windows-nt/Source/XPSP1/NT/ds/security/csps/cryptoflex/slbiop/cryptocard.cpp

1565 lines
45 KiB
C++
Raw Normal View History

2020-09-26 03:20:57 -05:00
// CryptoCard.cpp: implementation of the CCryptoCard class.
//
// (c) Copyright Schlumberger Technology Corp., unpublished work, created
// 2000. This computer program includes Confidential, Proprietary
// Information and is a Trade Secret of Schlumberger Technology Corp. All
// use, disclosure, and/or reproduction is prohibited unless authorized
// in writing. All Rights Reserved.
//////////////////////////////////////////////////////////////////////
#include "NoWarning.h"
#include <scuArrayP.h>
#include "iopExc.h"
#include "CryptoCard.h"
#include "LockWrap.h"
using namespace std;
using namespace iop;
namespace
{
BYTE
AsPrivateAlgId(KeyType kt)
{
BYTE bAlgId = 0;
switch (kt)
{
case ktRSA512:
bAlgId = 0x40;
break;
case ktRSA768:
bAlgId = 0x60;
break;
case ktRSA1024:
bAlgId = 0x80;
break;
case ktDES:
bAlgId = 0x08;
break;
default:
throw Exception(ccInvalidParameter);
break;
}
return bAlgId;
}
} // namespace
//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
CCryptoCard::CCryptoCard(const SCARDHANDLE hCardHandle, const char* szReaderName,
const SCARDCONTEXT pContext, const DWORD dwMode)
: CSmartCard(hCardHandle, szReaderName, pContext, dwMode)
{
m_fSupportLogout = SupportLogout();
}
CCryptoCard::~CCryptoCard()
{
}
void
CCryptoCard::LogoutAll()
{
if(m_fSupportLogout)
{
CLockWrap wrap(&m_IOPLock);
SendCardAPDU(0xF0, 0x22, 0x07, 0, 0, NULL, 0, NULL);
}
else
ResetCard();
}
void
CCryptoCard::DeleteFile(const WORD wFileID)
{
CLockWrap wrap(&m_IOPLock);
RequireSelect();
////////////////////////////////////////////////////////
// Ensure that a directory is empty before deletion //
////////////////////////////////////////////////////////
char cFilePathFormatter[2] = "/";
char cZero[2] = "0";
char sBuffer[4] = { 0, 0, 0, 0 };
char szFileToDelete[80];
FILE_HEADER FHeader;
int iPad;
if (!(m_CurrentDirectory == m_CurrentFile))
{
/////////////////////////////////////////////////////////////////////////////////////////////
// File's parent directory was not selected (Currently selected file is not a directory) //
/////////////////////////////////////////////////////////////////////////////////////////////
throw iop::Exception(iop::ccSelectedFileNotDirectory);
}
strcpy(szFileToDelete, m_CurrentDirectory.GetStringPath().c_str());
strcat(szFileToDelete, cFilePathFormatter);
_itoa(wFileID, sBuffer, 16);
/////////////////////////////////////////////////////////////////////////
// Padding file path with 0 if file ID does not contain 4 characters //
/////////////////////////////////////////////////////////////////////////
iPad = strlen(sBuffer);
while (iPad < 4)
{
strcat(szFileToDelete, cZero);
iPad++;
}
strcat(szFileToDelete, sBuffer); //
szFileToDelete[m_CurrentDirectory.NumComponents() * 5 + 5] = '\0'; // Select file to delete
Select(szFileToDelete, &FHeader);
if (FHeader.file_type == directory && (FHeader.nb_file + FHeader.nb_sub_dir) > 0)
{
////////////////////////////////////////////////////////
// re-establish current file and directory pointers //
////////////////////////////////////////////////////////
SelectParent();
//////////////////////////////////////////////////////////////////////////////
// Directory was not empty, and will not be deleted. Cryptoflex does not //
// support this check internally -- this is the Cyberflex status code! //
//////////////////////////////////////////////////////////////////////////////
throw iop::Exception(iop::ccDirectoryNotEmpty);
}
////////////////////////////////////////////////////////
// re-establish current file and directory pointers //
////////////////////////////////////////////////////////
szFileToDelete[strlen(szFileToDelete) - 5] = '\0';
Select(szFileToDelete);
///////////////////////////////////////////////////////////////////////////
