windows-nt/Source/XPSP1/NT/drivers/storage/newft/mirror.cxx

3238 lines
81 KiB
C++
Raw Normal View History

2020-09-26 03:20:57 -05:00
/*++
Copyright (C) 1991-5 Microsoft Corporation
Module Name:
mirror.cxx
Abstract:
This module contains the code specific to mirrors for the fault
tolerance driver.
Author:
Bob Rinne (bobri) 2-Feb-1992
Mike Glass (mglass)
Norbert Kusters 2-Feb-1995
Environment:
kernel mode only
Notes:
Revision History:
--*/
extern "C" {
#include <ntddk.h>
}
#include <ftdisk.h>
#ifdef ALLOC_PRAGMA
#pragma code_seg("PAGE")
#endif
NTSTATUS
MIRROR::Initialize(
IN OUT PROOT_EXTENSION RootExtension,
IN FT_LOGICAL_DISK_ID LogicalDiskId,
IN OUT PFT_VOLUME* VolumeArray,
IN USHORT ArraySize,
IN PVOID ConfigInfo,
IN PVOID StateInfo
)
/*++
Routine Description:
Initialize routine for FT_VOLUME of type MIRROR.
Arguments:
RootExtension - Supplies the root device extension.
LogicalDiskId - Supplies the logical disk id for this volume.
VolumeArray - Supplies the array of volumes for this volume set.
ArraySize - Supplies the number of volumes in the volume array.
ConfigInfo - Supplies the configuration information.
StateInfo - Supplies the state information.
Return Value:
NTSTATUS
--*/
{
NTSTATUS status;
PFT_MIRROR_SET_CONFIGURATION_INFORMATION config;
if (ArraySize != 2) {
return STATUS_INVALID_PARAMETER;
}
if (!VolumeArray[0] && !VolumeArray[1]) {
return STATUS_INVALID_PARAMETER;
}
status = COMPOSITE_FT_VOLUME::Initialize(RootExtension, LogicalDiskId,
VolumeArray, ArraySize,
ConfigInfo, StateInfo);
if (!NT_SUCCESS(status)) {
return status;
}
config = (PFT_MIRROR_SET_CONFIGURATION_INFORMATION) ConfigInfo;
_volumeSize = config->MemberSize;
_requestCount[0] = 0;
_requestCount[1] = 0;
_lastPosition[0] = 0;
_lastPosition[1] = 0;
if (VolumeArray[0] && VolumeArray[0]->QueryVolumeSize() < _volumeSize) {
return STATUS_INVALID_PARAMETER;
}
if (VolumeArray[1] && VolumeArray[1]->QueryVolumeSize() < _volumeSize) {
return STATUS_INVALID_PARAMETER;
}
RtlCopyMemory(&_state, StateInfo,
sizeof(FT_MIRROR_AND_SWP_STATE_INFORMATION));
_originalDirtyBit = _state.IsDirty;
_orphanedBecauseOfMissingMember = FALSE;
_syncOk = TRUE;
_balancedReads = _state.IsDirty ? FALSE : TRUE;
_stopSyncs = FALSE;
_ePacket = new MIRROR_TP;
if (!_ePacket) {
return STATUS_INSUFFICIENT_RESOURCES;
}
_ePacket2 = new MIRROR_TP;
if (!_ePacket2) {
return STATUS_INSUFFICIENT_RESOURCES;
}
_ePacketInUse = FALSE;
InitializeListHead(&_ePacketQueue);
_eRecoverPacket = new MIRROR_RECOVER_TP;
if (!_eRecoverPacket) {
return STATUS_INSUFFICIENT_RESOURCES;
}
if (!_eRecoverPacket->AllocateMdls(QuerySectorSize())) {
return STATUS_INSUFFICIENT_RESOURCES;
}
_eRecoverPacketInUse = FALSE;
InitializeListHead(&_eRecoverPacketQueue);
status = _overlappedIoManager.Initialize(0);
return status;
}
FT_LOGICAL_DISK_TYPE
MIRROR::QueryLogicalDiskType(
)
/*++
Routine Description:
This routine returns the type of the logical disk.
Arguments:
None.
Return Value:
The type of the logical disk.
--*/
{
return FtMirrorSet;
}
#ifdef ALLOC_PRAGMA
#pragma code_seg("PAGELK")
#endif
MIRROR::~MIRROR(
)
{
if (_ePacket) {
delete _ePacket;
_ePacket = NULL;
}
if (_ePacket2) {
delete _ePacket2;
_ePacket2 = NULL;
}
if (_eRecoverPacket) {
delete _eRecoverPacket;
_eRecoverPacket = NULL;
}
}
NTSTATUS
MIRROR::OrphanMember(
IN USHORT MemberNumber,
IN FT_COMPLETION_ROUTINE CompletionRoutine,
IN PVOID Context
)
/*++
Routine Description:
This routine tries to orphan the given member of this logical disk.
A completion routine will be called if and only if this attempt is successful.
Arguments:
MemberNumber - Supplies the member number to orphan.
CompletionRoutine - Supplies the completion routine.
Context - Supplies the completion routine context.
Return Value:
NTSTATUS
--*/
{
KIRQL irql;
NTSTATUS status = STATUS_SUCCESS;
BOOLEAN b;
if (MemberNumber >= 2) {
return STATUS_INVALID_PARAMETER;
}
KeAcquireSpinLock(&_spinLock, &irql);
b = SetMemberState(MemberNumber, FtMemberOrphaned);
KeReleaseSpinLock(&_spinLock, irql);
if (b) {
PropogateStateChanges(CompletionRoutine, Context);
Notify();
FtpLogError(_rootExtension, QueryLogicalDiskId(),
FT_ORPHANING, STATUS_SUCCESS, 2);
}
return b ? STATUS_SUCCESS : STATUS_INVALID_PARAMETER;
}
VOID
MirrorCompositeVolumeCompletionRoutine(
IN PVOID Context,
IN NTSTATUS Status
)
{
PFT_COMPLETION_ROUTINE_CONTEXT context;
KIRQL irql;
LONG count;
context = (PFT_COMPLETION_ROUTINE_CONTEXT) Context;
KeAcquireSpinLock(&context->SpinLock, &irql);
if (!NT_SUCCESS(Status) &&
FtpIsWorseStatus(Status, context->Status)) {
context->Status = Status;
}
count = --context->RefCount;
KeReleaseSpinLock(&context->SpinLock, irql);
if (!count) {
context->CompletionRoutine(context->Context, STATUS_SUCCESS);
ExFreePool(context);
}
}
VOID
FinishRegenerate(
IN PMIRROR Mirror,
IN PFT_COMPLETION_ROUTINE_CONTEXT RegenContext,
IN PMIRROR_TP TransferPacket
)
{
PMIRROR t = Mirror;
delete TransferPacket;
MirrorCompositeVolumeCompletionRoutine(RegenContext, STATUS_SUCCESS);
}
VOID
MirrorRegenerateCompletionRoutine(
IN PTRANSFER_PACKET TransferPacket
);
VOID
MirrorRegeneratePhase1(
IN PTRANSFER_PACKET TransferPacket
)
{
TransferPacket->CompletionRoutine = MirrorRegenerateCompletionRoutine;
TRANSFER(TransferPacket);
}
VOID
MirrorRegenerateCompletionRoutine(
IN PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
Completion routine for MIRROR::RestartRegenerations routine.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PMIRROR_TP transferPacket = (PMIRROR_TP) TransferPacket;
PFT_COMPLETION_ROUTINE_CONTEXT context = (PFT_COMPLETION_ROUTINE_CONTEXT) transferPacket->MasterPacket;
PMIRROR t = transferPacket->Mirror;
KIRQL irql;
PLIST_ENTRY l;
PMIRROR_TP packet;
BOOLEAN b;
if (!NT_SUCCESS(transferPacket->IoStatus.Status)) {
// We can't get a VERIFY_REQUIRED because we put IrpFlags equal
// to SL_OVERRIDE_VERIFY_VOLUME.
ASSERT(transferPacket->IoStatus.Status != STATUS_VERIFY_REQUIRED);
if (FsRtlIsTotalDeviceFailure(transferPacket->IoStatus.Status)) {
KeAcquireSpinLock(&t->_spinLock, &irql);
b = t->SetMemberState(transferPacket->WhichMember, FtMemberOrphaned);
t->_syncOk = TRUE;
KeReleaseSpinLock(&t->_spinLock, irql);
if (b) {
t->PropogateStateChanges(NULL, NULL);
t->Notify();
FtpLogError(t->_rootExtension, t->QueryLogicalDiskId(),
FT_ORPHANING, STATUS_SUCCESS, 3);
IoRaiseInformationalHardError(STATUS_FT_ORPHANING, NULL, NULL);
}
FinishRegenerate(t, context, transferPacket);
return;
}
// Transfer the maximum amount that we can. This will always
// complete successfully.
t->MaxTransfer(transferPacket);
return;
}
// Set up for the next packet.
transferPacket->Thread = PsGetCurrentThread();
transferPacket->ReadPacket = !transferPacket->ReadPacket;
transferPacket->WhichMember = (transferPacket->WhichMember + 1)%2;
transferPacket->TargetVolume = t->GetMemberUnprotected(
transferPacket->WhichMember);
KeAcquireSpinLock(&t->_spinLock, &irql);
if (t->QueryMemberState(transferPacket->WhichMember) == FtMemberOrphaned ||
t->_stopSyncs) {
t->_syncOk = TRUE;
KeReleaseSpinLock(&t->_spinLock, irql);
FinishRegenerate(t, context, transferPacket);
return;
}
KeReleaseSpinLock(&t->_spinLock, irql);
if (transferPacket->ReadPacket) {
t->_overlappedIoManager.ReleaseIoRegion(transferPacket);
if (transferPacket->Offset + STRIPE_SIZE >= t->_volumeSize) {
KeAcquireSpinLock(&t->_spinLock, &irql);
b = t->SetMemberState((transferPacket->WhichMember + 1)%2,
FtMemberHealthy);
t->_balancedReads = TRUE;
t->_syncOk = TRUE;
t->_originalDirtyBit = FALSE;
KeReleaseSpinLock(&t->_spinLock, irql);
if (b) {
t->PropogateStateChanges(NULL, NULL);
t->Notify();
FtpLogError(t->_rootExtension, t->QueryLogicalDiskId(),
FT_MIRROR_COPY_ENDED, STATUS_SUCCESS, 0);
}
FinishRegenerate(t, context, transferPacket);
return;
}
transferPacket->Offset += STRIPE_SIZE;
if (t->_volumeSize - transferPacket->Offset < STRIPE_SIZE) {
transferPacket->Length = (ULONG) (t->_volumeSize -
transferPacket->Offset);
}
transferPacket->CompletionRoutine = MirrorRegeneratePhase1;
t->_overlappedIoManager.AcquireIoRegion(transferPacket, TRUE);
} else {
TRANSFER(transferPacket);
}
}
NTSTATUS
MIRROR::RegenerateMember(
IN USHORT MemberNumber,
IN OUT PFT_VOLUME NewMember,
IN FT_COMPLETION_ROUTINE CompletionRoutine,
IN PVOID Context
)
/*++
Routine Description:
This routine regenerates the given member of this volume with
the given volume.
