windows-nt/Source/XPSP1/NT/drivers/video/ms/weitek/disp/brush.c

512 lines
16 KiB
C
Raw Normal View History

2020-09-26 03:20:57 -05:00
/******************************Module*Header*******************************\
* Module Name: Brush.c
*
* Handles all brush/pattern initialization and realization.
*
* Copyright (c) 1992-1995 Microsoft Corporation
*
\**************************************************************************/
#include "precomp.h"
/******************************Public*Routine******************************\
* VOID vRealizeDitherPattern
*
* Generates an 8x8 dither pattern, in our internal realization format, for
* the colour ulRGBToDither. Note that the high byte of ulRGBToDither does
* not need to be set to zero, because vComputeSubspaces ignores it.
\**************************************************************************/
VOID vRealizeDitherPattern(
RBRUSH* prb,
ULONG ulRGBToDither)
{
ULONG ulNumVertices;
VERTEX_DATA vVertexData[4];
VERTEX_DATA* pvVertexData;
LONG i;
// Calculate what colour subspaces are involved in the dither:
pvVertexData = vComputeSubspaces(ulRGBToDither, vVertexData);
// Now that we have found the bounding vertices and the number of
// pixels to dither for each vertex, we can create the dither pattern
ulNumVertices = (ULONG)(pvVertexData - vVertexData);
// # of vertices with more than zero pixels in the dither
// Do the actual dithering:
vDitherColor(&prb->aulPattern[0], vVertexData, pvVertexData, ulNumVertices);
// Initialize the fields we need:
prb->fl = 0;
for (i = 0; i < MAX_BOARDS; i++)
{
prb->apbe[i] = NULL;
}
}
/******************************Public*Routine******************************\
* BOOL DrvRealizeBrush
*
* This function allows us to convert GDI brushes into an internal form
* we can use. It may be called directly by GDI at SelectObject time, or
* it may be called by GDI as a result of us calling BRUSHOBJ_pvGetRbrush
* to create a realized brush in a function like DrvBitBlt.
*
* Note that we have no way of determining what the current Rop or brush
* alignment are at this point.
*
\**************************************************************************/
BOOL DrvRealizeBrush(
BRUSHOBJ* pbo,
SURFOBJ* psoDst,
SURFOBJ* psoPattern,
SURFOBJ* psoMask,
XLATEOBJ* pxlo,
ULONG iHatch)
{
PDEV* ppdev;
ULONG iPatternFormat;
BYTE* pjSrc;
BYTE* pjDst;
BYTE jSrc;
LONG lSrcDelta;
LONG cj;
LONG i;
LONG j;
RBRUSH* prb;
ULONG* pulXlate;
ULONG ulColor;
ppdev = (PDEV*) psoDst->dhpdev;
// We don't do brushes in high-colour modes on the P9000:
if (ppdev->flStat & STAT_UNACCELERATED)
goto ReturnFalse;
// We have a fast path for dithers when we set GCAPS_DITHERONREALIZE:
if (iHatch & RB_DITHERCOLOR)
{
// Implementing DITHERONREALIZE increased our score on a certain
// unmentionable benchmark by 0.4 million 'megapixels'. Too bad
// this didn't work in the first version of NT.
prb = BRUSHOBJ_pvAllocRbrush(pbo,
sizeof(RBRUSH) + (TOTAL_BRUSH_SIZE * ppdev->cjPel));
if (prb == NULL)
goto ReturnFalse;
if (!P9000(ppdev))
{
ASSERTDD(ppdev->iBitmapFormat == BMF_8BPP,
"GCAPS_COLOR_DITHER shouldn't be set at higher than 8bpp");
// Oh goody, we get to use the P9100's 4-colour pattern
// support:
vRealize4ColorDither(prb, iHatch);
goto ReturnTrue;
}
else
{
// We do coloured patterns on the P9000 only at 8bpp, and only
// if we've successfully managed to allocate an off-screen
// brush cache:
if (!(ppdev->flStat & STAT_BRUSH_CACHE))
goto ReturnFalse;
vRealizeDitherPattern(prb, iHatch);
goto ReturnTrue;
}
}
// We only accelerate 8x8 patterns. Since Win3.1 and Chicago don't
// support patterns of any other size, it's a safe bet that 99.9%
// of the patterns we'll ever get will be 8x8:
if ((psoPattern->sizlBitmap.cx != 8) ||
(psoPattern->sizlBitmap.cy != 8))
goto ReturnFalse;
// At 8bpp, we handle patterns at 1bpp, 4bpp and 8bpp with/without an xlate.