// File was not a directory or directory was empty - proceed to delete //
///////////////////////////////////////////////////////////////////////////
BYTE bDataIn[2];
bDataIn[0] = (BYTE)(MSB(wFileID));
bDataIn[1] = (BYTE)(LSB(wFileID));
SendCardAPDU(0xF0, 0xE4, 0x00, 0x00, 0x02, bDataIn, 0, NULL);
m_apSharedMarker->UpdateMarker(CMarker::WriteMarker);
}
void
CCryptoCard::CreateFile(const FILE_HEADER* pMyFile)
{
CLockWrap wrap(&m_IOPLock);
switch(pMyFile->file_type)
{
case Binary_File:
case Variable_Record_File:
case Cyclic_File:
case Fixed_Record_File:
{
BYTE bData[17];
BYTE bP2;
BYTE bDataLength;
if (pMyFile->file_type == Binary_File)
bP2 = 0x00; // binary files have no records
else
bP2 = pMyFile->nb_file; // number of records
if (pMyFile->file_type == Binary_File || pMyFile->file_type == Variable_Record_File)
{
bDataLength = 0x10;
bData[12] = 0x03;
}
else
{
//////////////////////////////////////////////////////
// Cyclic and Fixed Record files contain an extra //
// byte that denotes the length of their records //
//////////////////////////////////////////////////////
bDataLength = 0x11;
bData[12] = 0x04;
}
/////////////////////////////////////////////////////////////////////////////////
// Note: cyclic files also have an added 4B header allocated for each record //
// in the file in addition to the space allocated by CreateFile(...) //
/////////////////////////////////////////////////////////////////////////////////
bData[0] = 0; // RFU
bData[1] = 0; // RFU
bData[2] = MSB(pMyFile->file_size); // File Size
bData[3] = LSB(pMyFile->file_size); // File Size
bData[4] = MSB(pMyFile->file_id); // File ID
bData[5] = LSB(pMyFile->file_id); // File ID
switch(pMyFile->file_type) // File type
{
case Binary_File: bData[6] = 0x01; break;
case Variable_Record_File: bData[6] = 0x04; break;
case Cyclic_File: bData[6] = 0x06; break;
case Fixed_Record_File: bData[6] = 0x02; break;
}
bData[7] = 0xFF;
bData[8] = 0; // File ACL, to be set
bData[9] = 0; // File ACL, to be set
bData[10] = 0; // File ACL, to be set
bData[11] = pMyFile->file_status & 1; // File Status
// bData[12] = 0x03; // Length of the following data, already set
bData[13] = 0; // AUT key numbers, to be set
bData[14] = 0; // AUT key numbers, to be set
bData[15] = 0; // AUT key numbers, to be set
bData[16] = pMyFile->nb_sub_dir; // Record length (irrelevant for
// binary and variable record files)
bool ReadACL[8];
bool WriteACL[8];
bool InvalidateACL[8];
bool RehabilitateACL[8];
CryptoACL Read = { 0, 0, 0, 0, 0 };
CryptoACL Write = { 0, 0, 0, 0, 0 };
CryptoACL Invalidate = { 0, 0, 0, 0, 0 };
CryptoACL Rehabilitate = { 0, 0, 0, 0, 0 };
////////////////////////////////////////////////////////////////////////////
// Determination of the state of each action for each member of the ACL //
////////////////////////////////////////////////////////////////////////////
for(int i = 0; i < 8; i++)
{
ReadACL[i] = ((pMyFile->access_cond[i]) & 1) ? true : false;
WriteACL[i] = ((pMyFile->access_cond[i]) & 2) ? true : false;
InvalidateACL[i] = ((pMyFile->access_cond[i]) & 8) ? true : false;
RehabilitateACL[i] = ((pMyFile->access_cond[i]) & 16) ? true : false;
}
/////////////////////////////////////////////////
// Remapping Cyberflex ACL to Cryptoflex ACL //
/////////////////////////////////////////////////
AccessToCryptoACL(ReadACL, &Read);
AccessToCryptoACL(WriteACL, &Write);
AccessToCryptoACL(InvalidateACL, &Invalidate);
AccessToCryptoACL(RehabilitateACL, &Rehabilitate);
////////////////////////////////////
// Assignment of security level //
////////////////////////////////////
bData[8] = Read.Level * 16 + Write.Level;
bData[10] = Rehabilitate.Level * 16 + Invalidate.Level;
bData[13] = Read.AUTnumber * 16 + Write.AUTnumber;
bData[15] = Rehabilitate.AUTnumber * 16 + Invalidate.AUTnumber;
// If all the cyberflex ACL are 0, but the Cryptoflex are not, use the Cryptoflex.
