unsigned int savedcw;
unsigned long n;
double xn,xnum,xden;
double f,g,result;
/* save user fp control word */
savedcw = _maskfp();
if (IS_D_SPECIAL(x)){
switch(_sptype(x)) {
case T_PINF:
case T_NINF:
return _except1(FP_I,OP_TAN,x,QNAN_TAN1,savedcw);
case T_QNAN:
return _handle_qnan1(OP_TAN, x, savedcw);
default: //T_SNAN
return _except1(FP_I,OP_TAN,x,_s2qnan(x),savedcw);
}
}
if (x == 0.0)
RETURN(savedcw, x);
if (ABS(x) > YMAX) {
// The argument is too large to produce a meaningful result,
// so this is treated as an invalid operation.
// We also set the (extra) FP_TLOSS flag for matherr
// support
return _except1(FP_TLOSS | FP_I,OP_TAN,x,QNAN_TAN2,savedcw);
}
xn = _frnd(x * TWO_OVER_PI);
n = (unsigned long) fabs(xn);
/* assume there is a guard digit for addition */
f = (x - xn * C1) - xn * C2;
if (ABS(f) < EPS) {
xnum = f;
xden = 1;
if (IS_D_DENORM(f)) {
return _except1(FP_U | FP_P,OP_TAN,x,_add_exp(f, IEEE_ADJUST),savedcw);
}
}
else {
g = f*f;
xnum = P(g,f);
xden = Q(g);
}
if (ISODD(n)) {
xnum = -xnum;
result = xden/xnum;
}
else
result = xnum/xden;
RETURN_INEXACT1(OP_TAN,x,result,savedcw);
}