windows-nt/Source/XPSP1/NT/drivers/video/ms/compaq.qv/disp/bitblt.c

1828 lines
63 KiB
C
Raw Normal View History

2020-09-26 03:20:57 -05:00
/******************************Module*Header*******************************\
* Module Name: bitblt.c
*
* Contains the high-level DrvBitBlt and DrvCopyBits functions. The low-
* level stuff lives in 'blt.c'.
*
* !!! Change note about 'iType'
*
* Note: Since we've implemented device-bitmaps, any surface that GDI passes
* to us can have 3 values for its 'iType': STYPE_BITMAP, STYPE_DEVICE
* or STYPE_DEVBITMAP. We filter device-bitmaps that we've stored
* as DIBs fairly high in the code, so after we adjust its 'pptlSrc',
* we can treat STYPE_DEVBITMAP surfaces the same as STYPE_DEVICE
* surfaces (e.g., a blt from an off-screen device bitmap to the screen
* gets treated as a normal screen-to-screen blt). So throughout
* this code, we will compare a surface's 'iType' to STYPE_BITMAP:
* if it's equal, we've got a true DIB, and if it's unequal, we have
* a screen-to-screen operation.
*
* Copyright (c) 1992-1995 Microsoft Corporation
*
\**************************************************************************/
#include "precomp.h"
/******************************Public*Data*********************************\
* Rop-needs-pattern table
*
* Determines if a rop2 needs uses a pattern.
*
* Use 'gabRopNeedsPattern[(rop3 >> 2) & 0xf]', but note that this can only
* be done if it is known that the rop3 doesn't use a source.
*
\**************************************************************************/
BYTE gabRopNeedsPattern[] =
{
FALSE, // R2_BLACK
TRUE, // R2_NOTMERGEPEN
TRUE, // R2_MASKNOTPEN
TRUE, // R2_NOTCOPYPEN
TRUE, // R2_MASKPENNOT
FALSE, // R2_NOT
TRUE, // R2_XORPEN
TRUE, // R2_NOTMASKPEN
TRUE, // R2_MASKPEN
TRUE, // R2_NOTXORPEN
FALSE, // R2_NOP
TRUE, // R2_MERGENOTPEN
TRUE, // R2_COPYPEN
TRUE, // R2_MERGEPENNOT
TRUE, // R2_MERGEPEN
FALSE, // R2_WHITE
};
/******************************Public*Data*********************************\
* Mix-needs-pattern table
*
* Determines if a mix uses a pattern.
*
* Use 'gabMixNeedsPattern[mix & 0xf]' or 'gabMixNeedsPattern[mix & 0xff]'.
*
\**************************************************************************/
BYTE gabMixNeedsPattern[] =
{
FALSE, // R2_WHITE - Allow rop = gaRop3FromMix[mix & 0x0F]
FALSE, // R2_BLACK
TRUE, // R2_NOTMERGEPEN
TRUE, // R2_MASKNOTPEN
TRUE, // R2_NOTCOPYPEN
TRUE, // R2_MASKPENNOT
FALSE, // R2_NOT
TRUE, // R2_XORPEN
TRUE, // R2_NOTMASKPEN
TRUE, // R2_MASKPEN
TRUE, // R2_NOTXORPEN
FALSE, // R2_NOP
TRUE, // R2_MERGENOTPEN
TRUE, // R2_COPYPEN
TRUE, // R2_MERGEPENNOT
TRUE, // R2_MERGEPEN
FALSE, // R2_WHITE - Allow rop = gaRop3FromMix[mix & 0xFF]
};
/******************************Public*Data*********************************\
* MIX translation table
*
* Translates a mix 1-16, into an old style Rop 0-255.
*
\**************************************************************************/
BYTE gaRop3FromMix[] =
{
0xFF, // R2_WHITE - Allow rop = gaRop3FromMix[mix & 0x0F]
0x00, // R2_BLACK
0x05, // R2_NOTMERGEPEN
0x0A, // R2_MASKNOTPEN
0x0F, // R2_NOTCOPYPEN
0x50, // R2_MASKPENNOT
0x55, // R2_NOT
0x5A, // R2_XORPEN
0x5F, // R2_NOTMASKPEN
0xA0, // R2_MASKPEN
0xA5, // R2_NOTXORPEN
0xAA, // R2_NOP
0xAF, // R2_MERGENOTPEN
0xF0, // R2_COPYPEN
0xF5, // R2_MERGEPENNOT
0xFA, // R2_MERGEPEN
0xFF // R2_WHITE - Allow rop = gaRop3FromMix[mix & 0xFF]
};
#if DBG || !GDI_BANKING
// This table is big, so we only use to aid in debugging...
/******************************Public*Data*********************************\
* ROP3 translation table - Use only for debugging
*
* Translates the usual ternary rop into A-vector notation. Each bit in
* this new notation corresponds to a term in a polynomial translation of
* the rop.
*
* Rop(D,S,P) = a + a D + a S + a P + a DS + a DP + a SP + a DSP
* 0 d s p ds dp sp dsp
*
\**************************************************************************/
BYTE gajRop3[] =
{
0x00, 0xff, 0xb2, 0x4d, 0xd4, 0x2b, 0x66, 0x99,
0x90, 0x6f, 0x22, 0xdd, 0x44, 0xbb, 0xf6, 0x09,
0xe8, 0x17, 0x5a, 0xa5, 0x3c, 0xc3, 0x8e, 0x71,
0x78, 0x87, 0xca, 0x35, 0xac, 0x53, 0x1e, 0xe1,
0xa0, 0x5f, 0x12, 0xed, 0x74, 0x8b, 0xc6, 0x39,
0x30, 0xcf, 0x82, 0x7d, 0xe4, 0x1b, 0x56, 0xa9,
0x48, 0xb7, 0xfa, 0x05, 0x9c, 0x63, 0x2e, 0xd1,
0xd8, 0x27, 0x6a, 0x95, 0x0c, 0xf3, 0xbe, 0x41,
0xc0, 0x3f, 0x72, 0x8d, 0x14, 0xeb, 0xa6, 0x59,
0x50, 0xaf, 0xe2, 0x1d, 0x84, 0x7b, 0x36, 0xc9,
0x28, 0xd7, 0x9a, 0x65, 0xfc, 0x03, 0x4e, 0xb1,
0xb8, 0x47, 0x0a, 0xf5, 0x6c, 0x93, 0xde, 0x21,
0x60, 0x9f, 0xd2, 0x2d, 0xb4, 0x4b, 0x06, 0xf9,
0xf0, 0x0f, 0x42, 0xbd, 0x24, 0xdb, 0x96, 0x69,
0x88, 0x77, 0x3a, 0xc5, 0x5c, 0xa3, 0xee, 0x11,
0x18, 0xe7, 0xaa, 0x55, 0xcc, 0x33, 0x7e, 0x81,
0x80, 0x7f, 0x32, 0xcd, 0x54, 0xab, 0xe6, 0x19,
0x10, 0xef, 0xa2, 0x5d, 0xc4, 0x3b, 0x76, 0x89,
0x68, 0x97, 0xda, 0x25, 0xbc, 0x43, 0x0e, 0xf1,
0xf8, 0x07, 0x4a, 0xb5, 0x2c, 0xd3, 0x9e, 0x61,
0x20, 0xdf, 0x92, 0x6d, 0xf4, 0x0b, 0x46, 0xb9,
0xb0, 0x4f, 0x02, 0xfd, 0x64, 0x9b, 0xd6, 0x29,
0xc8, 0x37, 0x7a, 0x85, 0x1c, 0xe3, 0xae, 0x51,
0x58, 0xa7, 0xea, 0x15, 0x8c, 0x73, 0x3e, 0xc1,
0x40, 0xbf, 0xf2, 0x0d, 0x94, 0x6b, 0x26, 0xd9,
0xd0, 0x2f, 0x62, 0x9d, 0x04, 0xfb, 0xb6, 0x49,
0xa8, 0x57, 0x1a, 0xe5, 0x7c, 0x83, 0xce, 0x31,
0x38, 0xc7, 0x8a, 0x75, 0xec, 0x13, 0x5e, 0xa1,
0xe0, 0x1f, 0x52, 0xad, 0x34, 0xcb, 0x86, 0x79,
0x70, 0x8f, 0xc2, 0x3d, 0xa4, 0x5b, 0x16, 0xe9,
0x08, 0xf7, 0xba, 0x45, 0xdc, 0x23, 0x6e, 0x91,
0x98, 0x67, 0x2a, 0xd5, 0x4c, 0xb3, 0xfe, 0x01
};
#define AVEC_NOT 0x01
#define AVEC_D 0x02
#define AVEC_S 0x04
#define AVEC_P 0x08
#define AVEC_DS 0x10
#define AVEC_DP 0x20
#define AVEC_SP 0x40
#define AVEC_DSP 0x80
#define AVEC_NEED_SOURCE (AVEC_S | AVEC_DS | AVEC_SP | AVEC_DSP)
#define AVEC_NEED_PATTERN (AVEC_P | AVEC_DP | AVEC_SP | AVEC_DSP)
#define AVEC_NEED_DEST (AVEC_D | AVEC_DS | AVEC_DP | AVEC_DSP)
#endif // DBG
/******************************Public*Table********************************\
* BYTE gajLeftMask[] and BYTE gajRightMask[]
*
* Edge tables for vXferScreenTo1bpp.