Arguments:
MemberNumber - Supplies the member number to regenerate.
NewMember - Supplies the new member to regenerate to.
CompletionRoutine - Supplies the completion routine.
Context - Supplies the completion routine context.
Return Value:
NTSTATUS
--*/
{
PFT_COMPLETION_ROUTINE_CONTEXT context;
PMIRROR_TP packet;
NTSTATUS status;
KIRQL irql;
BOOLEAN b;
if (MemberNumber >= 2 ||
NewMember->QueryVolumeSize() < _volumeSize) {
return STATUS_INVALID_PARAMETER;
}
context = (PFT_COMPLETION_ROUTINE_CONTEXT)
ExAllocatePool(NonPagedPool,
sizeof(FT_COMPLETION_ROUTINE_CONTEXT));
packet = new MIRROR_TP;
if (packet && !packet->AllocateMdl(STRIPE_SIZE)) {
delete packet;
packet = NULL;
}
if (!context || !packet) {
if (context) {
ExFreePool(context);
}
if (packet) {
delete packet;
}
return STATUS_INSUFFICIENT_RESOURCES;
}
KeInitializeSpinLock(&context->SpinLock);
context->Status = STATUS_SUCCESS;
context->RefCount = 1;
context->CompletionRoutine = CompletionRoutine;
context->Context = Context;
context->ParentVolume = this;
packet->Length = STRIPE_SIZE;
packet->Offset = 0;
packet->CompletionRoutine = MirrorRegeneratePhase1;
packet->Thread = PsGetCurrentThread();
packet->IrpFlags = SL_OVERRIDE_VERIFY_VOLUME;
packet->ReadPacket = TRUE;
packet->MasterPacket = (PTRANSFER_PACKET) context;
packet->Mirror = this;
status = STATUS_SUCCESS;
KeAcquireSpinLock(&_spinLock, &irql);
if (_syncOk) {
_syncOk = FALSE;
_stopSyncs = FALSE;
} else {
KeReleaseSpinLock(&_spinLock, irql);
delete packet;
ExFreePool(context);
return STATUS_INVALID_PARAMETER;
}
if (_state.UnhealthyMemberState != FtMemberHealthy) {
if (MemberNumber == _state.UnhealthyMemberNumber) {
if (_state.UnhealthyMemberState == FtMemberRegenerating) {
status = STATUS_INVALID_PARAMETER;
}
} else {
status = STATUS_INVALID_PARAMETER;
}
}
if (!NT_SUCCESS(status)) {
_syncOk = TRUE;
KeReleaseSpinLock(&_spinLock, irql);
ExFreePool(context);
delete packet;
return status;
}
packet->WhichMember = (MemberNumber + 1)%2;
packet->TargetVolume = GetMemberUnprotected(packet->WhichMember);
SetMemberUnprotected(MemberNumber, NewMember);
b = SetMemberState(MemberNumber, FtMemberRegenerating);
KeReleaseSpinLock(&_spinLock, irql);
ASSERT(b);
PropogateStateChanges(NULL, NULL);
Notify();
FtpLogError(_rootExtension, QueryLogicalDiskId(),
FT_MIRROR_COPY_STARTED, STATUS_SUCCESS, 2);
_overlappedIoManager.AcquireIoRegion(packet, TRUE);
return status;
}
VOID
MIRROR::Transfer(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
Transfer routine for MIRROR type FT_VOLUME. Balance READs as
much as possible and propogate WRITEs to both the primary and
secondary volumes.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
KIRQL irql;
PMIRROR_TP packet1, packet2;
if (TransferPacket->Offset + TransferPacket->Length > _volumeSize) {
TransferPacket->IoStatus.Status = STATUS_INVALID_PARAMETER;
TransferPacket->IoStatus.Information = 0;
TransferPacket->CompletionRoutine(TransferPacket);
return;
}
if (!TransferPacket->Mdl) {
TransferPacket->ReadPacket = FALSE;
}
packet1 = new MIRROR_TP;
if (packet1 && !TransferPacket->ReadPacket) {
packet2 = new MIRROR_TP;
if (!packet2) {
delete packet1;
packet1 = NULL;
}
} else {
packet2 = NULL;
}
if (!packet1) {
if (!TransferPacket->Mdl) {
TransferPacket->IoStatus.Status = STATUS_INSUFFICIENT_RESOURCES;
TransferPacket->IoStatus.Information = 0;
TransferPacket->CompletionRoutine(TransferPacket);
return;
}
KeAcquireSpinLock(&_spinLock, &irql);
if (_ePacketInUse) {
InsertTailList(&_ePacketQueue, &TransferPacket->QueueEntry);
KeReleaseSpinLock(&_spinLock, irql);
return;
}
_ePacketInUse = TRUE;
KeReleaseSpinLock(&_spinLock, irql);
packet1 = _ePacket;
packet2 = _ePacket2;
}
if (TransferPacket->ReadPacket) {
if (!LaunchRead(TransferPacket, packet1)) {
Recycle(packet1, TRUE);
}
} else {
if (!LaunchWrite(TransferPacket, packet1, packet2)) {
Recycle(packet1, FALSE);
Recycle(packet2, TRUE);
}
}
}
VOID
MIRROR::ReplaceBadSector(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This is a no-op since replacing bad sectors doesn't make sense
on an FT component with redundancy built in to it.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
TransferPacket->IoStatus.Status = STATUS_UNSUCCESSFUL;
TransferPacket->IoStatus.Information = 0;
TransferPacket->CompletionRoutine(TransferPacket);
}
VOID
MIRROR::StartSyncOperations(
IN BOOLEAN RegenerateOrphans,
IN FT_COMPLETION_ROUTINE CompletionRoutine,
IN PVOID Context
)
/*++
Routine Description:
This routine restarts any regenerate or initialize requests that were
suspended because of a reboot. The volume examines the member state of
all of its constituents and restarts any regenerations pending.
Arguments:
RegenerateOrphans - Supplies whether or not to try and regenerate
orphaned members.
CompletionRoutine - Supplies the completion routine.
Context - Supplies the context for the completion routine.
Return Value:
None.
--*/
{
PFT_COMPLETION_ROUTINE_CONTEXT context;
BOOLEAN dirty, b;
KIRQL irql;
USHORT srcIndex;
PMIRROR_TP packet;
context = (PFT_COMPLETION_ROUTINE_CONTEXT)
ExAllocatePool(NonPagedPool,
sizeof(FT_COMPLETION_ROUTINE_CONTEXT));
if (!context) {
CompletionRoutine(Context, STATUS_INSUFFICIENT_RESOURCES);
return;
}
KeInitializeSpinLock(&context->SpinLock);
context->Status = STATUS_SUCCESS;
context->RefCount = 2;
context->CompletionRoutine = CompletionRoutine;
context->Context = Context;
context->ParentVolume = this;
COMPOSITE_FT_VOLUME::StartSyncOperations(
RegenerateOrphans, MirrorCompositeVolumeCompletionRoutine, context);
if (_orphanedBecauseOfMissingMember) {
RegenerateOrphans = TRUE;
_orphanedBecauseOfMissingMember = FALSE;
}
dirty = FALSE;
b = FALSE;
KeAcquireSpinLock(&_spinLock, &irql);
if (_syncOk) {
_syncOk = FALSE;
_stopSyncs = FALSE;
} else {
KeReleaseSpinLock(&_spinLock, irql);
MirrorCompositeVolumeCompletionRoutine(context, STATUS_SUCCESS);
return;
}
if (_state.UnhealthyMemberState == FtMemberOrphaned &&
RegenerateOrphans &&
GetMemberUnprotected(_state.UnhealthyMemberNumber)) {
_state.UnhealthyMemberState = FtMemberRegenerating;
b = TRUE;
}
if (_state.UnhealthyMemberState == FtMemberHealthy) {
if (_originalDirtyBit) {
srcIndex = 0;
dirty = TRUE;
} else {
_syncOk = TRUE;
KeReleaseSpinLock(&_spinLock, irql);
MirrorCompositeVolumeCompletionRoutine(context, STATUS_SUCCESS);
return;
}
} else if (_state.UnhealthyMemberState == FtMemberRegenerating) {
srcIndex = (_state.UnhealthyMemberNumber + 1)%2;
b = TRUE;
} else {
_syncOk = TRUE;
KeReleaseSpinLock(&_spinLock, irql);
MirrorCompositeVolumeCompletionRoutine(context, STATUS_SUCCESS);
return;
}
KeReleaseSpinLock(&_spinLock, irql);
if (dirty) {
FtpLogError(_rootExtension, QueryLogicalDiskId(),
FT_DIRTY_SHUTDOWN, STATUS_SUCCESS, 0);
}
if (b) {
PropogateStateChanges(NULL, NULL);
Notify();
FtpLogError(_rootExtension, QueryLogicalDiskId(),
FT_MIRROR_COPY_STARTED, STATUS_SUCCESS, 3);
}
packet = new MIRROR_TP;
if (packet && !packet->AllocateMdl(STRIPE_SIZE)) {
delete packet;
packet = NULL;
}
if (!packet) {
MirrorCompositeVolumeCompletionRoutine(context,
STATUS_INSUFFICIENT_RESOURCES);
return;
}
packet->Length = STRIPE_SIZE;
packet->Offset = 0;
packet->CompletionRoutine = MirrorRegeneratePhase1;
packet->Thread = PsGetCurrentThread();
packet->IrpFlags = SL_OVERRIDE_VERIFY_VOLUME;
packet->ReadPacket = TRUE;
packet->MasterPacket = (PMIRROR_TP) context;
packet->Mirror = this;
packet->WhichMember = srcIndex;
packet->TargetVolume = GetMemberUnprotected(packet->WhichMember);
_overlappedIoManager.AcquireIoRegion(packet, TRUE);
}
VOID
MIRROR::StopSyncOperations(
)
/*++
Routine Description:
This routine stops all sync operations.