bool zero = true;
for (int j = 0; j < 8; j++)
if (pMyFile->access_cond[j] != 0x00) zero = false;
if (zero)
{
// Use cryptoflex ACL)
memcpy(&bData[7], pMyFile->CryptoflexACL, 4);
memcpy(&bData[13], &(pMyFile->CryptoflexACL[4]),3);
}
SendCardAPDU(0xF0, insCreateFile, 0x00, bP2, bDataLength,
bData, 0, NULL);
}
break; // end case non-Directory file
case directory:
{
BYTE bData[17];
bData[0] = 0; // RFU
bData[1] = 0; // RFU
bData[2] = MSB(pMyFile->file_size); // File Size
bData[3] = LSB(pMyFile->file_size); // File Size
bData[4] = MSB(pMyFile->file_id); // File ID
bData[5] = LSB(pMyFile->file_id); // File ID
bData[6] = 0x38; // File type
bData[7] = 0x00; // No Use for Dedicated files
bData[8] = 0; // File ACL, to be set
bData[9] = 0; // File ACL, to be set
bData[10] = 0x00; // RFU
bData[11] = pMyFile->file_status & 1; // File Status
bData[12] = 0x04; // Length of the following data
bData[13] = 0; // AUT key numbers, to be set
bData[14] = 0; // AUT key numbers, to be set
bData[15] = 0x00; // RFU
bData[16] = 0xFF; // RFU
bool DirNextACL[8];
bool DeleteACL[8];
bool CreateACL[8];
CryptoACL DirNext = { 0, 0, 0, 0, 0 };
CryptoACL Delete = { 0, 0, 0, 0, 0 };
CryptoACL Create = { 0, 0, 0, 0, 0 };
////////////////////////////////////////////////////////////////////////////
// Determination of the state of each action for each member of the ACL //
////////////////////////////////////////////////////////////////////////////
for(int i = 0; i < 8; i++)
{
DirNextACL[i] = ((pMyFile->access_cond[i]) & 1) ? true : false;
DeleteACL[i] = ((pMyFile->access_cond[i]) & 2) ? true : false;
CreateACL[i] = ((pMyFile->access_cond[i]) & 32) ? true : false;
}
/////////////////////////////////////////////////
// Remapping Cyberflex ACL to Cryptoflex ACL //
/////////////////////////////////////////////////
AccessToCryptoACL(DirNextACL, &DirNext);
AccessToCryptoACL(DeleteACL, &Delete);
AccessToCryptoACL(CreateACL, &Create);
////////////////////////////////////
// Assignment of security level //
////////////////////////////////////
bData[8] = DirNext.Level * 16;
bData[9] = Delete.Level * 16 + Create.Level;
bData[13] = DirNext.AUTnumber * 16;
bData[14] = Delete.AUTnumber * 16 + Create.AUTnumber;
bool zero = true;
for (int j = 0; j < 8; j++)
if (pMyFile->access_cond[j] != 0x00) zero = false;
if (zero)
{
for (int j = 0; j < 7; j++)
if (pMyFile->CryptoflexACL[j] != 00) zero = false;
if (!zero)
{
// Use cryptoflex ACL)
memcpy(&bData[7], pMyFile->CryptoflexACL, 4);
memcpy(&bData[13], &(pMyFile->CryptoflexACL[4]),3);
}
}
SendCardAPDU(0xF0, 0xE0, 0x00, 0x00, 0x11, bData, 0, NULL);
}
break; // end case Directory file
default:
throw iop::Exception(iop::ccFileTypeInvalid);
break;
}
m_apSharedMarker->UpdateMarker(CMarker::WriteMarker);
}
void
CCryptoCard::Directory(BYTE bFile_Nb, FILE_HEADER* pMyFile)
{
CLockWrap wrap(&m_IOPLock);
RequireSelect();
BYTE bDataOut[18];
for (BYTE index = 0; index < bFile_Nb; index++)
SendCardAPDU(0xF0, 0xA8, 0x00, 0x00, 0, NULL, 0x10, bDataOut);
switch(bDataOut[4])
{
case 0x38: // Directory file
{
pMyFile->file_id = (WORD)(bDataOut[2] * 256 + bDataOut[3]);
pMyFile->file_type = directory;
pMyFile->nb_file = bDataOut[15];
pMyFile->nb_sub_dir = bDataOut[14];
pMyFile->file_status = bDataOut[9];
memcpy(pMyFile->CryptoflexACL, &bDataOut[6], 3);
memcpy(&(pMyFile->CryptoflexACL[3]), &bDataOut[11],3);
///////////////////////////////////////////////////////////////////////
// Build ACL //
///////////////////////////////////////////////////////////////////////
BYTE bACL[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
BYTE bACLNibble;
BYTE bKeyNibble;
///////////////////
// Dir Next AC //
///////////////////
bACLNibble = bDataOut[6] / 16;
bKeyNibble = bDataOut[11] / 16;