\**************************************************************************/
BYTE gajLeftMask[] = { 0xff, 0x7f, 0x3f, 0x1f, 0x0f, 0x07, 0x03, 0x01 };
BYTE gajRightMask[] = { 0xff, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe };
/******************************Public*Routine******************************\
* BOOL bIntersect
*
* If 'prcl1' and 'prcl2' intersect, has a return value of TRUE and returns
* the intersection in 'prclResult'. If they don't intersect, has a return
* value of FALSE, and 'prclResult' is undefined.
*
\**************************************************************************/
BOOL bIntersect(
RECTL* prcl1,
RECTL* prcl2,
RECTL* prclResult)
{
prclResult->left = max(prcl1->left, prcl2->left);
prclResult->right = min(prcl1->right, prcl2->right);
if (prclResult->left < prclResult->right)
{
prclResult->top = max(prcl1->top, prcl2->top);
prclResult->bottom = min(prcl1->bottom, prcl2->bottom);
if (prclResult->top < prclResult->bottom)
{
return(TRUE);
}
}
return(FALSE);
}
/******************************Public*Routine******************************\
* LONG cIntersect
*
* This routine takes a list of rectangles from 'prclIn' and clips them
* in-place to the rectangle 'prclClip'. The input rectangles don't
* have to intersect 'prclClip'; the return value will reflect the
* number of input rectangles that did intersect, and the intersecting
* rectangles will be densely packed.
*
\**************************************************************************/
LONG cIntersect(
RECTL* prclClip,
RECTL* prclIn, // List of rectangles
LONG c) // Can be zero
{
LONG cIntersections;
RECTL* prclOut;
cIntersections = 0;
prclOut = prclIn;
for (; c != 0; prclIn++, c--)
{
prclOut->left = max(prclIn->left, prclClip->left);
prclOut->right = min(prclIn->right, prclClip->right);
if (prclOut->left < prclOut->right)
{
prclOut->top = max(prclIn->top, prclClip->top);
prclOut->bottom = min(prclIn->bottom, prclClip->bottom);
if (prclOut->top < prclOut->bottom)
{
prclOut++;
cIntersections++;
}
}
}
return(cIntersections);
}
/******************************Public*Routine******************************\
* VOID vXferScreenTo1bpp
*
* Performs a SRCCOPY transfer from the screen (when it's 8bpp) to a 1bpp
* bitmap.
*
\**************************************************************************/
#if defined(i386)
VOID vXferScreenTo1bpp( // Type FNXFER
PDEV* ppdev,
LONG c, // Count of rectangles, can't be zero
RECTL* prcl, // List of destination rectangles, in relative
// coordinates
ULONG ulHwMix, // Not used
SURFOBJ* psoDst, // Destination surface
POINTL* pptlSrc, // Original unclipped source point
RECTL* prclDst, // Original unclipped destination rectangle
XLATEOBJ* pxlo) // Provides colour-compressions information
{
LONG cjPel;
VOID* pfnCompute;
SURFOBJ soTmp;
ULONG* pulXlate;
ULONG ulForeColor;
POINTL ptlSrc;
RECTL rclTmp;
BYTE* pjDst;
BYTE jLeftMask;
BYTE jRightMask;
BYTE jNotLeftMask;
BYTE jNotRightMask;
LONG cjMiddle;
LONG lDstDelta;
LONG lSrcDelta;
LONG cyTmpScans;
LONG cyThis;
LONG cyToGo;
ASSERTDD(c > 0, "Can't handle zero rectangles");
ASSERTDD(psoDst->iBitmapFormat == BMF_1BPP, "Only 1bpp destinations");
ASSERTDD(TMP_BUFFER_SIZE >= (ppdev->cxMemory * ppdev->cjPel),
"Temp buffer has to be larger than widest possible scan");
// When the destination is a 1bpp bitmap, the foreground colour
// maps to '1', and any other colour maps to '0'.
if (ppdev->iBitmapFormat == BMF_8BPP)
{
// When the source is 8bpp or less, we find the forground colour
// by searching the translate table for the only '1':
pulXlate = pxlo->pulXlate;
while (*pulXlate != 1)
pulXlate++;
ulForeColor = pulXlate - pxlo->pulXlate;
}
else
{
ASSERTDD((ppdev->iBitmapFormat == BMF_16BPP) ||
(ppdev->iBitmapFormat == BMF_32BPP),
"This routine only supports 8, 16 or 32bpp");
// When the source has a depth greater than 8bpp, the foreground
// colour will be the first entry in the translate table we get
// from calling 'piVector':
pulXlate = XLATEOBJ_piVector(pxlo);
ulForeColor = 0;
if (pulXlate != NULL) // This check isn't really needed...
ulForeColor = pulXlate[0];
}
// We use the temporary buffer to keep a copy of the source
// rectangle:
soTmp.pvScan0 = ppdev->pvTmpBuffer;
do {
// ptlSrc points to the upper-left corner of the screen rectangle
// for the current batch:
ptlSrc.x = prcl->left + (pptlSrc->x - prclDst->left);
ptlSrc.y = prcl->top + (pptlSrc->y - prclDst->top);
// vGetBits takes absolute coordinates for the source point:
ptlSrc.x += ppdev->xOffset;
ptlSrc.y += ppdev->yOffset;
pjDst = (BYTE*) psoDst->pvScan0 + (prcl->top * psoDst->lDelta)
+ (prcl->left >> 3);
cjPel = ppdev->cjPel;
soTmp.lDelta = (((prcl->right + 7L) & ~7L) - (prcl->left & ~7L))
* cjPel;
// Our temporary buffer, into which we read a copy of the source,
// may be smaller than the source rectangle. In that case, we
// process the source rectangle in batches.