// At 16bpp, we handle patterns at 1bpp on the P9100.
// At 32bpp, we handle patterns at 1bpp on the P9100.
iPatternFormat = psoPattern->iBitmapFormat;
// We only handle arbitrary color brushes if we have an off-screen
// brush cache available.
if ((iPatternFormat != BMF_1BPP) && !(ppdev->flStat & STAT_BRUSH_CACHE))
goto ReturnFalse;
if ((iPatternFormat == BMF_1BPP) ||
(iPatternFormat == ppdev->iBitmapFormat) ||
(iPatternFormat == BMF_4BPP) && (ppdev->iBitmapFormat == BMF_8BPP))
{
prb = BRUSHOBJ_pvAllocRbrush(pbo,
sizeof(RBRUSH) + (TOTAL_BRUSH_SIZE * ppdev->cjPel));
if (prb == NULL)
goto ReturnFalse;
// Initialize the fields we need:
prb->fl = 0;
for (i = 0; i < MAX_BOARDS; i++)
{
prb->apbe[i] = NULL;
}
lSrcDelta = psoPattern->lDelta;
pjSrc = (BYTE*) psoPattern->pvScan0;
pjDst = (BYTE*) &prb->aulPattern[0];
if (ppdev->iBitmapFormat == iPatternFormat)
{
if ((pxlo == NULL) || (pxlo->flXlate & XO_TRIVIAL))
{
DISPDBG((1, "Realizing un-translated brush"));
// The pattern is the same colour depth as the screen, and
// there's no translation to be done:
cj = (8 * ppdev->cjPel); // Every pattern is 8 pels wide
for (i = 8; i != 0; i--)
{
RtlCopyMemory(pjDst, pjSrc, cj);
pjSrc += lSrcDelta;
pjDst += cj;
}
}
else if (ppdev->iBitmapFormat == BMF_8BPP)
{
DISPDBG((1, "Realizing 8bpp translated brush"));
// The screen is 8bpp, and there's translation to be done:
pulXlate = pxlo->pulXlate;
for (i = 8; i != 0; i--)
{
for (j = 8; j != 0; j--)
{
*pjDst++ = (BYTE) pulXlate[*pjSrc++];
}
pjSrc += lSrcDelta - 8;
}
}
else
{
// I don't feel like writing code to handle translations
// when our screen is 16bpp or higher (although I probably
// should; we could allocate a temporary buffer and use
// GDI to convert, like is done in the VGA driver).
goto ReturnFalse;
}
}
else if (iPatternFormat == BMF_1BPP)
{
DISPDBG((1, "Realizing 1bpp brush"));
// We word align the monochrome bitmap so that every row starts
// on a new word (so that we can do word writes later to transfer
// the bitmap):
for (i = 4; i != 0; i--)
{
// The P9000 uses a monochrome 16x16 pattern, but we're
// given an 8x8 source pattern. So copy each source row
// horizontally.
//
// This works for the P9100 too, because although it supports
// only an 8x8 monochrome pattern, it ignores the high byte
// in every word.
jSrc = *pjSrc;
pjSrc += lSrcDelta;
// The pattern register we use has little-endian byte ordering:
*(pjDst ) = jSrc;
*(pjDst + 1) = jSrc;
jSrc = *pjSrc;
pjSrc += lSrcDelta;
*(pjDst + 2) = jSrc;
*(pjDst + 3) = jSrc;
pjDst += 4;
}
pulXlate = pxlo->pulXlate;
prb->fl = RBRUSH_2COLOR;
// The P9100 require that colours be 'packed' into a dword.