CryptoToAccessACL(bACL, bACLNibble, bKeyNibble, 0);
//////////////////////
// Delete File AC //
//////////////////////
bACLNibble = bDataOut[7] / 16;
bKeyNibble = bDataOut[12] / 16;
CryptoToAccessACL(bACL, bACLNibble, bKeyNibble, 1);
//////////////////////
// Create File AC //
//////////////////////
bACLNibble = bDataOut[7] % 16;
bKeyNibble = bDataOut[12] % 16;
CryptoToAccessACL(bACL, bACLNibble, bKeyNibble, 5);
////////////////////////////////////////////////
// done remapping; assigning to file header //
////////////////////////////////////////////////
memcpy((void*)(pMyFile->access_cond), (void*)(bACL), 8);
memset((void*)(pMyFile->applicationID), 0x00, 16);
break;
} // end case Directory
case 0x01: // Binary_File
case 0x02: // Fixed_Record_File
case 0x04: // Variable_Record_File
case 0x06: // Cyclic_File
{
pMyFile->file_id = (WORD)(bDataOut[2] * 256 + bDataOut[3]);
pMyFile->file_status = bDataOut[9];
pMyFile->nb_sub_dir = bDataOut[14];
pMyFile->nb_file = bDataOut[15];
memcpy(pMyFile->CryptoflexACL, &bDataOut[6], 3);
memcpy(&(pMyFile->CryptoflexACL[3]), &bDataOut[11],3);
////////////////////////////////////////////////////////////////////////
// Cryptoflex includes the file header in the file size -- removing //
////////////////////////////////////////////////////////////////////////
pMyFile->file_size = (WORD)(bDataOut[0] * 256 + bDataOut[1] - 16);
//////////////////////////////////////////
// Remove flag for file size rounding //
//////////////////////////////////////////
if (pMyFile->file_size >= 0x3FFF)
pMyFile->file_size &= 0x3FFF;
switch(bDataOut[4])
{
case 0x01: pMyFile->file_type = Binary_File;
break;
case 0x02: pMyFile->file_type = Fixed_Record_File;
break;
case 0x04: pMyFile->file_type = Variable_Record_File;
break;
case 0x06: pMyFile->file_type = Cyclic_File;
break;
}
////////////////////////////////////////////////////////////////////////
// Also includes 4 bytes record headers in cyclic files -- removing //
////////////////////////////////////////////////////////////////////////
if (pMyFile->file_type == Cyclic_File)
pMyFile->file_size -= pMyFile->nb_file * 4;
///////////////////////////////////////////////////////////////////////
// Build ACL //
///////////////////////////////////////////////////////////////////////
BYTE bACL[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
BYTE bACLNibble;
BYTE bKeyNibble;
////////////////////
// Read file AC //
////////////////////
bACLNibble = bDataOut[6] / 16;
bKeyNibble = bDataOut[11] / 16;
CryptoToAccessACL(bACL, bACLNibble, bKeyNibble, 0);
////////////////////////
// Write to file AC //
////////////////////////
bACLNibble = bDataOut[6] % 16;
bKeyNibble = bDataOut[11] % 16;
CryptoToAccessACL(bACL, bACLNibble, bKeyNibble, 1);
///////////////////////
// Rehabilitate AC //
///////////////////////
bACLNibble = bDataOut[8] / 16;
bKeyNibble = bDataOut[13] / 16;
CryptoToAccessACL(bACL, bACLNibble, bKeyNibble, 4);
/////////////////////
// Invalidate AC //
/////////////////////
bACLNibble = bDataOut[8] % 16;
bKeyNibble = bDataOut[13] % 16;
CryptoToAccessACL(bACL, bACLNibble, bKeyNibble, 3);
////////////////////////
// Create Record AC //
////////////////////////
if (bDataOut[4] != 0x01) // omit create record file AC for binary file
{
bACLNibble = bDataOut[7] % 16;
bKeyNibble = bDataOut[12] % 16;
CryptoToAccessACL(bACL, bACLNibble, bKeyNibble, 2);
}
////////////////////////////////////////////////////
// done remapping ACL; assigning to file header //
////////////////////////////////////////////////////
memcpy((void*)(pMyFile->access_cond), (void*)(bACL), 8);
memset((void*)(pMyFile->applicationID), 0x00, 16);
break;
} // end case non-Directory file
default:
break;
}
/////////////////////////////
// reset DirNext pointer //