//
// cyTmpScans is the number of scans we can do in each batch.
// cyToGo is the total number of scans we have to do for this
// rectangle.
//
// We take the buffer size less four so that the right edge case
// can safely read one dword past the end:
cyTmpScans = (TMP_BUFFER_SIZE - 4) / soTmp.lDelta;
cyToGo = prcl->bottom - prcl->top;
ASSERTDD(cyTmpScans > 0, "Buffer too small for largest possible scan");
// Initialize variables that don't change within the batch loop:
rclTmp.top = 0;
rclTmp.left = prcl->left & 7L;
rclTmp.right = (prcl->right - prcl->left) + rclTmp.left;
// Note that we have to be careful with the right mask so that it
// isn't zero. A right mask of zero would mean that we'd always be
// touching one byte past the end of the scan (even though we
// wouldn't actually be modifying that byte), and we must never
// access memory past the end of the bitmap (because we can access
// violate if the bitmap end is exactly page-aligned).
jLeftMask = gajLeftMask[rclTmp.left & 7];
jRightMask = gajRightMask[rclTmp.right & 7];
cjMiddle = ((rclTmp.right - 1) >> 3) - (rclTmp.left >> 3) - 1;
if (cjMiddle < 0)
{
// The blt starts and ends in the same byte:
jLeftMask &= jRightMask;
jRightMask = 0;
cjMiddle = 0;
}
jNotLeftMask = ~jLeftMask;
jNotRightMask = ~jRightMask;
lDstDelta = psoDst->lDelta - cjMiddle - 2;
// Delta from the end of the destination
// to the start on the next scan, accounting
// for 'left' and 'right' bytes
lSrcDelta = soTmp.lDelta - ((8 * (cjMiddle + 2)) * cjPel);
// Compute source delta for special cases
// like when cjMiddle gets bumped up to '0',
// and to correct aligned cases
do {
// This is the loop that breaks the source rectangle into
// manageable batches.
cyThis = cyTmpScans;
cyToGo -= cyThis;
if (cyToGo < 0)
cyThis += cyToGo;
rclTmp.bottom = cyThis;
vGetBits(ppdev, &soTmp, &rclTmp, &ptlSrc);
ptlSrc.y += cyThis; // Get ready for next batch loop
_asm {
mov eax,ulForeColor ;eax = foreground colour
;ebx = temporary storage
;ecx = count of middle dst bytes
;dl = destination byte accumulator
;dh = temporary storage
mov esi,soTmp.pvScan0 ;esi = source pointer
mov edi,pjDst ;edi = destination pointer
; Figure out the appropriate compute routine:
mov ebx,cjPel
mov pfnCompute,offset Compute_Destination_Byte_From_8bpp
dec ebx
jz short Do_Left_Byte
mov pfnCompute,offset Compute_Destination_Byte_From_16bpp
dec ebx
jz short Do_Left_Byte
mov pfnCompute,offset Compute_Destination_Byte_From_32bpp
Do_Left_Byte:
call pfnCompute
and dl,jLeftMask
mov dh,jNotLeftMask
and dh,[edi]
or dh,dl
mov [edi],dh
inc edi
mov ecx,cjMiddle
dec ecx
jl short Do_Right_Byte
Do_Middle_Bytes:
call pfnCompute
mov [edi],dl
inc edi
dec ecx
jge short Do_Middle_Bytes
Do_Right_Byte:
call pfnCompute
and dl,jRightMask
mov dh,jNotRightMask
and dh,[edi]
or dh,dl
mov [edi],dh
inc edi
add edi,lDstDelta
add esi,lSrcDelta
dec cyThis
jnz short Do_Left_Byte
mov pjDst,edi ;save for next batch
jmp All_Done
Compute_Destination_Byte_From_8bpp:
mov bl,[esi]
sub bl,al
cmp bl,1
adc dl,dl ;bit 0
mov bl,[esi+1]
sub bl,al
cmp bl,1
adc dl,dl ;bit 1
mov bl,[esi+2]
sub bl,al
cmp bl,1
adc dl,dl ;bit 2
mov bl,[esi+3]
sub bl,al
cmp bl,1
adc dl,dl ;bit 3
mov bl,[esi+4]
sub bl,al
cmp bl,1
adc dl,dl ;bit 4
mov bl,[esi+5]
sub bl,al
cmp bl,1
adc dl,dl ;bit 5
mov bl,[esi+6]
sub bl,al
cmp bl,1
adc dl,dl ;bit 6
mov bl,[esi+7]
sub bl,al
cmp bl,1
adc dl,dl ;bit 7
add esi,8 ;advance the source
ret
Compute_Destination_Byte_From_16bpp:
mov bx,[esi]
sub bx,ax
cmp bx,1
adc dl,dl ;bit 0
mov bx,[esi+2]
sub bx,ax
cmp bx,1
adc dl,dl ;bit 1
mov bx,[esi+4]
sub bx,ax
cmp bx,1
adc dl,dl ;bit 2
mov bx,[esi+6]
sub bx,ax
cmp bx,1
adc dl,dl ;bit 3
mov bx,[esi+8]
sub bx,ax
cmp bx,1
adc dl,dl ;bit 4
mov bx,[esi+10]
sub bx,ax
cmp bx,1
adc dl,dl ;bit 5
mov bx,[esi+12]
sub bx,ax
cmp bx,1
adc dl,dl ;bit 6
mov bx,[esi+14]
sub bx,ax
cmp bx,1
adc dl,dl ;bit 7
add esi,16 ;advance the source
ret
Compute_Destination_Byte_From_32bpp:
mov ebx,[esi]
sub ebx,eax
cmp ebx,1
adc dl,dl ;bit 0
mov ebx,[esi+4]
sub ebx,eax
cmp ebx,1
adc dl,dl ;bit 1
mov ebx,[esi+8]
sub ebx,eax
cmp ebx,1
adc dl,dl ;bit 2
mov ebx,[esi+12]
sub ebx,eax
cmp ebx,1
adc dl,dl ;bit 3
mov ebx,[esi+16]
sub ebx,eax
cmp ebx,1
adc dl,dl ;bit 4
mov ebx,[esi+20]
sub ebx,eax
cmp ebx,1
adc dl,dl ;bit 5
mov ebx,[esi+24]
sub ebx,eax
cmp ebx,1
adc dl,dl ;bit 6
mov ebx,[esi+28]
sub ebx,eax
cmp ebx,1
adc dl,dl ;bit 7
add esi,32 ;advance the source
ret
All_Done:
}
} while (cyToGo > 0);
prcl++;
} while (--c != 0);
}
#endif // i386
/******************************Public*Routine******************************\
* BOOL bPuntBlt
*
* Has GDI do any drawing operations that we don't specifically handle
* in the driver.
*
\**************************************************************************/
BOOL bPuntBlt(
SURFOBJ* psoDst,
SURFOBJ* psoSrc,
SURFOBJ* psoMsk,
CLIPOBJ* pco,
XLATEOBJ* pxlo,
RECTL* prclDst,
POINTL* pptlSrc,
POINTL* pptlMsk,
BRUSHOBJ* pbo,
POINTL* pptlBrush,
ROP4 rop4)
{
#if DBG
{
//////////////////////////////////////////////////////////////////////
// Diagnostics
//
// Since calling the engine to do any drawing can be rather painful,
// particularly when the source is an off-screen DFB (since GDI will
// have to allocate a DIB and call us to make a temporary copy before
// it can even start drawing), we'll try to avoid it as much as
// possible.