// We do it here rather than when we go to draw because
// we may draw using the same brush multiple times...
PACK_COLOR(ppdev, pulXlate[0], ulColor);
prb->ulColor[0] = ulColor;
PACK_COLOR(ppdev, pulXlate[1], ulColor);
prb->ulColor[1] = ulColor;
}
else
{
DISPDBG((1, "Realizing 4bpp brush"));
// The screen is 8bpp and the pattern is 4bpp:
ASSERTDD((ppdev->iBitmapFormat == BMF_8BPP) &&
(iPatternFormat == BMF_4BPP),
"Messed up brush logic");
pulXlate = pxlo->pulXlate;
for (i = 8; i != 0; i--)
{
// Inner loop is repeated only 4 times because each loop
// handles 2 pixels:
for (j = 4; j != 0; j--)
{
*pjDst++ = (BYTE) pulXlate[*pjSrc >> 4];
*pjDst++ = (BYTE) pulXlate[*pjSrc & 15];
pjSrc++;
}
pjSrc += lSrcDelta - 4;
}
}
ReturnTrue:
// The last time I checked, GDI took some 500 odd instructions to
// get from here back to whereever we called 'BRUSHOBJ_pvGetRbrush'.
// We can at least use this time to get some overlap between the
// CPU and the display hardware: we'll initialize the 72x72 off-
// screen cache entry now, which will keep the accelerator busy for
// a while.
if (!prb->fl & (RBRUSH_2COLOR | RBRUSH_4COLOR))
{
ASSERTDD(ppdev->bEnabled, "Realizing brush when in full-screen?");
vSlowPatRealize(ppdev, prb);
}
return(TRUE);
}
ReturnFalse:
if (psoPattern != NULL)
{
DISPDBG((1, "Failed realization -- Type: %li Format: %li cx: %li cy: %li",
psoPattern->iType, psoPattern->iBitmapFormat,
psoPattern->sizlBitmap.cx, psoPattern->sizlBitmap.cy));
}
return(FALSE);
}
/******************************Public*Routine******************************\
* VOID vAssertModeBrushCache
*
* Resets the brush cache when we exit out of full-screen.
\**************************************************************************/
VOID vAssertModeBrushCache(
PDEV* ppdev,
BOOL bEnable)
{
BRUSHENTRY* pbe;
CIRCLEENTRY* pce;
LONG i;
BYTE* pjBase;
if (bEnable)
{
// Invalidate the brush cache:
pbe = &ppdev->abe[0];
for (i = ppdev->cBrushCache; i != 0; i--)
{
pbe->prbVerify = NULL;
pbe++;
}
// Invalidate the circle cache:
pce = &ppdev->ace[0];
for (i = TOTAL_CIRCLE_COUNT; i != 0; i--)
{
pce->rcfxCircle.xLeft = 0;
pce->rcfxCircle.xRight = 0;
pce++;
}
// Download our favourite pattern for doing solid fills when
// running 16bpp on the P9000:
if ((ppdev->flStat & STAT_UNACCELERATED) &&
(ppdev->iBitmapFormat == BMF_16BPP))
{
pjBase = ppdev->pjBase;
CP_WAIT(ppdev, pjBase);
for (i = 0; i < 8; i++)
{
CP_PATTERN(ppdev, pjBase, i, 0xAAAAAAAA);
}
// Anchor the pattern origin, too:
CP_PATTERN_ORGX(ppdev, pjBase, 0);
CP_PATTERN_ORGY(ppdev, pjBase, 0);
}
}
}
/******************************Public*Routine******************************\
* BOOL bEnableBrushCache
*
* Allocates off-screen memory for storing the brush cache.
\**************************************************************************/
BOOL bEnableBrushCache(
PDEV* ppdev)
{
OH* poh; // Points to off-screen chunk of memory
BRUSHENTRY* pbe; // Pointer to the brush-cache entry
LONG i;
LONG j;
CIRCLEENTRY* pce;
// On the P9000, we draw coloured patterns using screen-to-screen
// copies. When a coloured pattern is used, we first expand the
// 8 x 8 pattern to a 64 x 64 pattern in off-screen memory; we
// then use this as the basis for our screen-to-screen blts to the
// target rectangle. The off-screen 64 x 64 pattern is cached for
// future use.