/////////////////////////////
char szCurrentFile[80];
strcpy(szCurrentFile, m_CurrentFile.GetStringPath().c_str());
Select(m_CurrentDirectory.GetStringPath().c_str(), NULL, true);
Select(szCurrentFile, NULL);
}
void
CCryptoCard::Select(const WORD wFileID)
{
CLockWrap wrap(&m_IOPLock);
BYTE bDataIn[2];
bDataIn[0] = (BYTE)(MSB(wFileID));
bDataIn[1] = (BYTE)(LSB(wFileID));
SendCardAPDU(0xC0, 0xA4, 0x00, 0x00, 0x02, bDataIn, 0, NULL);
}
void
CCryptoCard::Select(const char* szFileFullPath,
FILE_HEADER* pMyFile,
const bool fSelectAll)
{
CLockWrap wrap(&m_IOPLock);
BYTE bIndex = 0;
char szFormattedPath[cMaxPathLength];
BYTE bFileCount = FormatPath(szFormattedPath, szFileFullPath);
BYTE bPathLength = strlen(szFormattedPath);
auto_ptr<FilePath> apfp(new FilePath(string(szFormattedPath)));
///////////////////////////////////////////////////////////
// Select all files in path regardless of current path. //
// Do this on request, or if cache is empty //
///////////////////////////////////////////////////////////
if (fSelectAll || (m_CurrentFile.IsEmpty()) || (m_CurrentDirectory.IsEmpty()))
{
bIndex = 0;
}
////////////////////////////////////////////////////////
// if path names match, do nothing //
////////////////////////////////////////////////////////
else if (m_CurrentFile == *apfp)
{
if (pMyFile) // force Select so file info is retrieved
{
if (1 < bFileCount)
{
if (m_CurrentFile == m_CurrentDirectory)
bIndex = bFileCount - 1; // just reselect dir
else
bIndex = bFileCount - 2; // select dir & file
SelectParent();
}
}
else
bIndex = bFileCount;
}
////////////////////////////////////////////////////////////////////
// if current directory is in path, only select remaining files //
////////////////////////////////////////////////////////////////////
else if(m_CurrentDirectory.NumComponents() < apfp->NumComponents())
{
if (apfp->GreatestCommonPrefix(m_CurrentDirectory) == m_CurrentDirectory)
bIndex = m_CurrentDirectory.NumComponents();
else
bIndex = 0;
}
//////////////////////////////////////////
// Select the necessary files in path //
//////////////////////////////////////////
char sFileToSelect[5] = { 0, 0, 0, 0, 0 };
bool fFileSelected = false;
bool fSelectFailed = false;
try
{
while (bIndex < bFileCount)
{
WORD wFileHexID = (*apfp)[bIndex].GetShortID();
Select(wFileHexID);
fFileSelected = true;
bIndex++;
}
}
catch (Exception const &)
{
fSelectFailed = true;
if (fSelectAll)
throw;
}
if (fSelectFailed) // assert(!fSelectAll)
{
Select(szFormattedPath, pMyFile, true);
fFileSelected = true;
}
BYTE bResponseLength = 0;
if (fFileSelected)
bResponseLength = ResponseLengthAvailable();
/////////////////////////////////////////
// Get response and fill file header //
/////////////////////////////////////////
switch(bResponseLength)
{
case 0x17: //
case 0x16: //
case 0x15: // Directory file
case 0x14: //
case 0x13: //
case 0x12: //
{
//////////////////////////////////////////
// Update file and directory pointers //
//////////////////////////////////////////
m_CurrentDirectory = *apfp;
m_CurrentFile = *apfp;
if (pMyFile)
{
BYTE bDataOut[0x19];
GetResponse(0xC0, bResponseLength, bDataOut);
pMyFile->file_id = (unsigned short)(bDataOut[4] * 256 + bDataOut[5]);
pMyFile->file_size = (unsigned short)(bDataOut[2] * 256 + bDataOut[3]);
pMyFile->file_type = directory;
pMyFile->nb_file = bDataOut[15];
pMyFile->nb_sub_dir = bDataOut[14];
pMyFile->file_status = bDataOut[11];
memcpy(m_bLastACL, &bDataOut[7],4);
//////////////////////////////////////////////////////////////
// Build ACL
//////////////////////////////////////////////////////////////
BYTE bACL[] = { 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00 };
BYTE bKeyNibble = 0xFF; // flag to ignore AUT keys
// -- useless for
// Select(...)