//
// Here we simply spew out information describing the blt whenever
// this routine gets called (checked builds only, of course):
ULONG ulClip;
PDEV* ppdev;
ULONG ulAvec;
if (psoDst->dhpdev != NULL)
ppdev = (PDEV*) psoDst->dhpdev;
else
ppdev = (PDEV*) psoSrc->dhpdev;
ulClip = (pco == NULL) ? DC_TRIVIAL : pco->iDComplexity;
DISPDBG((3, ">> Punt << Dst format: %li Dst type: %li Clip: %li Rop: %lx",
psoDst->iBitmapFormat, psoDst->iType, ulClip, rop4));
if (psoSrc != NULL)
DISPDBG((3, " << Src format: %li Src type: %li",
psoSrc->iBitmapFormat, psoSrc->iType));
if ((pxlo != NULL) && !(pxlo->flXlate & XO_TRIVIAL) && (psoSrc != NULL))
{
if (((psoSrc->dhsurf == NULL) &&
(psoSrc->iBitmapFormat != ppdev->iBitmapFormat)) ||
((psoDst->dhsurf == NULL) &&
(psoDst->iBitmapFormat != ppdev->iBitmapFormat)))
{
// Don't bother printing the 'xlate' message when the source
// is a different bitmap format from the destination -- in
// those cases we know there always has to be a translate.
}
else
{
DISPDBG((3, " << With xlate"));
}
}
// The high 2 bytes of rop4 is not guaranteed to be zero. So in order
// to get the low 8 bits as index, we have to &ffff before do >>
ulAvec = gajRop3[rop4 & 0xff] | gajRop3[(rop4 & 0xffff) >> 8];
if ((ulAvec & AVEC_NEED_PATTERN) && (pbo->iSolidColor == -1))
{
if (pbo->pvRbrush == NULL)
DISPDBG((3, " << With brush -- Not created"));
else
DISPDBG((3, " << With brush -- Created Ok"));
}
}
#endif
#if GDI_BANKING
{
//////////////////////////////////////////////////////////////////////
// Banked Framebuffer bPuntBlt
//
// This section of code handles a PuntBlt when GDI can directly draw
// on the framebuffer, but the drawing has to be done in banks:
BANK bnk;
PDEV* ppdev;
BOOL b;
HSURF hsurfTmp;
SURFOBJ* psoTmp;
SIZEL sizl;
POINTL ptlSrc;
RECTL rclTmp;
RECTL rclDst;
b = FALSE; // Fore error cases, assume we'll fail
// We copy the original destination rectangle, and use that in every
// GDI call-back instead of the original because sometimes GDI is
// sneaky and points 'prclDst' to '&pco->rclBounds'. Because we
// modify 'rclBounds', that would affect 'prclDst', which we don't
// want to happen:
rclDst = *prclDst;
if ((psoSrc == NULL) || (psoSrc->dhsurf == NULL))
{
ASSERTDD(psoDst->dhsurf != NULL,
"Dest should be the screen when given a DIB source");
// Do a memory-to-screen blt:
ppdev = (PDEV*) psoDst->dhpdev;
vBankStart(ppdev, &rclDst, pco, &bnk);
b = TRUE;
do {
b &= EngBitBlt(bnk.pso, psoSrc, psoMsk, bnk.pco, pxlo,
&rclDst, pptlSrc, pptlMsk, pbo, pptlBrush,
rop4);
} while (bBankEnum(&bnk));
}
else
{
// The screen is the source (it may be the destination too...)
ppdev = (PDEV*) psoSrc->dhpdev;
ptlSrc.x = pptlSrc->x + ppdev->xOffset;
ptlSrc.y = pptlSrc->y + ppdev->yOffset;
if ((pco != NULL) && (pco->iDComplexity != DC_TRIVIAL))
{
// We have to intersect the destination rectangle with
// the clip bounds if there is one (consider the case
// where the app asked to blt a really, really big
// rectangle from the screen -- prclDst would be really,
// really big but pco->rclBounds would be the actual
// area of interest):
rclDst.left = max(rclDst.left, pco->rclBounds.left);
rclDst.top = max(rclDst.top, pco->rclBounds.top);
rclDst.right = min(rclDst.right, pco->rclBounds.right);
rclDst.bottom = min(rclDst.bottom, pco->rclBounds.bottom);
// Correspondingly, we have to offset the source point:
ptlSrc.x += (rclDst.left - prclDst->left);
ptlSrc.y += (rclDst.top - prclDst->top);
}
// We're now either going to do a screen-to-screen or screen-to-DIB
// blt. In either case, we're going to create a temporary copy of
// the source. (Why do we do this when GDI could do it for us?
// GDI would create a temporary copy of the DIB for every bank
// call-back!)
sizl.cx = rclDst.right - rclDst.left;
sizl.cy = rclDst.bottom - rclDst.top;
// Don't forget to convert from relative to absolute coordinates
// on the source! (vBankStart takes care of that for the
// destination.)
rclTmp.right = sizl.cx;
rclTmp.bottom = sizl.cy;
rclTmp.left = 0;
rclTmp.top = 0;
// GDI does guarantee us that the blt extents have already been
// clipped to the surface boundaries (we don't have to worry
// here about trying to read where there isn't video memory).
// Let's just assert to make sure:
ASSERTDD((ptlSrc.x >= 0) &&
(ptlSrc.y >= 0) &&
(ptlSrc.x + sizl.cx <= ppdev->cxMemory) &&
(ptlSrc.y + sizl.cy <= ppdev->cyMemory),
"Source rectangle out of bounds!");
hsurfTmp = (HSURF) EngCreateBitmap(sizl,
0, // Let GDI choose ulWidth
ppdev->iBitmapFormat,
0, // Don't need any options
NULL);// Let GDI allocate
if (hsurfTmp != 0)
{
psoTmp = EngLockSurface(hsurfTmp);
if (psoTmp != NULL)
{
vGetBits(ppdev, psoTmp, &rclTmp, &ptlSrc);
if (psoDst->dhsurf == NULL)
{
// It was a Screen-to-DIB blt; now it's a DIB-to-DIB
// blt. Note that the source point is (0, 0) in our
// temporary surface:
b = EngBitBlt(psoDst, psoTmp, psoMsk, pco, pxlo,
&rclDst, (POINTL*) &rclTmp, pptlMsk,
pbo, pptlBrush, rop4);
}
else
{
// It was a Screen-to-Screen blt; now it's a DIB-to-
// screen blt. Note that the source point is (0, 0)
// in our temporary surface:
vBankStart(ppdev, &rclDst, pco, &bnk);
b = TRUE;
do {
b &= EngBitBlt(bnk.pso, psoTmp, psoMsk, bnk.pco,
pxlo, &rclDst, (POINTL*) &rclTmp,
pptlMsk, pbo, pptlBrush, rop4);
} while (bBankEnum(&bnk));
}
EngUnlockSurface(psoTmp);
}
EngDeleteSurface(hsurfTmp);
} // if (hsurfTmp != 0)
else
b = FALSE;
}
return(b);
}
#else
{
//////////////////////////////////////////////////////////////////////
// Really Slow bPuntBlt
//
// Here we handle a PuntBlt when GDI can't draw directly on the
// framebuffer (as on the Alpha, which can't do it because of its
// 32 bit bus). If you thought the banked version was slow, just
// look at this one. Guaranteed, there will be at least one bitmap
// allocation and extra copy involved; there could be two if it's a
// screen-to-screen operation.