Arguments:
None.
Return Value:
None.
--*/
{
KIRQL irql;
COMPOSITE_FT_VOLUME::StopSyncOperations();
KeAcquireSpinLock(&_spinLock, &irql);
_stopSyncs = TRUE;
KeReleaseSpinLock(&_spinLock, irql);
}
LONGLONG
MIRROR::QueryVolumeSize(
)
/*++
Routine Description:
Returns the number of bytes on the entire volume.
Arguments:
None.
Return Value:
The volume size in bytes.
--*/
{
return _volumeSize;
}
VOID
MIRROR::SetDirtyBit(
IN BOOLEAN IsDirty,
IN FT_COMPLETION_ROUTINE CompletionRoutine,
IN PVOID Context
)
/*++
Routine Description:
This routine sets the dirty bit on the volume. This bit is used at
startup to determine whether or not there was a clean shutdown.
Arguments:
IsDirty - Supplies the value of the dirty bit.
Return Value:
None.
--*/
{
PFT_COMPLETION_ROUTINE_CONTEXT context;
KIRQL irql;
if (CompletionRoutine) {
context = (PFT_COMPLETION_ROUTINE_CONTEXT)
ExAllocatePool(NonPagedPool,
sizeof(FT_COMPLETION_ROUTINE_CONTEXT));
if (!context) {
CompletionRoutine(Context, STATUS_INSUFFICIENT_RESOURCES);
return;
}
KeInitializeSpinLock(&context->SpinLock);
context->Status = STATUS_SUCCESS;
context->RefCount = 2;
context->CompletionRoutine = CompletionRoutine;
context->Context = Context;
context->ParentVolume = this;
COMPOSITE_FT_VOLUME::SetDirtyBit(IsDirty,
MirrorCompositeVolumeCompletionRoutine, context);
} else {
COMPOSITE_FT_VOLUME::SetDirtyBit(IsDirty, NULL, NULL);
}
KeAcquireSpinLock(&_spinLock, &irql);
if (IsDirty || _syncOk) {
if (!_stopSyncs) {
_state.IsDirty = IsDirty;
}
}
KeReleaseSpinLock(&_spinLock, irql);
if (CompletionRoutine) {
PropogateStateChanges(MirrorCompositeVolumeCompletionRoutine, context);
} else {
PropogateStateChanges(NULL, NULL);
}
}
BOOLEAN
MIRROR::IsComplete(
IN BOOLEAN IoPending
)
/*++
Routine Description:
This routine computes whether or not this volume has either all
(if IoPending is FALSE) of its members or enough (if IoPending is TRUE) of
its members.
Arguments:
IoPending - Supplies whether or not there is IO pending.
Return Value:
None.
--*/
{
BOOLEAN b;
USHORT n, i, orphanMember;
PFT_VOLUME vol;
b = COMPOSITE_FT_VOLUME::IsComplete(IoPending);
if (b) {
return TRUE;
}
if (!IoPending) {
return FALSE;
}
n = QueryNumMembers();
orphanMember = n;
for (i = 0; i < n; i++) {
vol = GetMember(i);
if (!vol || !vol->IsComplete(IoPending)) {
if (orphanMember < n) {
return FALSE;
}
orphanMember = i;
}
}
if (orphanMember < n) {
if (_state.UnhealthyMemberState != FtMemberHealthy &&
_state.UnhealthyMemberNumber != orphanMember) {
return FALSE;
}
}
return TRUE;
}
VOID
MIRROR::CompleteNotification(
IN BOOLEAN IoPending
)
/*++
Routine Description:
This routine is called to notify the volume that it is complete and
to therefore prepare for incoming requests.
Arguments:
IoPending - Supplies whether or not there is IO pending.
Return Value:
None.
--*/
{
USHORT n, i, orphanMember;
PFT_VOLUME vol;
COMPOSITE_FT_VOLUME::CompleteNotification(IoPending);
n = QueryNumMembers();
orphanMember = n;
for (i = 0; i < n; i++) {
vol = GetMember(i);
if (!vol || !vol->IsComplete(IoPending)) {
orphanMember = i;
break;
}
}
if (orphanMember < n) {
if (SetMemberState(orphanMember, FtMemberOrphaned)) {
PropogateStateChanges(NULL, NULL);
Notify();
FtpLogError(_rootExtension, QueryLogicalDiskId(),
FT_ORPHANING, STATUS_SUCCESS, 1);
IoRaiseInformationalHardError(STATUS_FT_ORPHANING, NULL, NULL);
_orphanedBecauseOfMissingMember = TRUE;
}
}
}
NTSTATUS
MIRROR::CheckIo(
OUT PBOOLEAN IsIoOk
)
/*++
Routine Description:
This routine returns whether or not IO is possible on the given
logical disk.
Arguments:
IsIoOk - Returns the state of IO.
Return Value:
NTSTATUS
--*/
{
NTSTATUS status;
KIRQL irql;
USHORT n, numOk, skipVol, i;
PFT_VOLUME vol;
BOOLEAN ok, b;
n = QueryNumMembers();
numOk = 0;
KeAcquireSpinLock(&_spinLock, &irql);
if (_state.UnhealthyMemberState == FtMemberHealthy) {
skipVol = n;
} else {
skipVol = _state.UnhealthyMemberNumber;
}
KeReleaseSpinLock(&_spinLock, irql);
for (i = 0; i < n; i++) {
if (i == skipVol) {
continue;
}
vol = GetMemberUnprotected(i);
if (!vol) {
continue;
}
status = vol->CheckIo(&ok);
if (!NT_SUCCESS(status)) {
return status;
}
if (ok) {
numOk++;
}
}
if (numOk >= n - 1) {
*IsIoOk = TRUE;
} else {
*IsIoOk = FALSE;
}
return STATUS_SUCCESS;
}
BOOLEAN
MIRROR::IsVolumeSuitableForRegenerate(
IN USHORT MemberNumber,
IN PFT_VOLUME Volume
)
/*++
Routine Description:
This routine computes whether or not the given volume is suitable
for a regenerate operation.
Arguments:
MemberNumber - Supplies the member number.
Volume - Supplies the volume.
Return Value:
FALSE - The volume is not suitable.
TRUE - The volume is suitable.
--*/
{
KIRQL irql;
if (Volume->QueryVolumeSize() < _volumeSize) {
return FALSE;
}
KeAcquireSpinLock(&_spinLock, &irql);
if (!_syncOk ||
_state.UnhealthyMemberState != FtMemberOrphaned ||
_state.UnhealthyMemberNumber != MemberNumber) {
KeReleaseSpinLock(&_spinLock, irql);
return FALSE;
}
KeReleaseSpinLock(&_spinLock, irql);
return TRUE;
}
VOID
MIRROR::NewStateArrival(
IN PVOID NewStateInstance
)
/*++
Routine Description:
This routine takes the new state instance arrival combined with its
current state to come up with the new current state for the volume.
If the two states cannot be reconciled then this routine returns FALSE
indicating that the volume is invalid and should be broken into its
constituant parts.
Arguments:
NewStateInstance - Supplies the new state instance.
Return Value:
None.
--*/
{
BOOLEAN changed = FALSE;
PFT_MIRROR_AND_SWP_STATE_INFORMATION state;
state = (PFT_MIRROR_AND_SWP_STATE_INFORMATION) NewStateInstance;
if (state->IsDirty) {
if (!_state.IsDirty) {
_originalDirtyBit = _state.IsDirty = state->IsDirty;
_balancedReads = FALSE;
changed = TRUE;
}
}
if (state->UnhealthyMemberState != FtMemberHealthy) {
if (state->UnhealthyMemberNumber >= QueryNumMembers()) {
_state.UnhealthyMemberNumber = 1;
_state.UnhealthyMemberState = FtMemberOrphaned;
changed = TRUE;
FtpLogError(_rootExtension, QueryLogicalDiskId(),
FT_MIRROR_STATE_CORRUPTION,
STATUS_SUCCESS, 0);
} else if (_state.UnhealthyMemberState == FtMemberHealthy) {
_state.UnhealthyMemberState = state->UnhealthyMemberState;
_state.UnhealthyMemberNumber = state->UnhealthyMemberNumber;
changed = TRUE;
} else {
if (_state.UnhealthyMemberNumber == state->UnhealthyMemberNumber) {
if (state->UnhealthyMemberState == FtMemberOrphaned) {
if (_state.UnhealthyMemberState != FtMemberOrphaned) {
_state.UnhealthyMemberState = FtMemberOrphaned;
changed = TRUE;
}
}
} else {
_state.UnhealthyMemberNumber = 1;
_state.UnhealthyMemberState = FtMemberOrphaned;
changed = TRUE;
FtpLogError(_rootExtension, QueryLogicalDiskId(),
FT_MIRROR_STATE_CORRUPTION,
STATUS_SUCCESS, 0);
}
}
}
if (changed) {
PropogateStateChanges(NULL, NULL);
}
}
PDEVICE_OBJECT
MIRROR::GetLeftmostPartitionObject(
)
{
KIRQL irql;
USHORT memberNumber;
PFT_VOLUME vol;
KeAcquireSpinLock(&_spinLock, &irql);
if (_state.UnhealthyMemberState != FtMemberHealthy &&
_state.UnhealthyMemberNumber == 0) {
memberNumber = 1;
} else {
memberNumber = 0;
}
KeReleaseSpinLock(&_spinLock, irql);
vol = GetMember(memberNumber);
if (!vol) {
return NULL;
}
return vol->GetLeftmostPartitionObject();
}
BOOLEAN
MIRROR::QueryVolumeState(
IN PFT_VOLUME Volume,
OUT PFT_MEMBER_STATE State
)
/*++
Routine Description:
This routine returns the state of the given volume considered as a
member of this volume.
Arguments:
Volume - Supplies the volume to query the state for.
State - Returns the state.
Return Value:
FALSE - The given Volume is not a member of this volume.
TRUE - The state was successfully computed.