BYTE bACLNibble;
//////////////////
// Dir Next AC //
//////////////////
bACLNibble = bDataOut[8] / 16;
CryptoToAccessACL(bACL, bACLNibble, bKeyNibble, 0);
//////////////////////
// Delete File AC //
//////////////////////
bACLNibble = bDataOut[9] / 16;
CryptoToAccessACL(bACL, bACLNibble, bKeyNibble, 1);
/////////////////////
// CreateFile AC //
/////////////////////
bACLNibble = bDataOut[9] % 16;
CryptoToAccessACL(bACL, bACLNibble, bKeyNibble, 5);
////////////////////////////////////////////////////
// done remapping ACL; assigning to file header //
////////////////////////////////////////////////////
memcpy((void*)(pMyFile->access_cond), (void*)(bACL), 8);
memset((void*)(pMyFile->applicationID), 0x00, 16);
}
} // end case Directory file
break;
case 0x0F: // non-Directory file types
case 0x0E: //
{
//////////////////////////////////////////
// Update file and directory pointers //
//////////////////////////////////////////
m_CurrentFile = *apfp;
apfp->ChopTail();
m_CurrentDirectory = *apfp;
if (pMyFile)
{
BYTE bDataOut[0x11];
GetResponse(0xC0, bResponseLength, bDataOut);
pMyFile->file_size = (WORD)(bDataOut[2]*256+bDataOut[3]);
pMyFile->file_id = (WORD)(bDataOut[4]*256+bDataOut[5]);
pMyFile->file_status = bDataOut[11];
memcpy(m_bLastACL, &bDataOut[7],4);
switch(bDataOut[6])
{
case 0x01: pMyFile->file_type = Binary_File;
break;
case 0x02: pMyFile->file_type = Fixed_Record_File;
break;
case 0x04: pMyFile->file_type = Variable_Record_File;
break;
case 0x06: pMyFile->file_type = Cyclic_File;
break;
}
if (pMyFile->file_type == Cyclic_File ||
pMyFile->file_type == Fixed_Record_File)
{
pMyFile->nb_sub_dir = bDataOut[14];
pMyFile->nb_file = (pMyFile->nb_sub_dir)
? pMyFile->file_size / pMyFile->nb_sub_dir
: 0;
}
else
{
///////////////////////////////////////////////////////////
// number of records inaccessable except by file //
// size calculation above //
///////////////////////////////////////////////////////////
pMyFile->nb_file = 0x00;
pMyFile->nb_sub_dir = 0x00;
}
//////////////////////////////////////////////////////////////
// Build ACL //
//////////////////////////////////////////////////////////////
BYTE bACL[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
BYTE bKeyNibble = 0xFF; // flag to ignore AUT keys
// -- useless for
// Select(...)