PDEV* ppdev;
POINTL ptlSrc;
RECTL rclDst;
SIZEL sizl;
ULONG ulAvec;
BOOL bSrcIsScreen;
HSURF hsurfSrc;
RECTL rclTmp;
BOOL b;
LONG lDelta;
BYTE* pjBits;
BYTE* pjScan0;
HSURF hsurfDst;
RECTL rclScreen;
b = FALSE; // Fore error cases, assume we'll fail
rclDst = *prclDst;
if (pptlSrc != NULL)
ptlSrc = *pptlSrc;
if ((pco != NULL) && (pco->iDComplexity != DC_TRIVIAL))
{
// We have to intersect the destination rectangle with
// the clip bounds if there is one (consider the case
// where the app asked to blt a really, really big
// rectangle from the screen -- prclDst would be really,
// really big but pco->rclBounds would be the actual
// area of interest):
rclDst.left = max(rclDst.left, pco->rclBounds.left);
rclDst.top = max(rclDst.top, pco->rclBounds.top);
rclDst.right = min(rclDst.right, pco->rclBounds.right);
rclDst.bottom = min(rclDst.bottom, pco->rclBounds.bottom);
ptlSrc.x += (rclDst.left - prclDst->left);
ptlSrc.y += (rclDst.top - prclDst->top);
}
sizl.cx = rclDst.right - rclDst.left;
sizl.cy = rclDst.bottom - rclDst.top;
// The high 2 bytes of rop4 is not guaranteed to be zero. So in order
// to get the low 8 bits as index, we have to &ffff before do >>
ulAvec = gajRop3[rop4 & 0xff] | gajRop3[(rop4 & 0xffff) >> 8];
bSrcIsScreen = ((ulAvec & AVEC_NEED_SOURCE) &&
(psoSrc->dhsurf != NULL));
if (bSrcIsScreen)
{
ppdev = (PDEV*) psoSrc->dhpdev;
// We need to create a copy of the source rectangle:
hsurfSrc = (HSURF) EngCreateBitmap(sizl, 0, ppdev->iBitmapFormat,
0, NULL);
if (hsurfSrc == 0)
goto Error_0;
psoSrc = EngLockSurface(hsurfSrc);
if (psoSrc == NULL)
goto Error_1;
rclTmp.left = 0;
rclTmp.top = 0;
rclTmp.right = sizl.cx;
rclTmp.bottom = sizl.cy;
// vGetBits takes absolute coordinates for the source point:
ptlSrc.x += ppdev->xOffset;
ptlSrc.y += ppdev->yOffset;
vGetBits(ppdev, psoSrc, &rclTmp, &ptlSrc);
// The source will now come from (0, 0) of our temporary source
// surface:
ptlSrc.x = 0;
ptlSrc.y = 0;
}
if (psoDst->dhsurf == NULL)
{
b = EngBitBlt(psoDst, psoSrc, psoMsk, pco, pxlo, &rclDst, &ptlSrc,
pptlMsk, pbo, pptlBrush, rop4);
}
else
{
ppdev = (PDEV*) psoDst->dhpdev;
// We need to create a temporary work buffer. We have to do
// some fudging with the offsets so that the upper-left corner
// of the (relative coordinates) clip object bounds passed to
// GDI will be transformed to the upper-left corner of our
// temporary bitmap.
// The alignment doesn't have to be as tight as this at 16bpp
// and 32bpp, but it won't hurt:
lDelta = (((rclDst.right + 3) & ~3L) - (rclDst.left & ~3L))
<< ppdev->cPelSize;
// We're actually only allocating a bitmap that is 'sizl.cx' x
// 'sizl.cy' in size:
pjBits = EngAllocMem(0, lDelta * sizl.cy, ALLOC_TAG);
if (pjBits == NULL)
goto Error_2;
// We now adjust the surface's 'pvScan0' so that when GDI thinks
// it's writing to pixel (rclDst.top, rclDst.left), it will
// actually be writing to the upper-left pixel of our temporary
// bitmap:
pjScan0 = pjBits - (rclDst.top * lDelta)
- ((rclDst.left & ~3L) << ppdev->cPelSize);
ASSERTDD((((ULONG_PTR) pjScan0) & 3) == 0,
"pvScan0 must be dword aligned!");
// The checked build of GDI sometimes checks on blts that
// prclDst->right <= pso->sizl.cx, so we lie to it about
// the size of our bitmap:
sizl.cx = rclDst.right;
sizl.cy = rclDst.bottom;
hsurfDst = (HSURF) EngCreateBitmap(
sizl, // Bitmap covers rectangle
lDelta, // Use this delta
ppdev->iBitmapFormat, // Same colour depth
BMF_TOPDOWN, // Must have a positive delta
pjScan0); // Where (0, 0) would be
if ((hsurfDst == 0) ||
(!EngAssociateSurface(hsurfDst, ppdev->hdevEng, 0)))
goto Error_3;
psoDst = EngLockSurface(hsurfDst);
if (psoDst == NULL)
goto Error_4;
// Make sure that the rectangle we Get/Put from/to the screen
// is in absolute coordinates:
rclScreen.left = rclDst.left + ppdev->xOffset;
rclScreen.right = rclDst.right + ppdev->xOffset;
rclScreen.top = rclDst.top + ppdev->yOffset;
rclScreen.bottom = rclDst.bottom + ppdev->yOffset;
// It would be nice to get a copy of the destination rectangle
// only when the ROP involves the destination (or when the source
// is an RLE), but we can't do that. If the brush is truly NULL,
// GDI will immediately return TRUE from EngBitBlt, without
// modifying the temporary bitmap -- and we would proceed to
// copy the uninitialized temporary bitmap back to the screen.
vGetBits(ppdev, psoDst, &rclDst, (POINTL*) &rclScreen);
b = EngBitBlt(psoDst, psoSrc, psoMsk, pco, pxlo, &rclDst, &ptlSrc,
pptlMsk, pbo, pptlBrush, rop4);
vPutBits(ppdev, psoDst, &rclScreen, (POINTL*) &rclDst);
EngUnlockSurface(psoDst);
Error_4:
EngDeleteSurface(hsurfDst);
Error_3:
EngFreeMem(pjBits);
}
Error_2:
if (bSrcIsScreen)
{
EngUnlockSurface(psoSrc);
Error_1:
EngDeleteSurface(hsurfSrc);
}
Error_0:
return(b);
}
#endif
}
/******************************Public*Routine******************************\
* BOOL DrvBitBlt
*
* Implements the workhorse routine of a display driver.