--*/
{
USHORT n, i;
PFT_VOLUME vol;
KIRQL irql;
FT_MEMBER_STATE state;
n = QueryNumMembers();
for (i = 0; i < n; i++) {
vol = GetMember(i);
if (!vol) {
continue;
}
if (!vol->QueryVolumeState(Volume, State)) {
continue;
}
KeAcquireSpinLock(&_spinLock, &irql);
state = QueryMemberState(i);
if (state != FtMemberHealthy) {
if (*State != FtMemberOrphaned) {
*State = state;
}
}
KeReleaseSpinLock(&_spinLock, irql);
return TRUE;
}
return FALSE;
}
BOOLEAN
MIRROR::SetMemberState(
IN USHORT MemberNumber,
IN FT_MEMBER_STATE MemberState
)
/*++
Routine Description:
This routine sets the given member to the given state.
Arguments:
MemberNumber - Supplies the member number.
MemberState - Supplies the member state.
Return Value:
FALSE - There was no state change.
TRUE - A state change took place.
Notes:
The caller must be holding the class spin lock.
--*/
{
if (_state.UnhealthyMemberState == FtMemberHealthy) {
if (MemberNumber >= QueryNumMembers()) {
KeBugCheckEx(FTDISK_INTERNAL_ERROR, (ULONG_PTR) this,
MemberNumber, MemberState, 0);
}
_state.UnhealthyMemberNumber = MemberNumber;
_state.UnhealthyMemberState = MemberState;
return TRUE;
}
if (_state.UnhealthyMemberNumber == MemberNumber &&
_state.UnhealthyMemberState != MemberState) {
_state.UnhealthyMemberState = MemberState;
return TRUE;
}
return FALSE;
}
VOID
MirrorTransferCompletionRoutine(
IN PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
Completion routine for MIRROR::Transfer function.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PMIRROR_TP transferPacket = (PMIRROR_TP) TransferPacket;
PTRANSFER_PACKET masterPacket = transferPacket->MasterPacket;
NTSTATUS status = transferPacket->IoStatus.Status;
PMIRROR t = transferPacket->Mirror;
KIRQL irql;
LONG count;
BOOLEAN b;
PMIRROR_TP otherPacket;
// Check for the read completion case.
if (transferPacket->ReadPacket) {
KeAcquireSpinLock(&t->_spinLock, &irql);
t->_requestCount[transferPacket->WhichMember]--;
KeReleaseSpinLock(&t->_spinLock, irql);
if (!NT_SUCCESS(status) && status != STATUS_VERIFY_REQUIRED) {
if (FsRtlIsTotalDeviceFailure(status)) {
// Device failure case.
KeAcquireSpinLock(&t->_spinLock, &irql);
b = t->SetMemberState(transferPacket->WhichMember,
FtMemberOrphaned);
KeReleaseSpinLock(&t->_spinLock, irql);
if (b) {
t->PropogateStateChanges(NULL, NULL);
t->Notify();
FtpLogError(t->_rootExtension, t->QueryLogicalDiskId(),
FT_ORPHANING, STATUS_SUCCESS, 4);
IoRaiseInformationalHardError(STATUS_FT_ORPHANING, NULL,
NULL);
}
if (!transferPacket->OneReadFailed) {
transferPacket->OneReadFailed = TRUE;
transferPacket->WhichMember =
(transferPacket->WhichMember + 1) % 2;
transferPacket->TargetVolume = t->GetMemberUnprotected(
transferPacket->WhichMember);
if (t->_state.UnhealthyMemberNumber !=
transferPacket->WhichMember) {
TRANSFER(transferPacket);
return;
}
}
} else {
// Bad sector case.
if (!transferPacket->OneReadFailed) {
transferPacket->OneReadFailed = TRUE;
t->Recover(transferPacket);
return;
}
}
}
masterPacket->IoStatus = transferPacket->IoStatus;
masterPacket->CompletionRoutine(masterPacket);
t->Recycle(transferPacket, TRUE);
return;
}
// This a write or a verify in which two requests may have been sent.
KeAcquireSpinLock(&masterPacket->SpinLock, &irql);
if (NT_SUCCESS(status)) {
if (NT_SUCCESS(masterPacket->IoStatus.Status)) {
masterPacket->IoStatus.Information =
transferPacket->IoStatus.Information;
}
} else {
if (status == STATUS_VERIFY_REQUIRED) {
masterPacket->IoStatus.Information = 0;
if (FtpIsWorseStatus(status, masterPacket->IoStatus.Status)) {
masterPacket->IoStatus.Status = status;
}
} else if (FsRtlIsTotalDeviceFailure(status)) {
KeAcquireSpinLock(&t->_spinLock, &irql);
b = t->SetMemberState(transferPacket->WhichMember,
FtMemberOrphaned);
KeReleaseSpinLock(&t->_spinLock, irql);
if (b) {
t->PropogateStateChanges(NULL, NULL);
t->Notify();
FtpLogError(t->_rootExtension, t->QueryLogicalDiskId(),
FT_ORPHANING, STATUS_SUCCESS, 5);
IoRaiseInformationalHardError(STATUS_FT_ORPHANING, NULL, NULL);
} else {
masterPacket->IoStatus.Information = 0;
if (FtpIsWorseStatus(status, masterPacket->IoStatus.Status)) {
masterPacket->IoStatus.Status = status;
}
}
} else if (!transferPacket->OneReadFailed && transferPacket->Mdl) {
KeReleaseSpinLock(&masterPacket->SpinLock, irql);
transferPacket->OneReadFailed = TRUE;
t->CarefulWrite(transferPacket);
return;
} else {
masterPacket->IoStatus.Information = 0;
if (FtpIsWorseStatus(status, masterPacket->IoStatus.Status)) {
masterPacket->IoStatus.Status = status;
}
}
}
count = --masterPacket->RefCount;
b = (masterPacket->IrpFlags&SL_FT_SEQUENTIAL_WRITE) ? TRUE : FALSE;
KeReleaseSpinLock(&masterPacket->SpinLock, irql);
if (count) {
if (b) {
otherPacket = transferPacket->SecondWritePacket;
otherPacket->CompletionRoutine = MirrorTransferCompletionRoutine;
TRANSFER(otherPacket);
}
} else {
masterPacket->CompletionRoutine(masterPacket);
if (transferPacket->SecondWritePacket) {
t->Recycle(transferPacket->SecondWritePacket, FALSE);
}
t->Recycle(transferPacket, TRUE);
}
}
BOOLEAN
MIRROR::LaunchRead(
IN OUT PTRANSFER_PACKET TransferPacket,
IN OUT PMIRROR_TP Packet1
)
/*++
Routine Description:
This routine lauches the given read transfer packet in parallel accross
all members using the given mirror transfer packet.
Arguments:
TransferPacket - Supplies the transfer packet to launch.
Packet1 - Supplies a worker transfer packet.
Return Value:
FALSE - The read request was not launched.
TRUE - The read request was launched.
--*/
{
PMIRROR_TP packet;
KIRQL irql;
LONG diff;
LONGLONG seek0, seek1;
packet = Packet1;
packet->Mdl = TransferPacket->Mdl;
packet->OriginalIrp = TransferPacket->OriginalIrp;
packet->Length = TransferPacket->Length;
packet->Offset = TransferPacket->Offset;
packet->CompletionRoutine = MirrorTransferCompletionRoutine;
packet->Thread = TransferPacket->Thread;
packet->IrpFlags = TransferPacket->IrpFlags;
packet->ReadPacket = TransferPacket->ReadPacket;
packet->MasterPacket = TransferPacket;
packet->Mirror = this;
// Determine which member to dispatch this read request to.
// Balance the load if both members are healthy.
KeAcquireSpinLock(&_spinLock, &irql);
if (TransferPacket->SpecialRead) {
if (TransferPacket->SpecialRead == TP_SPECIAL_READ_PRIMARY) {
packet->WhichMember = 0;
} else {
packet->WhichMember = 1;
}
if (QueryMemberState(packet->WhichMember) != FtMemberHealthy) {
packet->WhichMember = 2;
}
} else if (_state.UnhealthyMemberState == FtMemberHealthy) {
if (!_balancedReads) {
packet->WhichMember = 0;
} else {
diff = _requestCount[1] - _requestCount[0];
if (diff < -4) {
packet->WhichMember = 1;
} else if (diff > 4) {
packet->WhichMember = 0;
} else {
seek0 = _lastPosition[0] - packet->Offset;
seek1 = _lastPosition[1] - packet->Offset;
if (seek0 < 0) {
seek0 = -seek0;
}
if (seek1 < 0) {
seek1 = -seek1;
}
if (seek1 < seek0) {
packet->WhichMember = 1;
} else {
packet->WhichMember = 0;
}
}
}
} else {
packet->WhichMember = (_state.UnhealthyMemberNumber + 1)%2;
}
if (packet->WhichMember < 2) {
_requestCount[packet->WhichMember]++;
_lastPosition[packet->WhichMember] = packet->Offset + packet->Length;
}
KeReleaseSpinLock(&_spinLock, irql);
if (packet->WhichMember >= 2) {
TransferPacket->IoStatus.Status = STATUS_NO_SUCH_DEVICE;
TransferPacket->IoStatus.Information = 0;
TransferPacket->CompletionRoutine(TransferPacket);
return FALSE;
}
packet->TargetVolume = GetMemberUnprotected(packet->WhichMember);
TRANSFER(packet);
return TRUE;
}
VOID
MirrorWritePhase1(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This routine sends down the given transfer packets for a write to
the volumes.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PTRANSFER_PACKET p;
p = ((PMIRROR_TP) TransferPacket)->SecondWritePacket;
if (p) {
p->CompletionRoutine = MirrorTransferCompletionRoutine;
if (TransferPacket->IrpFlags&SL_FT_SEQUENTIAL_WRITE) {
TRANSFER(p);
return;
}
TRANSFER(p);
}
TransferPacket->CompletionRoutine = MirrorTransferCompletionRoutine;
TRANSFER(TransferPacket);
}
BOOLEAN
MIRROR::LaunchWrite(
IN OUT PTRANSFER_PACKET TransferPacket,
IN OUT PMIRROR_TP Packet1,
IN OUT PMIRROR_TP Packet2
)
/*++
Routine Description:
This routine lauches the given write transfer packet in parallel accross
all members using the given mirror transfer packets.
Arguments:
TransferPacket - Supplies the transfer packet to launch.
Packet1 - Supplies a worker transfer packet.
Packet2 - Supplies a worker transfer packet.
Return Value:
FALSE - The read request was not launched.