BYTE bACLNibble;
////////////////////
// Read file AC //
////////////////////
bACLNibble = bDataOut[8] / 16;
CryptoToAccessACL(bACL, bACLNibble, bKeyNibble, 0);
////////////////////////
// Write to file AC //
////////////////////////
bACLNibble = bDataOut[8] % 16;
CryptoToAccessACL(bACL, bACLNibble, bKeyNibble, 1);
///////////////////////
// Rehabilitate AC //
///////////////////////
bACLNibble = bDataOut[10] / 16;
CryptoToAccessACL(bACL, bACLNibble, bKeyNibble, 4);
/////////////////////
// Invalidate AC //
/////////////////////
bACLNibble = bDataOut[10] % 16;
CryptoToAccessACL(bACL, bACLNibble, bKeyNibble, 3);
////////////////////////
// Create Record AC //
////////////////////////
if (bDataOut[6] != 0x01) // omit create record file
// AC for binary file
{
bACLNibble = bDataOut[9] % 16;
CryptoToAccessACL(bACL, bACLNibble, bKeyNibble, 2);
}
////////////////////////////////////////////////////
// done remapping ACL; assigning to file header //
////////////////////////////////////////////////////
memcpy((void*)(pMyFile->access_cond), (void*)(bACL), 8);
memset((void*)(pMyFile->applicationID), 0x00, 16);
}
} // end case non-Directory file
break;
default:
break;
}
}
void
CCryptoCard::SelectParent()
{
CLockWrap wrap(&m_IOPLock);
RequireSelect();
///////////////////////////////////////////////////
// If current directory is root, reselect root //
///////////////////////////////////////////////////
if (m_CurrentDirectory.NumComponents() == 1)
{
Select(0x3F00);
m_CurrentFile = m_CurrentDirectory;
}
else
{
if (m_CurrentDirectory == m_CurrentFile)
{
m_CurrentDirectory.ChopTail();
Select(m_CurrentDirectory.Tail().GetShortID());
m_CurrentFile = m_CurrentDirectory;
}
else
{
Select(m_CurrentDirectory.Tail().GetShortID());
m_CurrentFile = m_CurrentDirectory;
}
}
}
void
CCryptoCard::VerifyKey(const BYTE bKeyNumber, const BYTE bKeyLength,
const BYTE* bKey)
{
CLockWrap wrap(&m_IOPLock);
SendCardAPDU(0xF0, 0x2A, 0x00, bKeyNumber, bKeyLength, bKey, 0, NULL);
}
void
CCryptoCard::VerifyCHV(const BYTE bCHVNumber, const BYTE* bCHV)
{
CLockWrap wrap(&m_IOPLock);
SendCardAPDU(0xC0, insVerifyChv, 0x00, bCHVNumber,
0x08, bCHV, 0, NULL);
}
void
CCryptoCard::VerifyTransportKey(const BYTE *bKey)
{
CLockWrap wrap(&m_IOPLock);
VerifyKey(1, 8, bKey);
}
void
CCryptoCard::GetChallenge(const DWORD dwNumberLength, BYTE* bRandomNumber)
{
CLockWrap wrap(&m_IOPLock);
const DWORD dwMaxLen = 64;
DWORD dwRamainingBytes = dwNumberLength;
BYTE *bpBuf = bRandomNumber;
while(dwRamainingBytes)
{
BYTE bNumGet = (dwRamainingBytes > dwMaxLen) ? dwMaxLen : dwRamainingBytes;
SendCardAPDU(0xC0, 0x84, 0x00, 0x00, 0, NULL,
bNumGet, bpBuf);
bpBuf += bNumGet;
dwRamainingBytes -= bNumGet;
}
}
void
CCryptoCard::ExternalAuth(const KeyType kt, const BYTE bKeyNb,
const BYTE bDataLength, const BYTE* bData)
{
CLockWrap wrap(&m_IOPLock);
//BYTE bAlgo_ID = AsPrivateAlgId(kt);
SendCardAPDU(0xC0, 0x82, 0, bKeyNb, bDataLength,
bData, 0, NULL);
}
void
CCryptoCard::InternalAuth(const KeyType kt, const BYTE bKeyNb,
const BYTE bDataLength, const BYTE* bDataIn,
BYTE* bDataOut)
{
CLockWrap wrap(&m_IOPLock);
if ((bDataLength < 0x40) || (bDataLength > 0x80))
throw iop::Exception(iop::ccAlgorithmIdNotSupported);
SendCardAPDU(0xC0, insInternalAuth, 0, bKeyNb,
bDataLength, bDataIn, 0, NULL);
GetResponse(0xC0, ResponseLengthAvailable(), bDataOut);
}
void
CCryptoCard::WritePublicKey(const CPublicKeyBlob aKey, const BYTE bKeyNum)
{
CLockWrap wrap(&m_IOPLock);
WORD wOffset;
Select(0x1012);
WORD wKeyBlockLen = 7 + 5 * aKey.bModulusLength / 2;
scu::AutoArrayPtr<BYTE> aabKeyBlob(new BYTE[wKeyBlockLen]);
aabKeyBlob[0] = HIBYTE(wKeyBlockLen);
aabKeyBlob[1] = LOBYTE(wKeyBlockLen);
aabKeyBlob[2] = bKeyNum + 1; // Cryptoflex key numbers are offset by one on the file...
memcpy((void*) &aabKeyBlob[3], (void*)&aKey.bModulus, aKey.bModulusLength);
// Would need to set Montgomery constants here, but since nobody seems
// to know what they are...