*
\**************************************************************************/
BOOL DrvBitBlt(
SURFOBJ* psoDst,
SURFOBJ* psoSrc,
SURFOBJ* psoMsk,
CLIPOBJ* pco,
XLATEOBJ* pxlo,
RECTL* prclDst,
POINTL* pptlSrc,
POINTL* pptlMsk,
BRUSHOBJ* pbo,
POINTL* pptlBrush,
ROP4 rop4)
{
PDEV* ppdev;
DSURF* pdsurfDst;
DSURF* pdsurfSrc;
POINTL ptlSrc;
BYTE jClip;
OH* poh;
BOOL bMore;
CLIPENUM ce;
LONG c;
RECTL rcl;
ULONG rop3;
FNFILL* pfnFill;
RBRUSH_COLOR rbc; // Realized brush or solid colour
FNXFER* pfnXfer;
ULONG iSrcBitmapFormat;
ULONG iDir;
jClip = (pco == NULL) ? DC_TRIVIAL : pco->iDComplexity;
pdsurfDst = (DSURF*) psoDst->dhsurf; // May be NULL
if (psoSrc == NULL)
{
///////////////////////////////////////////////////////////////////
// Fills
///////////////////////////////////////////////////////////////////
// Fills are this function's "raison d'etre" (which is French
// for "purple armadillo"), so we handle them as quickly as
// possible:
ASSERTDD(pdsurfDst != NULL,
"Expect only device destinations when no source");
if (pdsurfDst->dt == DT_SCREEN)
{
ppdev = (PDEV*) psoDst->dhpdev;
poh = pdsurfDst->poh;
ppdev->xOffset = poh->x;
ppdev->yOffset = poh->y;
// Make sure it doesn't involve a mask (i.e., it's really a
// Rop3):
if (((rop4 >> 8) & 0xff) == (rop4 & 0xff))
{
// Since 'psoSrc' is NULL, the rop3 had better not indicate
// that we need a source.
ASSERTDD((((rop4 >> 2) ^ (rop4)) & 0x33) == 0,
"Need source but GDI gave us a NULL 'psoSrc'");
Fill_It:
pfnFill = ppdev->pfnFillSolid;
if (gabRopNeedsPattern[(rop4 >> 2) & 0xf])
{
rbc.iSolidColor = pbo->iSolidColor;
if (rbc.iSolidColor == -1)
{
// Try and realize the pattern brush; by doing
// this call-back, GDI will eventually call us
// again through DrvRealizeBrush:
rbc.prb = pbo->pvRbrush;
if (rbc.prb == NULL)
{
rbc.prb = BRUSHOBJ_pvGetRbrush(pbo);
if (rbc.prb == NULL)
{
// If we couldn't realize the brush, punt
// the call (it may have been a non 8x8
// brush or something, which we can't be
// bothered to handle, so let GDI do the
// drawing):
goto Punt_It;
}
}
pfnFill = ppdev->pfnFillPat;
}
}
// Note that these 2 'if's are more efficient than
// a switch statement:
if (jClip == DC_TRIVIAL)
{
pfnFill(ppdev, 1, prclDst, rop4, rbc, pptlBrush);
goto All_Done;
}
else if (jClip == DC_RECT)
{
if (bIntersect(prclDst, &pco->rclBounds, &rcl))
pfnFill(ppdev, 1, &rcl, rop4, rbc, pptlBrush);
goto All_Done;
}
else
{
CLIPOBJ_cEnumStart(pco, FALSE, CT_RECTANGLES, CD_ANY, 0);
do {
bMore = CLIPOBJ_bEnum(pco, sizeof(ce), (ULONG*) &ce);
c = cIntersect(prclDst, ce.arcl, ce.c);
if (c != 0)
pfnFill(ppdev, c, ce.arcl, rop4, rbc, pptlBrush);
} while (bMore);
goto All_Done;
}
}
}
}
if ((psoSrc != NULL) && (psoSrc->dhsurf != NULL))
{
pdsurfSrc = (DSURF*) psoSrc->dhsurf;
if (pdsurfSrc->dt == DT_DIB)
{
// Here we consider putting a DIB DFB back into off-screen
// memory. If there's a translate, it's probably not worth
// moving since we won't be able to use the hardware to do
// the blt (a similar argument could be made for weird rops
// and stuff that we'll only end up having GDI simulate, but
// those should happen infrequently enough that I don't care).
if ((pxlo == NULL) || (pxlo->flXlate & XO_TRIVIAL))
{
ppdev = (PDEV*) psoSrc->dhpdev;
// See 'DrvCopyBits' for some more comments on how this
// moving-it-back-into-off-screen-memory thing works:
if (pdsurfSrc->iUniq == ppdev->iHeapUniq)
{
if (--pdsurfSrc->cBlt == 0)
{
if (bMoveDibToOffscreenDfbIfRoom(ppdev, pdsurfSrc))
goto Continue_It;
}
}
else
{
// Some space was freed up in off-screen memory,
// so reset the counter for this DFB:
pdsurfSrc->iUniq = ppdev->iHeapUniq;
pdsurfSrc->cBlt = HEAP_COUNT_DOWN;
}
}
psoSrc = pdsurfSrc->pso;
// Handle the case where the source is a DIB DFB and the
// destination is a regular bitmap:
if (psoDst->dhsurf == NULL)
goto EngBitBlt_It;
}
}
Continue_It:
if (pdsurfDst != NULL)
{
if (pdsurfDst->dt == DT_DIB)
{
psoDst = pdsurfDst->pso;
// If the destination is a DIB, we can only handle this
// call if the source is not a DIB:
if ((psoSrc == NULL) || (psoSrc->dhsurf == NULL))
goto EngBitBlt_It;
}
}
// At this point, we know that either the source or the destination is
// not a DIB. Check for a DFB to screen, DFB to DFB, or screen to DFB
// case:
if ((psoSrc != NULL) &&
(psoDst->dhsurf != NULL) &&
(psoSrc->dhsurf != NULL))
{
pdsurfSrc = (DSURF*) psoSrc->dhsurf;
pdsurfDst = (DSURF*) psoDst->dhsurf;
ASSERTDD(pdsurfSrc->dt == DT_SCREEN, "Expected screen source");
ASSERTDD(pdsurfDst->dt == DT_SCREEN, "Expected screen destination");
ptlSrc.x = pptlSrc->x - (pdsurfDst->poh->x - pdsurfSrc->poh->x);
ptlSrc.y = pptlSrc->y - (pdsurfDst->poh->y - pdsurfSrc->poh->y);
pptlSrc = &ptlSrc;
}
if (psoDst->dhsurf != NULL)
{
pdsurfDst = (DSURF*) psoDst->dhsurf;
ppdev = (PDEV*) psoDst->dhpdev;
ppdev->xOffset = pdsurfDst->poh->x;
ppdev->yOffset = pdsurfDst->poh->y;
}
else
{
pdsurfSrc = (DSURF*) psoSrc->dhsurf;
ppdev = (PDEV*) psoSrc->dhpdev;
ppdev->xOffset = pdsurfSrc->poh->x;
ppdev->yOffset = pdsurfSrc->poh->y;
}
// We bail here if we're running in a high-colour mode:
if (ppdev->flStat & STAT_UNACCELERATED)
goto EngBitBlt_It;
if (((rop4 >> 8) & 0xff) == (rop4 & 0xff))
{
// Since we've already handled the cases where the ROP4 is really
// a ROP3 and no source is required, we can assert...