TRUE - The read request was launched.
--*/
{
PMIRROR_TP packet;
KIRQL irql;
PFT_VOLUME pri, sec;
FT_PARTITION_STATE priState, secState;
LONGLONG rowStart;
ULONG numRows, length, remainder;
USHORT source;
LONG count;
BOOLEAN b;
KeInitializeSpinLock(&TransferPacket->SpinLock);
TransferPacket->IoStatus.Status = STATUS_SUCCESS;
TransferPacket->IoStatus.Information = 0;
TransferPacket->RefCount = 2;
// Send down the first request to the primary or to the source
// if we're doing a regenerate.
KeAcquireSpinLock(&_spinLock, &irql);
if (_state.UnhealthyMemberState == FtMemberHealthy) {
source = 0;
} else if (_state.UnhealthyMemberState == FtMemberRegenerating) {
source = (_state.UnhealthyMemberNumber + 1)%2;
} else {
TransferPacket->RefCount = 1;
source = (_state.UnhealthyMemberNumber + 1)%2;
}
KeReleaseSpinLock(&_spinLock, irql);
packet = Packet1;
packet->Mdl = TransferPacket->Mdl;
packet->Length = TransferPacket->Length;
packet->Offset = TransferPacket->Offset;
packet->CompletionRoutine = MirrorWritePhase1;
packet->Thread = TransferPacket->Thread;
packet->IrpFlags = TransferPacket->IrpFlags;
packet->ReadPacket = TransferPacket->ReadPacket;
packet->MasterPacket = TransferPacket;
packet->Mirror = this;
packet->WhichMember = source;
packet->SecondWritePacket = NULL;
packet->TargetVolume = GetMemberUnprotected(packet->WhichMember);
if (TransferPacket->RefCount == 1) {
_overlappedIoManager.AcquireIoRegion(packet, TRUE);
if (Packet2 != _ePacket && Packet2 != _ePacket2) {
delete Packet2;
}
return TRUE;
}
packet->SecondWritePacket = Packet2;
packet = Packet2;
packet->Mdl = TransferPacket->Mdl;
packet->Length = TransferPacket->Length;
packet->Offset = TransferPacket->Offset;
packet->CompletionRoutine = MirrorWritePhase1;
packet->Thread = TransferPacket->Thread;
packet->IrpFlags = TransferPacket->IrpFlags;
packet->ReadPacket = TransferPacket->ReadPacket;
packet->MasterPacket = TransferPacket;
packet->Mirror = this;
packet->WhichMember = (source + 1)%2;
packet->SecondWritePacket = Packet1;
packet->TargetVolume = GetMemberUnprotected(packet->WhichMember);
_overlappedIoManager.AcquireIoRegion(packet, TRUE);
return TRUE;
}
VOID
MIRROR::Recycle(
IN OUT PMIRROR_TP TransferPacket,
IN BOOLEAN ServiceEmergencyQueue
)
/*++
Routine Description:
This routine recycles the given transfer packet and services
the emergency queue if need be.
Arguments:
TransferPacket - Supplies the transfer packet.
ServiceEmergencyQueue - Supplies whether or not to service the
emergency queue.
Return Value:
None.
--*/
{
KIRQL irql;
PLIST_ENTRY l;
PTRANSFER_PACKET p;
PMIRROR_TP packet1, packet2;
if (TransferPacket != _ePacket &&
TransferPacket != _ePacket2 &&
TransferPacket != _eRecoverPacket) {
delete TransferPacket;
return;
}
TransferPacket->OriginalIrp = NULL;
TransferPacket->SpecialRead = 0;
TransferPacket->OneReadFailed = FALSE;
_overlappedIoManager.ReleaseIoRegion(TransferPacket);
if (TransferPacket == _eRecoverPacket) {
MmPrepareMdlForReuse(_eRecoverPacket->PartialMdl);
KeAcquireSpinLock(&_spinLock, &irql);
if (IsListEmpty(&_eRecoverPacketQueue)) {
_eRecoverPacketInUse = FALSE;
KeReleaseSpinLock(&_spinLock, irql);
return;
}
l = RemoveHeadList(&_eRecoverPacketQueue);
KeReleaseSpinLock(&_spinLock, irql);
p = CONTAINING_RECORD(l, TRANSFER_PACKET, QueueEntry);
p->CompletionRoutine(p);
return;
}
if (!ServiceEmergencyQueue) {
return;
}
for (;;) {
KeAcquireSpinLock(&_spinLock, &irql);
if (IsListEmpty(&_ePacketQueue)) {
_ePacketInUse = FALSE;
KeReleaseSpinLock(&_spinLock, irql);
break;
}
l = RemoveHeadList(&_ePacketQueue);
KeReleaseSpinLock(&_spinLock, irql);
p = CONTAINING_RECORD(l, TRANSFER_PACKET, QueueEntry);
packet1 = new MIRROR_TP;
if (packet1 && !TransferPacket->ReadPacket) {
packet2 = new MIRROR_TP;
if (!packet2) {
delete packet1;
packet1 = NULL;
}
} else {
packet2 = NULL;
}
if (!packet1) {
packet1 = _ePacket;
packet2 = _ePacket2;
}
if (TransferPacket->ReadPacket) {
if (!LaunchRead(TransferPacket, packet1)) {
if (packet1 != _ePacket) {
delete packet1;
packet1 = NULL;
}
}
} else {
if (!LaunchWrite(TransferPacket, packet1, packet2)) {
if (packet1 != _ePacket) {
delete packet1;
delete packet2;
packet1 = NULL;
}
}
}
if (packet1 == _ePacket) {
break;
}
}
}
VOID
MirrorRecoverPhase8(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This is the completion routine for a single sector read
of the main member after a write was done to check for
data integrity.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PMIRROR_RECOVER_TP subPacket = (PMIRROR_RECOVER_TP) TransferPacket;
PMIRROR_TP masterPacket = (PMIRROR_TP) subPacket->MasterPacket;
PMIRROR t = masterPacket->Mirror;
NTSTATUS status = subPacket->IoStatus.Status;
if (FsRtlIsTotalDeviceFailure(status)) {
masterPacket->OneReadFailed = FALSE;
masterPacket->IoStatus = subPacket->IoStatus;
t->Recycle(subPacket, TRUE);
masterPacket->CompletionRoutine(masterPacket);
return;
}
if (!NT_SUCCESS(status) ||
RtlCompareMemory(MmGetSystemAddressForMdl(subPacket->PartialMdl),
MmGetSystemAddressForMdl(subPacket->VerifyMdl),
subPacket->Length) != subPacket->Length) {
masterPacket->IoStatus.Status = STATUS_FT_READ_RECOVERY_FROM_BACKUP;
FtpLogError(t->_rootExtension,
subPacket->TargetVolume->QueryLogicalDiskId(),
FT_SECTOR_FAILURE, status,
(ULONG) (subPacket->Offset/t->QuerySectorSize()));
}
if (subPacket->Offset + subPacket->Length ==
masterPacket->Offset + masterPacket->Length) {
t->Recycle(subPacket, TRUE);
masterPacket->CompletionRoutine(masterPacket);
return;
}
subPacket->Mdl = subPacket->PartialMdl;
subPacket->Offset += subPacket->Length;
subPacket->CompletionRoutine = MirrorRecoverPhase2;
subPacket->ReadPacket = TRUE;
MmPrepareMdlForReuse(subPacket->Mdl);
IoBuildPartialMdl(masterPacket->Mdl, subPacket->Mdl,
(PCHAR) MmGetMdlVirtualAddress(masterPacket->Mdl) +
(ULONG) (subPacket->Offset - masterPacket->Offset),
subPacket->Length);
TRANSFER(subPacket);
}
VOID
MirrorRecoverPhase7(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This is the completion routine for a single sector write
of the main member after a replace sector was done.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PMIRROR_RECOVER_TP subPacket = (PMIRROR_RECOVER_TP) TransferPacket;
PMIRROR_TP masterPacket = (PMIRROR_TP) subPacket->MasterPacket;
PMIRROR t = masterPacket->Mirror;
NTSTATUS status = subPacket->IoStatus.Status;
if (FsRtlIsTotalDeviceFailure(status)) {
masterPacket->OneReadFailed = FALSE;
masterPacket->IoStatus = subPacket->IoStatus;
t->Recycle(subPacket, TRUE);
masterPacket->CompletionRoutine(masterPacket);
return;
}
if (!NT_SUCCESS(status)) {
masterPacket->IoStatus.Status = STATUS_FT_READ_RECOVERY_FROM_BACKUP;
FtpLogError(t->_rootExtension,
subPacket->TargetVolume->QueryLogicalDiskId(),
FT_SECTOR_FAILURE, status,
(ULONG) (subPacket->Offset/t->QuerySectorSize()));
if (subPacket->Offset + subPacket->Length ==
masterPacket->Offset + masterPacket->Length) {
t->Recycle(subPacket, TRUE);
masterPacket->CompletionRoutine(masterPacket);
return;
}
subPacket->Mdl = subPacket->PartialMdl;
subPacket->Offset += subPacket->Length;
subPacket->CompletionRoutine = MirrorRecoverPhase2;
subPacket->ReadPacket = TRUE;
MmPrepareMdlForReuse(subPacket->Mdl);
IoBuildPartialMdl(masterPacket->Mdl, subPacket->Mdl,
(PCHAR) MmGetMdlVirtualAddress(masterPacket->Mdl) +
(ULONG) (subPacket->Offset - masterPacket->Offset),
subPacket->Length);
TRANSFER(subPacket);
return;
}
subPacket->Mdl = subPacket->VerifyMdl;
subPacket->CompletionRoutine = MirrorRecoverPhase8;
subPacket->ReadPacket = TRUE;
TRANSFER(subPacket);
}
VOID
MirrorRecoverPhase6(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This is the completion routine for a single sector replace
of the main member.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PMIRROR_RECOVER_TP subPacket = (PMIRROR_RECOVER_TP) TransferPacket;
PMIRROR_TP masterPacket = (PMIRROR_TP) subPacket->MasterPacket;
PMIRROR t = masterPacket->Mirror;
NTSTATUS status = subPacket->IoStatus.Status;
if (!NT_SUCCESS(status)) {
masterPacket->IoStatus.Status = STATUS_FT_READ_RECOVERY_FROM_BACKUP;
FtpLogError(t->_rootExtension,
subPacket->TargetVolume->QueryLogicalDiskId(),
FT_SECTOR_FAILURE, status,
(ULONG) (subPacket->Offset/t->QuerySectorSize()));
if (subPacket->Offset + subPacket->Length ==
masterPacket->Offset + masterPacket->Length) {
t->Recycle(subPacket, TRUE);
masterPacket->CompletionRoutine(masterPacket);
return;
}
subPacket->Mdl = subPacket->PartialMdl;
subPacket->Offset += subPacket->Length;
subPacket->CompletionRoutine = MirrorRecoverPhase2;
subPacket->ReadPacket = TRUE;
MmPrepareMdlForReuse(subPacket->Mdl);
IoBuildPartialMdl(masterPacket->Mdl, subPacket->Mdl,
(PCHAR) MmGetMdlVirtualAddress(masterPacket->Mdl) +
(ULONG) (subPacket->Offset - masterPacket->Offset),
subPacket->Length);
TRANSFER(subPacket);
return;
}
// We were able to relocate the bad sector so now do a write and
// then read to make sure it's ok.