//
// Coloured patterns are used primarily at 8bpp, for dithers. The
// P9100 has direct support for 4-coloured patterns at 8bpp, which
// allows it to to draw any dithered colours using the hardware
// (our dithers are always a maximum of 4 colours). Consequently,
// we only use the off-screen brush cache on the P9000, and only
// at 8bpp.
if (P9000(ppdev) && (ppdev->flStat & STAT_8BPP))
{
// Typically, we'll be running at 1024x768x256 on a 1meg board,
// giving us off-screen memory of the dimension 1024x253 (accounting
// for the space taken by the hardware pointer). If we allocate
// the brush cache as one long one-high row of brushes, the heap
// manager would shave that amount off the largest chunk of memory
// we could allocate (meaning the largest bitmap potentially stored
// in off-screen memory couldn't be larger than 253 - 64 = 189 pels
// high, but it could be 1024 wide).
//
// To make this more square, I want to shave off a left-side chunk
// for the brush cache, and I want at least 8 brushes cached.
// Since floor(253/64) = 3, we'll allocate a 3 x 3 cache:
poh = pohAllocatePermanent(ppdev,
SLOW_BRUSH_CACHE_DIM * SLOW_BRUSH_ALLOCATION,
SLOW_BRUSH_CACHE_DIM * SLOW_BRUSH_ALLOCATION);
if (poh == NULL)
goto ReturnTrue; // See note about why we can return TRUE...
ppdev->cBrushCache = SLOW_BRUSH_COUNT;
pbe = &ppdev->abe[0]; // Points to where we'll put the first brush
// cache entry
for (i = 0; i < SLOW_BRUSH_CACHE_DIM; i++)
{
for (j = 0; j < SLOW_BRUSH_CACHE_DIM; j++)
{
pbe->x = poh->x + (i * SLOW_BRUSH_ALLOCATION);
pbe->y = poh->y + (j * SLOW_BRUSH_ALLOCATION);
pbe++;
}
}
// Note that we don't have to remember 'poh' for when we have
// to disable brushes -- the off-screen heap frees any
// off-screen heap allocations automatically.
// We successfully allocated the brush cache, so let's turn
// on the switch showing that we can use it:
ppdev->flStat |= STAT_BRUSH_CACHE;
}
// Now allocate our circle cache.
//
// Note that we don't have to initially mark the entries as invalid,
// as the ppdev was zero-filled, and so we are assured that every
// 'rcfxBound' will be {0, 0, 0, 0}, which will never match any
// circle when looking for a matching entry.
poh = pohAllocatePermanent(ppdev, CIRCLE_ALLOCATION_CX * TOTAL_CIRCLE_COUNT,
CIRCLE_ALLOCATION_CY);
if (poh == NULL)
goto ReturnTrue;
pce = &ppdev->ace[0]; // Points to where we'll put the first circle
// cache entry
for (i = 0; i < TOTAL_CIRCLE_COUNT; i++)
{
pce->x = poh->x + (i * CIRCLE_ALLOCATION_CX);
pce->y = poh->y;
pce++;
}
ppdev->flStat |= STAT_CIRCLE_CACHE;
ReturnTrue:
// Invalidate our caches and initialize our high-colour pattern:
vAssertModeBrushCache(ppdev, TRUE);
// If we couldn't allocate a brush cache, it's not a catastrophic
// failure; patterns will still work, although they'll be a bit
// slower since they'll go through GDI. As a result we don't
// actually have to fail this call:
DISPDBG((5, "Passed bEnableBrushCache"));
return(TRUE);
}
/******************************Public*Routine******************************\
* VOID vDisableBrushCache
*
* Cleans up anything done in bEnableBrushCache.
\**************************************************************************/
VOID vDisableBrushCache(PDEV* ppdev)
{
// We ain't gotta do nothin'
}