ASSERTDD((psoSrc != NULL) && (pptlSrc != NULL),
"Expected no-source case to already have been handled");
///////////////////////////////////////////////////////////////////
// Bitmap transfers
///////////////////////////////////////////////////////////////////
// Since the foreground and background ROPs are the same, we
// don't have to worry about no stinking masks (it's a simple
// Rop3).
rop3 = (rop4 & 0xff); // Make it into a Rop3 (we keep the rop4
// around in case we decide to punt)
if (psoDst->dhsurf != NULL)
{
// The destination is the screen:
if ((rop3 >> 4) == (rop3 & 0xf))
{
// The ROP3 doesn't require a pattern:
if (psoSrc->dhsurf == NULL)
{
//////////////////////////////////////////////////
// DIB-to-screen blt
// This section handles 1bpp, 4bpp and 8bpp sources.
iSrcBitmapFormat = psoSrc->iBitmapFormat;
if (iSrcBitmapFormat == BMF_1BPP)
{
pfnXfer = ppdev->pfnXfer1bpp;
goto Xfer_It;
}
}
else // psoSrc->dhsurf != NULL
{
if ((pxlo == NULL) || (pxlo->flXlate & XO_TRIVIAL))
{
//////////////////////////////////////////////////
// Screen-to-screen blt with no translate
if (jClip == DC_TRIVIAL)
{
(ppdev->pfnCopyBlt)(ppdev, 1, prclDst, rop4,
pptlSrc, prclDst);
goto All_Done;
}
else if (jClip == DC_RECT)
{
if (bIntersect(prclDst, &pco->rclBounds, &rcl))
{
(ppdev->pfnCopyBlt)(ppdev, 1, &rcl, rop4,
pptlSrc, prclDst);
}
goto All_Done;
}
else
{
// Don't forget that we'll have to draw the
// rectangles in the correct direction:
if (pptlSrc->y >= prclDst->top)
{
if (pptlSrc->x >= prclDst->left)
iDir = CD_RIGHTDOWN;
else
iDir = CD_LEFTDOWN;
}
else
{
if (pptlSrc->x >= prclDst->left)
iDir = CD_RIGHTUP;
else
iDir = CD_LEFTUP;
}
CLIPOBJ_cEnumStart(pco, FALSE, CT_RECTANGLES,
iDir, 0);
do {
bMore = CLIPOBJ_bEnum(pco, sizeof(ce),
(ULONG*) &ce);
c = cIntersect(prclDst, ce.arcl, ce.c);
if (c != 0)
{
(ppdev->pfnCopyBlt)(ppdev, c, ce.arcl,
rop4, pptlSrc, prclDst);
}
} while (bMore);
goto All_Done;
}
}
}
}
}
else
{
#if defined(i386)
{
// We special case screen to monochrome blts because they
// happen fairly often. We only handle SRCCOPY rops and
// monochrome destinations (to handle a true 1bpp DIB
// destination, we would have to do near-colour searches
// on every colour; as it is, the foreground colour gets
// mapped to '1', and everything else gets mapped to '0'):
if ((psoDst->iBitmapFormat == BMF_1BPP) &&
(rop3 == 0xcc) &&
(pxlo->flXlate & XO_TO_MONO) &&
(ppdev->iBitmapFormat != BMF_24BPP))
{
pfnXfer = vXferScreenTo1bpp;
psoSrc = psoDst; // A misnomer, I admit
goto Xfer_It;
}
}
#endif // i386
}
}
else if ((psoMsk == NULL) && (rop4 == 0xaacc))
{
// The only time GDI will ask us to do a true rop4 using the brush
// mask is when the brush is 1bpp, and the background rop is AA
// (meaning it's a NOP):
goto Fill_It;
}
// Just fall through to Punt_It...
Punt_It:
return(bPuntBlt(psoDst,
psoSrc,
psoMsk,
pco,
pxlo,
prclDst,
pptlSrc,
pptlMsk,
pbo,
pptlBrush,
rop4));
//////////////////////////////////////////////////////////////////////
// Common bitmap transfer
Xfer_It:
if (jClip == DC_TRIVIAL)
{
pfnXfer(ppdev, 1, prclDst, rop4, psoSrc, pptlSrc, prclDst, pxlo);
goto All_Done;
}
else if (jClip == DC_RECT)
{
if (bIntersect(prclDst, &pco->rclBounds, &rcl))
pfnXfer(ppdev, 1, &rcl, rop4, psoSrc, pptlSrc, prclDst, pxlo);
goto All_Done;
}
else
{
CLIPOBJ_cEnumStart(pco, FALSE, CT_RECTANGLES,
CD_ANY, 0);
do {
bMore = CLIPOBJ_bEnum(pco, sizeof(ce),
(ULONG*) &ce);
c = cIntersect(prclDst, ce.arcl, ce.c);
if (c != 0)
{
pfnXfer(ppdev, c, ce.arcl, rop4, psoSrc,
pptlSrc, prclDst, pxlo);
}
} while (bMore);
goto All_Done;
}
////////////////////////////////////////////////////////////////////////
// Common DIB blt
EngBitBlt_It:
// Our driver doesn't handle any blt's between two DIBs. Normally
// a driver doesn't have to worry about this, but we do because
// we have DFBs that may get moved from off-screen memory to a DIB,
// where we have GDI do all the drawing. GDI does DIB drawing at
// a reasonable speed (unless one of the surfaces is a device-
// managed surface...)
//
// If either the source or destination surface in an EngBitBlt
// call-back is a device-managed surface (meaning it's not a DIB
// that GDI can draw with), GDI will automatically allocate memory
// and call the driver's DrvCopyBits routine to create a DIB copy
// that it can use. So this means that this could handle all 'punts',
// and we could conceivably get rid of bPuntBlt. But this would have
// a bad performance impact because of the extra memory allocations
// and bitmap copies -- you really don't want to do this unless you
// have to (or your surface was created such that GDI can draw
// directly onto it) -- I've been burned by this because it's not
// obvious that the performance impact is so bad.
//
// That being said, we only call EngBitBlt when all the surfaces
// are DIBs:
return(EngBitBlt(psoDst, psoSrc, psoMsk, pco, pxlo, prclDst,
pptlSrc, pptlMsk, pbo, pptlBrush, rop4));
All_Done:
return(TRUE);
}
/******************************Public*Routine******************************\
* BOOL DrvCopyBits
*
* Do fast bitmap copies.
*
* Note that GDI will (usually) automatically adjust the blt extents to
* adjust for any rectangular clipping, so we'll rarely see DC_RECT
* clipping in this routine (and as such, we don't bother special casing
* it).
*
* I'm not sure if the performance benefit from this routine is actually
* worth the increase in code size, since SRCCOPY BitBlts are hardly the
* most common drawing operation we'll get. But what the heck.
*
\**************************************************************************/
BOOL DrvCopyBits(
SURFOBJ* psoDst,
SURFOBJ* psoSrc,
CLIPOBJ* pco,
XLATEOBJ* pxlo,
RECTL* prclDst,
POINTL* pptlSrc)
{
PDEV* ppdev;
DSURF* pdsurfSrc;
DSURF* pdsurfDst;
RECTL rcl;
POINTL ptl;
OH* pohSrc;
OH* pohDst;
// DrvCopyBits is a fast-path for SRCCOPY blts. But it can still be
// pretty complicated: there can be translates, clipping, RLEs,
// bitmaps that aren't the same format as the screen, plus
// screen-to-screen, DIB-to-screen or screen-to-DIB operations,
// not to mention DFBs (device format bitmaps).
//
// Rather than making this routine almost as big as DrvBitBlt, I'll
// handle here only the speed-critical cases, and punt the rest to
// our DrvBitBlt routine.