subPacket->Mdl = subPacket->PartialMdl;
subPacket->CompletionRoutine = MirrorRecoverPhase7;
subPacket->ReadPacket = FALSE;
TRANSFER(subPacket);
}
VOID
MirrorRecoverPhase5(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This is the completion routine for a single sector read
of the main member after a successful write to check and
see if the write was successful.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PMIRROR_RECOVER_TP subPacket = (PMIRROR_RECOVER_TP) TransferPacket;
PMIRROR_TP masterPacket = (PMIRROR_TP) subPacket->MasterPacket;
PMIRROR t = masterPacket->Mirror;
NTSTATUS status = subPacket->IoStatus.Status;
if (FsRtlIsTotalDeviceFailure(status)) {
masterPacket->OneReadFailed = FALSE;
masterPacket->IoStatus = subPacket->IoStatus;
t->Recycle(subPacket, TRUE);
masterPacket->CompletionRoutine(masterPacket);
return;
}
if (!NT_SUCCESS(status) ||
RtlCompareMemory(MmGetSystemAddressForMdl(subPacket->PartialMdl),
MmGetSystemAddressForMdl(subPacket->VerifyMdl),
subPacket->Length) != subPacket->Length) {
subPacket->Mdl = subPacket->PartialMdl;
subPacket->CompletionRoutine = MirrorRecoverPhase6;
subPacket->TargetVolume->ReplaceBadSector(subPacket);
return;
}
if (subPacket->Offset + subPacket->Length ==
masterPacket->Offset + masterPacket->Length) {
t->Recycle(subPacket, TRUE);
masterPacket->CompletionRoutine(masterPacket);
return;
}
subPacket->Mdl = subPacket->PartialMdl;
subPacket->Offset += subPacket->Length;
subPacket->CompletionRoutine = MirrorRecoverPhase2;
MmPrepareMdlForReuse(subPacket->Mdl);
IoBuildPartialMdl(masterPacket->Mdl, subPacket->Mdl,
(PCHAR) MmGetMdlVirtualAddress(masterPacket->Mdl) +
(ULONG) (subPacket->Offset - masterPacket->Offset),
subPacket->Length);
TRANSFER(subPacket);
}
VOID
MirrorRecoverPhase4(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This is the completion routine for a single sector write
of the main member.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PMIRROR_RECOVER_TP subPacket = (PMIRROR_RECOVER_TP) TransferPacket;
PMIRROR_TP masterPacket = (PMIRROR_TP) subPacket->MasterPacket;
PMIRROR t = masterPacket->Mirror;
NTSTATUS status = subPacket->IoStatus.Status;
if (FsRtlIsTotalDeviceFailure(status)) {
masterPacket->OneReadFailed = FALSE;
masterPacket->IoStatus = subPacket->IoStatus;
t->Recycle(subPacket, TRUE);
masterPacket->CompletionRoutine(masterPacket);
return;
}
if (!NT_SUCCESS(status)) {
subPacket->CompletionRoutine = MirrorRecoverPhase6;
subPacket->TargetVolume->ReplaceBadSector(subPacket);
return;
}
// Write was successful so try a read and then compare.
subPacket->Mdl = subPacket->VerifyMdl;
subPacket->CompletionRoutine = MirrorRecoverPhase5;
subPacket->ReadPacket = TRUE;
TRANSFER(subPacket);
}
VOID
MirrorRecoverPhase3(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This is the completion routine for a single sector read
of the other member.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PMIRROR_RECOVER_TP subPacket = (PMIRROR_RECOVER_TP) TransferPacket;
PMIRROR_TP masterPacket = (PMIRROR_TP) subPacket->MasterPacket;
PMIRROR t = masterPacket->Mirror;
NTSTATUS status = subPacket->IoStatus.Status;
KIRQL irql;
BOOLEAN b;
if (!NT_SUCCESS(status)) {
if (FsRtlIsTotalDeviceFailure(status) &&
status != STATUS_VERIFY_REQUIRED) {
masterPacket->IoStatus.Status = STATUS_DEVICE_DATA_ERROR;
masterPacket->IoStatus.Information = 0;
KeAcquireSpinLock(&t->_spinLock, &irql);
b = t->SetMemberState(subPacket->WhichMember, FtMemberOrphaned);
KeReleaseSpinLock(&t->_spinLock, irql);
if (b) {
t->PropogateStateChanges(NULL, NULL);
t->Notify();
FtpLogError(t->_rootExtension, t->QueryLogicalDiskId(),
FT_ORPHANING, STATUS_SUCCESS, 6);
IoRaiseInformationalHardError(STATUS_FT_ORPHANING, NULL, NULL);
}
} else {
masterPacket->IoStatus = subPacket->IoStatus;
if (status != STATUS_VERIFY_REQUIRED) {
FtpLogError(t->_rootExtension, t->QueryLogicalDiskId(),
FT_DOUBLE_FAILURE, status,
(ULONG) (subPacket->Offset/t->QuerySectorSize()));
}
}
t->Recycle(subPacket, TRUE);
masterPacket->CompletionRoutine(masterPacket);
return;
}
// We have the data required in the subpacket partial mdl.
// Try writting it back to where the read failed and see
// if the sector just fixes itself.
subPacket->WhichMember = (subPacket->WhichMember + 1)%2;
subPacket->CompletionRoutine = MirrorRecoverPhase4;
subPacket->TargetVolume = t->GetMemberUnprotected(subPacket->WhichMember);
subPacket->ReadPacket = FALSE;
TRANSFER(subPacket);
}
VOID
MirrorRecoverPhase2(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This is the completion routine for a single sector transfer
that is part of a larger recover operation.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PMIRROR_RECOVER_TP subPacket = (PMIRROR_RECOVER_TP) TransferPacket;
PMIRROR_TP masterPacket = (PMIRROR_TP) subPacket->MasterPacket;
PMIRROR t = masterPacket->Mirror;
NTSTATUS status = subPacket->IoStatus.Status;
KIRQL irql;
if (FsRtlIsTotalDeviceFailure(status)) {
masterPacket->OneReadFailed = FALSE;
masterPacket->IoStatus = subPacket->IoStatus;
t->Recycle(subPacket, TRUE);
masterPacket->CompletionRoutine(masterPacket);
return;
}
if (NT_SUCCESS(status)) {
if (subPacket->Offset + subPacket->Length ==
masterPacket->Offset + masterPacket->Length) {
t->Recycle(subPacket, TRUE);
masterPacket->CompletionRoutine(masterPacket);
return;
}
subPacket->Offset += subPacket->Length;
MmPrepareMdlForReuse(subPacket->Mdl);
IoBuildPartialMdl(masterPacket->Mdl, subPacket->Mdl,
(PCHAR) MmGetMdlVirtualAddress(masterPacket->Mdl) +
(ULONG) (subPacket->Offset - masterPacket->Offset),
subPacket->Length);
TRANSFER(subPacket);
return;
}
// This read sector failed from a bad sector error. Try
// reading the data from the other member.
subPacket->WhichMember = (subPacket->WhichMember + 1)%2;
subPacket->TargetVolume = t->GetMemberUnprotected(subPacket->WhichMember);
KeAcquireSpinLock(&t->_spinLock, &irql);
if (t->QueryMemberState(subPacket->WhichMember) != FtMemberHealthy) {
KeReleaseSpinLock(&t->_spinLock, irql);
masterPacket->IoStatus = subPacket->IoStatus;
t->Recycle(subPacket, TRUE);
masterPacket->CompletionRoutine(masterPacket);
return;
}
KeReleaseSpinLock(&t->_spinLock, irql);
subPacket->CompletionRoutine = MirrorRecoverPhase3;
TRANSFER(subPacket);
}
VOID
MirrorRecoverEmergencyCompletion(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This routine is the completion for use of the emergency recover packet
in a recover operation.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PMIRROR_TP transferPacket = (PMIRROR_TP) TransferPacket;
PMIRROR t = transferPacket->Mirror;
PMIRROR_RECOVER_TP subPacket = t->_eRecoverPacket;
transferPacket->CompletionRoutine = transferPacket->SavedCompletionRoutine;
subPacket->Mdl = subPacket->PartialMdl;
IoBuildPartialMdl(transferPacket->Mdl, subPacket->Mdl,
MmGetMdlVirtualAddress(transferPacket->Mdl),
t->QuerySectorSize());
subPacket->Length = t->QuerySectorSize();
subPacket->Offset = transferPacket->Offset;
subPacket->CompletionRoutine = MirrorRecoverPhase2;
subPacket->TargetVolume = transferPacket->TargetVolume;
subPacket->Thread = transferPacket->Thread;
subPacket->IrpFlags = transferPacket->IrpFlags;
subPacket->ReadPacket = TRUE;
subPacket->MasterPacket = transferPacket;
subPacket->Mirror = t;
subPacket->WhichMember = transferPacket->WhichMember;
TRANSFER(subPacket);
}
VOID
MirrorRecoverPhase1(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This is the completion routine for an acquire io region
to a recover operation.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PMIRROR_TP transferPacket = (PMIRROR_TP) TransferPacket;
PMIRROR t = transferPacket->Mirror;
PMIRROR_RECOVER_TP subPacket;
KIRQL irql;
transferPacket->CompletionRoutine = transferPacket->SavedCompletionRoutine;
transferPacket->IoStatus.Status = STATUS_SUCCESS;
transferPacket->IoStatus.Information = transferPacket->Length;
subPacket = new MIRROR_RECOVER_TP;
if (subPacket && !subPacket->AllocateMdls(t->QuerySectorSize())) {
delete subPacket;
subPacket = NULL;
}
if (!subPacket) {
KeAcquireSpinLock(&t->_spinLock, &irql);
if (t->_eRecoverPacketInUse) {
transferPacket->SavedCompletionRoutine =
transferPacket->CompletionRoutine;
transferPacket->CompletionRoutine = MirrorRecoverEmergencyCompletion;
InsertTailList(&t->_eRecoverPacketQueue, &transferPacket->QueueEntry);
KeReleaseSpinLock(&t->_spinLock, irql);
return;
}
t->_eRecoverPacketInUse = TRUE;
KeReleaseSpinLock(&t->_spinLock, irql);
subPacket = t->_eRecoverPacket;
}
subPacket->Mdl = subPacket->PartialMdl;
IoBuildPartialMdl(transferPacket->Mdl, subPacket->Mdl,
MmGetMdlVirtualAddress(transferPacket->Mdl),
t->QuerySectorSize());
subPacket->Length = t->QuerySectorSize();
subPacket->Offset = transferPacket->Offset;
subPacket->CompletionRoutine = MirrorRecoverPhase2;
subPacket->TargetVolume = transferPacket->TargetVolume;
subPacket->Thread = transferPacket->Thread;
subPacket->IrpFlags = transferPacket->IrpFlags;
subPacket->ReadPacket = TRUE;
subPacket->MasterPacket = transferPacket;
subPacket->Mirror = t;
subPacket->WhichMember = transferPacket->WhichMember;
TRANSFER(subPacket);
}
VOID
MIRROR::Recover(
IN OUT PMIRROR_TP TransferPacket
)
/*++
Routine Description:
This routine attempts the given read packet sector by sector. Every
sector that fails to read because of a bad sector error is retried
on the other member and then the good data is written back to the
failed sector if possible.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
ASSERT(TransferPacket->ReadPacket);
TransferPacket->SavedCompletionRoutine = TransferPacket->CompletionRoutine;
TransferPacket->CompletionRoutine = MirrorRecoverPhase1;
_overlappedIoManager.AcquireIoRegion(TransferPacket, TRUE);
}
VOID
MirrorMaxTransferCompletionRoutine(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This is the completion routine for a sector transfer subordinate
to a MAX transfer operation.
Arguments:
TransferPacket - Supplies the subordinate transfer packet.
Return Value:
None.
--*/
{
PMIRROR_RECOVER_TP subPacket = (PMIRROR_RECOVER_TP) TransferPacket;
PMIRROR_TP masterPacket = (PMIRROR_TP) subPacket->MasterPacket;
PMIRROR t = masterPacket->Mirror;
NTSTATUS status = subPacket->IoStatus.Status;
if (FsRtlIsTotalDeviceFailure(status)) {
masterPacket->IoStatus = subPacket->IoStatus;
t->Recycle(subPacket, TRUE);
masterPacket->CompletionRoutine(masterPacket);
return;
}
if (subPacket->Offset + subPacket->Length ==
masterPacket->Offset + masterPacket->Length) {
t->Recycle(subPacket, TRUE);
masterPacket->CompletionRoutine(masterPacket);
return;
}
subPacket->Offset += subPacket->Length;
MmPrepareMdlForReuse(subPacket->Mdl);
IoBuildPartialMdl(masterPacket->Mdl, subPacket->Mdl,
(PCHAR) MmGetMdlVirtualAddress(masterPacket->Mdl) +
(ULONG) (subPacket->Offset - masterPacket->Offset),
subPacket->Length);
TRANSFER(subPacket);
}
VOID
MirrorMaxTransferEmergencyCompletion(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This routine is the completion for use of the emergency recover packet
in a max transfer operation.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PMIRROR_TP transferPacket = (PMIRROR_TP) TransferPacket;
PMIRROR t = transferPacket->Mirror;
PMIRROR_RECOVER_TP subPacket = t->_eRecoverPacket;
transferPacket->CompletionRoutine = transferPacket->SavedCompletionRoutine;
subPacket->Mdl = subPacket->PartialMdl;
IoBuildPartialMdl(transferPacket->Mdl, subPacket->Mdl,
MmGetMdlVirtualAddress(transferPacket->Mdl),
t->QuerySectorSize());
subPacket->Length = t->QuerySectorSize();
subPacket->Offset = transferPacket->Offset;
subPacket->CompletionRoutine = MirrorMaxTransferCompletionRoutine;
subPacket->TargetVolume = transferPacket->TargetVolume;
subPacket->Thread = transferPacket->Thread;
subPacket->IrpFlags = transferPacket->IrpFlags;
subPacket->ReadPacket = transferPacket->ReadPacket;
subPacket->MasterPacket = transferPacket;
subPacket->Mirror = t;
subPacket->WhichMember = transferPacket->WhichMember;
TRANSFER(subPacket);
}
VOID
MIRROR::MaxTransfer(
IN OUT PMIRROR_TP TransferPacket
)
/*++
Routine Description:
This routine transfers the maximum possible subset of the given transfer
by doing it one sector at a time.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PMIRROR_RECOVER_TP subPacket;
KIRQL irql;
TransferPacket->IoStatus.Status = STATUS_SUCCESS;
TransferPacket->IoStatus.Information = TransferPacket->Length;
subPacket = new MIRROR_RECOVER_TP;
if (subPacket && !subPacket->AllocateMdls(QuerySectorSize())) {
delete subPacket;
subPacket = NULL;
}
if (!subPacket) {
KeAcquireSpinLock(&_spinLock, &irql);
if (_eRecoverPacketInUse) {
TransferPacket->SavedCompletionRoutine =
TransferPacket->CompletionRoutine;
TransferPacket->CompletionRoutine = MirrorMaxTransferEmergencyCompletion;
InsertTailList(&_eRecoverPacketQueue, &TransferPacket->QueueEntry);
KeReleaseSpinLock(&_spinLock, irql);
return;
}
_eRecoverPacketInUse = TRUE;
KeReleaseSpinLock(&_spinLock, irql);
subPacket = _eRecoverPacket;
}
subPacket->Mdl = subPacket->PartialMdl;
IoBuildPartialMdl(TransferPacket->Mdl, subPacket->Mdl,
MmGetMdlVirtualAddress(TransferPacket->Mdl),
QuerySectorSize());
subPacket->Length = QuerySectorSize();
subPacket->Offset = TransferPacket->Offset;
subPacket->CompletionRoutine = MirrorMaxTransferCompletionRoutine;
subPacket->TargetVolume = TransferPacket->TargetVolume;
subPacket->Thread = TransferPacket->Thread;
subPacket->IrpFlags = TransferPacket->IrpFlags;
subPacket->ReadPacket = TransferPacket->ReadPacket;
subPacket->MasterPacket = TransferPacket;
subPacket->Mirror = this;
subPacket->WhichMember = TransferPacket->WhichMember;
TRANSFER(subPacket);
}
class FTP_MIRROR_STATE_WORK_ITEM : public WORK_QUEUE_ITEM {
public:
FT_COMPLETION_ROUTINE CompletionRoutine;
PVOID Context;
PMIRROR Mirror;
};
typedef FTP_MIRROR_STATE_WORK_ITEM* PFTP_MIRROR_STATE_WORK_ITEM;
VOID
MirrorPropogateStateChangesWorker(
IN PVOID Context
)
/*++
Routine Description:
This routine is a worker thread routine for propogating state changes.
Arguments:
Mirror - Supplies a pointer to the mirror object.
Return Value:
None.
--*/
{
PFTP_MIRROR_STATE_WORK_ITEM context = (PFTP_MIRROR_STATE_WORK_ITEM) Context;
PMIRROR t = context->Mirror;
KIRQL irql;
FT_MIRROR_AND_SWP_STATE_INFORMATION state;
NTSTATUS status;
FtpAcquire(t->_rootExtension);
KeAcquireSpinLock(&t->_spinLock, &irql);
RtlCopyMemory(&state, &t->_state, sizeof(state));
KeReleaseSpinLock(&t->_spinLock, irql);
status = t->_diskInfoSet->WriteStateInformation(t->QueryLogicalDiskId(),
&state, sizeof(state));
FtpRelease(t->_rootExtension);
if (context->CompletionRoutine) {
context->CompletionRoutine(context->Context, status);
}
}
VOID
MIRROR::PropogateStateChanges(
IN FT_COMPLETION_ROUTINE CompletionRoutine,
IN PVOID Context
)
/*++
Routine Description:
This routine propogates the changes in the local memory state to
the on disk state.
Arguments:
CompletionRoutine - Supplies the completion routine.
Context - Supplies the completion routine context.
Return Value:
None.
--*/
{
PFTP_MIRROR_STATE_WORK_ITEM workItem;
workItem = (PFTP_MIRROR_STATE_WORK_ITEM)
ExAllocatePool(NonPagedPool,
sizeof(FTP_MIRROR_STATE_WORK_ITEM));
if (!workItem) {
return;
}
ExInitializeWorkItem(workItem, MirrorPropogateStateChangesWorker, workItem);
workItem->CompletionRoutine = CompletionRoutine;
workItem->Context = Context;
workItem->Mirror = this;
FtpQueueWorkItem(_rootExtension, workItem);
}
VOID
MirrorCarefulWritePhase2(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This is the completion routine a sector replacement
for a careful write operation.
Arguments:
TransferPacket - Supplies the subordinate transfer packet.
Return Value:
None.
--*/
{
PMIRROR_TP subPacket = (PMIRROR_TP) TransferPacket;
subPacket->CompletionRoutine = MirrorCarefulWritePhase1;
TRANSFER(subPacket);
}
VOID
MirrorCarefulWritePhase1(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This is the completion routine a first attempt of a single sector write
for a careful write operation.
Arguments:
TransferPacket - Supplies the subordinate transfer packet.
Return Value:
None.