//
// We'll try to handle anything that doesn't involve clipping:
if (((pco == NULL) || (pco->iDComplexity == DC_TRIVIAL)) &&
((pxlo == NULL) || (pxlo->flXlate & XO_TRIVIAL)))
{
if (psoDst->dhsurf != NULL)
{
// We know the destination is either a DFB or the screen:
ppdev = (PDEV*) psoDst->dhpdev;
pdsurfDst = (DSURF*) psoDst->dhsurf;
// See if the source is a plain DIB:
if (psoSrc->dhsurf != NULL)
{
pdsurfSrc = (DSURF*) psoSrc->dhsurf;
// Make sure the destination is really the screen or an
// off-screen DFB (i.e., not a DFB that we've converted
// to a DIB):
if (pdsurfDst->dt == DT_SCREEN)
{
ASSERTDD(psoSrc->dhsurf != NULL, "Can't be a DIB");
if (pdsurfSrc->dt == DT_SCREEN)
{
Screen_To_Screen:
//////////////////////////////////////////////////////
// Screen-to-screen
ASSERTDD((psoSrc->dhsurf != NULL) &&
(pdsurfSrc->dt == DT_SCREEN) &&
(psoDst->dhsurf != NULL) &&
(pdsurfDst->dt == DT_SCREEN),
"Should be a screen-to-screen case");
// pfnCopyBlt takes relative coordinates (relative
// to the destination surface, that is), so we have
// to change the start point to be relative to the
// destination surface too:
pohSrc = pdsurfSrc->poh;
pohDst = pdsurfDst->poh;
ptl.x = pptlSrc->x - (pohDst->x - pohSrc->x);
ptl.y = pptlSrc->y - (pohDst->y - pohSrc->y);
ppdev->xOffset = pohDst->x;
ppdev->yOffset = pohDst->y;
(ppdev->pfnCopyBlt)(ppdev, 1, prclDst, 0xCCCC, &ptl,
prclDst);
return(TRUE);
}
else // (pdsurfSrc->dt != DT_SCREEN)
{
// Ah ha, the source is a DFB that's really a DIB.
ASSERTDD(psoDst->dhsurf != NULL,
"Destination can't be a DIB here");
/////////////////////////////////////////////////////
// Put It Back Into Off-screen?
//
// We take this opportunity to decide if we want to
// put the DIB back into off-screen memory. This is
// a pretty good place to do it because we have to
// copy the bits to some portion of the screen,
// anyway. So we would incur only an extra screen-to-
// screen blt at this time, much of which will be
// over-lapped with the CPU.
//
// The simple approach we have taken is to move a DIB
// back into off-screen memory only if there's already
// room -- we won't throw stuff out to make space
// (because it's tough to know what ones to throw out,
// and it's easy to get into thrashing scenarios).
//
// Because it takes some time to see if there's room
// in off-screen memory, we only check one in
// HEAP_COUNT_DOWN times if there's room. To bias
// in favour of bitmaps that are often blt, the
// counters are reset every time any space is freed
// up in off-screen memory. We also don't bother
// checking if no space has been freed since the
// last time we checked for this DIB.
if (pdsurfSrc->iUniq == ppdev->iHeapUniq)
{
if (--pdsurfSrc->cBlt == 0)
{
if (bMoveDibToOffscreenDfbIfRoom(ppdev,
pdsurfSrc))
goto Screen_To_Screen;
}
}
else
{
// Some space was freed up in off-screen memory,
// so reset the counter for this DFB:
pdsurfSrc->iUniq = ppdev->iHeapUniq;
pdsurfSrc->cBlt = HEAP_COUNT_DOWN;
}
// Since the destination is definitely the screen,
// we don't have to worry about creating a DIB to
// DIB copy case (for which we would have to call
// EngCopyBits):
psoSrc = pdsurfSrc->pso;
goto DIB_To_Screen;
}
}
else // (pdsurfDst->dt != DT_SCREEN)
{
// Because the source is not a DIB, we don't have to
// worry about creating a DIB to DIB case here (although
// we'll have to check later to see if the source is
// really a DIB that's masquerading as a DFB...)
ASSERTDD(psoSrc->dhsurf != NULL,
"Source can't be a DIB here");
psoDst = pdsurfDst->pso;
goto Screen_To_DIB;
}
}
else if (psoSrc->iBitmapFormat == ppdev->iBitmapFormat)
{
// Make sure the destination is really the screen:
if (pdsurfDst->dt == DT_SCREEN)
{
DIB_To_Screen:
//////////////////////////////////////////////////////
// DIB-to-screen
ASSERTDD((psoDst->dhsurf != NULL) &&
(pdsurfDst->dt == DT_SCREEN) &&
(psoSrc->dhsurf == NULL) &&
(psoSrc->iBitmapFormat == ppdev->iBitmapFormat),
"Should be a DIB-to-screen case");
// vPutBits takes absolute screen coordinates, so
// we have to muck with the destination rectangle:
pohDst = pdsurfDst->poh;
rcl.left = prclDst->left + pohDst->x;
rcl.right = prclDst->right + pohDst->x;
rcl.top = prclDst->top + pohDst->y;
rcl.bottom = prclDst->bottom + pohDst->y;
// We use the memory aperture to do the transfer,
// because that is supposed to be faster for SRCCOPY
// blts than using the data-transfer register:
vPutBits(ppdev, psoSrc, &rcl, pptlSrc);
return(TRUE);
}
}
}
else // (psoDst->dhsurf == NULL)
{
Screen_To_DIB:
pdsurfSrc = (DSURF*) psoSrc->dhsurf;
ppdev = (PDEV*) psoSrc->dhpdev;
if (psoDst->iBitmapFormat == ppdev->iBitmapFormat)
{
if (pdsurfSrc->dt == DT_SCREEN)
{
//////////////////////////////////////////////////////
// Screen-to-DIB
ASSERTDD((psoSrc->dhsurf != NULL) &&
(pdsurfSrc->dt == DT_SCREEN) &&
(psoDst->dhsurf == NULL) &&
(psoDst->iBitmapFormat == ppdev->iBitmapFormat),
"Should be a screen-to-DIB case");
// vGetBits takes absolute screen coordinates, so we have
// to muck with the source point:
pohSrc = pdsurfSrc->poh;
ptl.x = pptlSrc->x + pohSrc->x;
ptl.y = pptlSrc->y + pohSrc->y;
vGetBits(ppdev, psoDst, prclDst, &ptl);
return(TRUE);
}
else
{
// The source is a DFB that's really a DIB. Since we
// know that the destination is a DIB, we've got a DIB
// to DIB operation, and should call EngCopyBits:
psoSrc = pdsurfSrc->pso;
goto EngCopyBits_It;
}
}
}
}
// We can't call DrvBitBlt if we've accidentally converted both
// surfaces to DIBs, because it isn't equipped to handle it:
ASSERTDD((psoSrc->dhsurf != NULL) ||
(psoDst->dhsurf != NULL),
"Accidentally converted both surfaces to DIBs");
/////////////////////////////////////////////////////////////////
// A DrvCopyBits is after all just a simplified DrvBitBlt:
return(DrvBitBlt(psoDst, psoSrc, NULL, pco, pxlo, prclDst, pptlSrc, NULL,
NULL, NULL, 0x0000CCCC));
EngCopyBits_It:
ASSERTDD((psoDst->dhsurf == NULL) &&
(psoSrc->dhsurf == NULL),
"Both surfaces should be DIBs to call EngCopyBits");
return(EngCopyBits(psoDst, psoSrc, pco, pxlo, prclDst, pptlSrc));
}