--*/
{
PMIRROR_TP subPacket = (PMIRROR_TP) TransferPacket;
NTSTATUS status = subPacket->IoStatus.Status;
PMIRROR_TP masterPacket = (PMIRROR_TP) subPacket->MasterPacket;
PMIRROR t = subPacket->Mirror;
if (FsRtlIsTotalDeviceFailure(status)) {
masterPacket->IoStatus = subPacket->IoStatus;
masterPacket->CompletionRoutine(masterPacket);
t->Recycle(subPacket, TRUE);
return;
}
if (!NT_SUCCESS(status)) {
if (!subPacket->OneReadFailed) {
subPacket->CompletionRoutine = MirrorCarefulWritePhase2;
subPacket->OneReadFailed = TRUE;
subPacket->TargetVolume->ReplaceBadSector(subPacket);
return;
}
masterPacket->IoStatus = subPacket->IoStatus;
}
if (masterPacket->Offset + masterPacket->Length ==
subPacket->Offset + subPacket->Length) {
masterPacket->CompletionRoutine(masterPacket);
t->Recycle(subPacket, TRUE);
return;
}
subPacket->Offset += subPacket->Length;
MmPrepareMdlForReuse(subPacket->Mdl);
IoBuildPartialMdl(masterPacket->Mdl, subPacket->Mdl,
(PCHAR) MmGetMdlVirtualAddress(masterPacket->Mdl) +
(ULONG) (subPacket->Offset - masterPacket->Offset),
subPacket->Length);
subPacket->OneReadFailed = FALSE;
TRANSFER(subPacket);
}
VOID
MirrorCarefulWriteEmergencyCompletion(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This routine is the completion for use of the emergency recover packet
in a careful write operation.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PMIRROR_TP transferPacket = (PMIRROR_TP) TransferPacket;
PMIRROR t = transferPacket->Mirror;
PMIRROR_RECOVER_TP subPacket = t->_eRecoverPacket;
transferPacket->CompletionRoutine = transferPacket->SavedCompletionRoutine;
subPacket->Mdl = subPacket->PartialMdl;
IoBuildPartialMdl(transferPacket->Mdl, subPacket->Mdl,
MmGetMdlVirtualAddress(transferPacket->Mdl),
t->QuerySectorSize());
subPacket->Length = t->QuerySectorSize();
subPacket->Offset = transferPacket->Offset;
subPacket->CompletionRoutine = MirrorCarefulWritePhase1;
subPacket->TargetVolume = transferPacket->TargetVolume;
subPacket->Thread = transferPacket->Thread;
subPacket->IrpFlags = transferPacket->IrpFlags;
subPacket->ReadPacket = FALSE;
subPacket->MasterPacket = transferPacket;
subPacket->Mirror = t;
subPacket->WhichMember = transferPacket->WhichMember;
subPacket->OneReadFailed = FALSE;
TRANSFER(subPacket);
}
VOID
MIRROR::CarefulWrite(
IN OUT PMIRROR_TP TransferPacket
)
/*++
Routine Description:
This routine goes through the transfer packet sector by sector
and fixes write failures when possible.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PMIRROR_RECOVER_TP subPacket;
KIRQL irql;
ASSERT(!TransferPacket->ReadPacket);
TransferPacket->IoStatus.Status = STATUS_SUCCESS;
TransferPacket->IoStatus.Information = TransferPacket->Length;
subPacket = new MIRROR_RECOVER_TP;
if (subPacket && !subPacket->AllocateMdls(QuerySectorSize())) {
delete subPacket;
subPacket = NULL;
}
if (!subPacket) {
KeAcquireSpinLock(&_spinLock, &irql);
if (_eRecoverPacketInUse) {
TransferPacket->SavedCompletionRoutine =
TransferPacket->CompletionRoutine;
TransferPacket->CompletionRoutine = MirrorCarefulWriteEmergencyCompletion;
InsertTailList(&_eRecoverPacketQueue, &TransferPacket->QueueEntry);
KeReleaseSpinLock(&_spinLock, irql);
return;
}
_eRecoverPacketInUse = TRUE;
KeReleaseSpinLock(&_spinLock, irql);
subPacket = _eRecoverPacket;
}
subPacket->Mdl = subPacket->PartialMdl;
IoBuildPartialMdl(TransferPacket->Mdl, subPacket->Mdl,
MmGetMdlVirtualAddress(TransferPacket->Mdl),
QuerySectorSize());
subPacket->Length = QuerySectorSize();
subPacket->Offset = TransferPacket->Offset;
subPacket->CompletionRoutine = MirrorCarefulWritePhase1;
subPacket->TargetVolume = TransferPacket->TargetVolume;
subPacket->Thread = TransferPacket->Thread;
subPacket->IrpFlags = TransferPacket->IrpFlags;
subPacket->ReadPacket = FALSE;
subPacket->MasterPacket = TransferPacket;
subPacket->Mirror = this;
subPacket->WhichMember = TransferPacket->WhichMember;
subPacket->OneReadFailed = FALSE;
TRANSFER(subPacket);
}
NTSTATUS
MIRROR::QueryPhysicalOffsets(
IN LONGLONG LogicalOffset,
OUT PVOLUME_PHYSICAL_OFFSET* PhysicalOffsets,
OUT PULONG NumberOfPhysicalOffsets
)
/*++
Routine Description:
This routine returns physical disk and offset for a given volume
logical offset.
Arguments:
LogicalOffset - Supplies the logical offset
PhysicalOffsets - Returns the physical offsets
NumberOfPhysicalOffsets - Returns the number of physical offsets
Return Value:
NTSTATUS
--*/
{
PFT_VOLUME vol;
KIRQL irql;
USHORT n, i, numberOfArrays = 0;
PVOLUME_PHYSICAL_OFFSET* arrayOfArrays;
PULONG arrayOfSizes;
ULONG currentSize = 0;
NTSTATUS status;
FT_MEMBER_STATE memberState;
if (LogicalOffset < 0 ||
_volumeSize <= LogicalOffset) {
return STATUS_INVALID_PARAMETER;
}
n = QueryNumMembers();
arrayOfArrays = (PVOLUME_PHYSICAL_OFFSET*) ExAllocatePool(PagedPool, n*sizeof(PVOLUME_PHYSICAL_OFFSET));
if (!arrayOfArrays) {
return STATUS_INSUFFICIENT_RESOURCES;
}
arrayOfSizes = (PULONG) ExAllocatePool(PagedPool, n*sizeof(ULONG));
if (!arrayOfSizes) {
return STATUS_INSUFFICIENT_RESOURCES;
}
for (i = 0; i < n; i++) {
vol = GetMember(i);
if (!vol) {
continue;
}
KeAcquireSpinLock(&_spinLock, &irql);
memberState = QueryMemberState(i);
KeReleaseSpinLock(&_spinLock, irql);
if (memberState != FtMemberHealthy) {
continue;
}
status = vol->QueryPhysicalOffsets(LogicalOffset, &(arrayOfArrays[numberOfArrays]),
&(arrayOfSizes[numberOfArrays]) );
if (NT_SUCCESS(status)) {
currentSize += arrayOfSizes[numberOfArrays++];
}
}
if (numberOfArrays > 1) {
*PhysicalOffsets = (PVOLUME_PHYSICAL_OFFSET) ExAllocatePool(PagedPool, currentSize*sizeof(VOLUME_PHYSICAL_OFFSET));
if (!(*PhysicalOffsets)) {
for (i = 0; i < numberOfArrays; i++) {
ExFreePool(arrayOfArrays[i]);
}
status = STATUS_INSUFFICIENT_RESOURCES;
goto cleanup;
}
*NumberOfPhysicalOffsets = currentSize;
currentSize = 0;
for (i = 0; i < numberOfArrays; i++) {
RtlCopyMemory(&((*PhysicalOffsets)[currentSize]), arrayOfArrays[i], arrayOfSizes[i]*sizeof(VOLUME_PHYSICAL_OFFSET));
currentSize += arrayOfSizes[i];
ExFreePool(arrayOfArrays[i]);
}
status = STATUS_SUCCESS;
goto cleanup;
}
if (numberOfArrays == 1) {
*PhysicalOffsets = arrayOfArrays[0];
ASSERT(arrayOfSizes[0] == currentSize);
*NumberOfPhysicalOffsets = currentSize;
status = STATUS_SUCCESS;
goto cleanup;
}
ASSERT(numberOfArrays == 0);
status = STATUS_INVALID_PARAMETER;
cleanup:
ExFreePool(arrayOfArrays);
ExFreePool(arrayOfSizes);
return status;
}
NTSTATUS
MIRROR::QueryLogicalOffset(
IN PVOLUME_PHYSICAL_OFFSET PhysicalOffset,
OUT PLONGLONG LogicalOffset
)
/*++
Routine Description:
This routine returns the volume logical offset for a given disk number
and physical offset.
Arguments:
PhysicalOffset - Supplies the physical offset
LogicalOffset - Returns the logical offset
Return Value:
NTSTATUS
--*/
{
USHORT n, i;
LONGLONG logicalOffsetInMember;
NTSTATUS status;
PFT_VOLUME vol;
KIRQL irql;
FT_MEMBER_STATE memberState;
n = QueryNumMembers();
for (i = 0; i < n; i++) {
vol = GetMember(i);
if (!vol) {
continue;
}
KeAcquireSpinLock(&_spinLock, &irql);
memberState = QueryMemberState(i);
KeReleaseSpinLock(&_spinLock, irql);
if (memberState != FtMemberHealthy) {
continue;
}
status = vol->QueryLogicalOffset(PhysicalOffset, &logicalOffsetInMember);
if (NT_SUCCESS(status)) {
if (_volumeSize <= logicalOffsetInMember) {
return STATUS_INVALID_PARAMETER;
}
*LogicalOffset = logicalOffsetInMember;
return status;
}
}
return STATUS_INVALID_PARAMETER;
}
VOID
MIRROR::ModifyStateForUser(
IN OUT PVOID State
)
/*++
Routine Description:
This routine modifies the state for the user to see, possibly adding
non-persistant state different than what is stored on disk.
Arguments:
State - Supplies and returns the state for the logical disk.
Return Value:
None.
--*/
{
KIRQL irql;
BOOLEAN isDirty;
PFT_MIRROR_AND_SWP_STATE_INFORMATION state;
KeAcquireSpinLock(&_spinLock, &irql);
if (_syncOk && !_stopSyncs) {
isDirty = FALSE;
} else {
isDirty = TRUE;
}
KeReleaseSpinLock(&_spinLock, irql);
if (!isDirty) {
return;
}
state = (PFT_MIRROR_AND_SWP_STATE_INFORMATION) State;
if (state->UnhealthyMemberState == FtMemberHealthy) {
state->UnhealthyMemberState = FtMemberRegenerating;
state->UnhealthyMemberNumber = 1;
}
}