// Montgomery constants take 3 * modulus_length / 2 bytes
memcpy((void*) &aabKeyBlob[3 + aKey.bModulusLength + (3 * aKey.bModulusLength / 2)], aKey.bExponent,4);
wOffset = bKeyNum * wKeyBlockLen;
WriteBinary(wOffset, wKeyBlockLen, aabKeyBlob.Get());
}
void
CCryptoCard::GetSerial(BYTE* bSerial, size_t &SerialLength)
{
CLockWrap wrap(&m_IOPLock);
try {
FILE_HEADER fh;
Select("/3f00/0002", &fh);
if (SerialLength < fh.file_size)
{
SerialLength = fh.file_size;
return;
}
ReadBinary(0, fh.file_size, bSerial);
}
catch(Exception &rExc)
{
if(rExc.Cause()==ccFileNotFound || rExc.Cause()==ccFileNotFoundOrNoMoreFilesInDf)
SerialLength = 0;
else
throw;
}
}
void
CCryptoCard::ReadPublicKey(CPublicKeyBlob *aKey, const BYTE bKeyNum)
{
CLockWrap wrap(&m_IOPLock);
BYTE bKeyLength[2];
Select(0x1012);
ReadBinary(0, 2, bKeyLength);
WORD wKeyBlockLength = bKeyLength[0] * 256 + bKeyLength[1];
WORD wOffset = wKeyBlockLength * bKeyNum;
scu::AutoArrayPtr<BYTE> aabBuffer(new BYTE[wKeyBlockLength]);
ReadBinary(wOffset, wKeyBlockLength, aabBuffer.Get());
aKey->bModulusLength = ((wKeyBlockLength - 7) * 2) / 5;
memcpy((void*)aKey->bModulus, (void*)&aabBuffer[3], aKey->bModulusLength);
memcpy((void*)aKey->bExponent, (void*)&aabBuffer[wKeyBlockLength - 4], 4);
}
void
CCryptoCard::WritePrivateKey(const CPrivateKeyBlob aKey, const BYTE bKeyNum)
{
CLockWrap wrap(&m_IOPLock);
Select(0x0012);
WORD wHalfModulus = aKey.bPLen; // Check that the lengths are all equal?
WORD wKeyBlockLength = wHalfModulus * 5 + 3;
WORD wOffset = bKeyNum * wKeyBlockLength;
scu::AutoArrayPtr<BYTE> aabKeyBlob(new BYTE[wKeyBlockLength]);
aabKeyBlob[0] = HIBYTE(wKeyBlockLength);
aabKeyBlob[1] = LOBYTE(wKeyBlockLength);
aabKeyBlob[2] = bKeyNum + 1; // Cryptoflex key numbers are offset by one on the file...
memcpy(&aabKeyBlob[3 ], aKey.bP, wHalfModulus);
memcpy(&aabKeyBlob[3 + wHalfModulus], aKey.bQ, wHalfModulus);
memcpy(&aabKeyBlob[3 + 2 * wHalfModulus], aKey.bInvQ, wHalfModulus);
memcpy(&aabKeyBlob[3 + 3 * wHalfModulus], aKey.bKsecModP, wHalfModulus);
memcpy(&aabKeyBlob[3 + 4 * wHalfModulus], aKey.bKsecModQ, wHalfModulus);
WriteBinary(wOffset, wKeyBlockLength, aabKeyBlob.Get());
}
CPublicKeyBlob CCryptoCard::GenerateKeyPair(const BYTE *bpPublExp, const WORD wPublExpLen,
const BYTE bKeyNum, const KeyType kt)
{
// This function generates a key-pair, using the public exponent as specified in
// in CPublicKeyBlob parameter. The private key is stored in the private
// key file at position specified by bKeyNum. The public key components are
// returned through the CPublicKeyBlob parameter. Prior to call, the correct
// DF containing the key file must be selected.
// Implementation:
// The offset of the key in the private key file is proportional to the key number
// and it is assumed that all keys in a private key file have the same length. It
// assumes that there is a public key file available with space for at least one
// public key. The public key will always be written to the first position in the
// public key file.
BYTE bModulusLength;
switch(kt)
{
case ktRSA512:
bModulusLength = 0x40;
break;
case ktRSA768:
bModulusLength = 0x60;
break;
case ktRSA1024:
bModulusLength = 0x80;
break;
default:
throw iop::Exception(iop::ccAlgorithmIdNotSupported);
}
// Check public exponent size and copy to 4 byte buffer
if(wPublExpLen < 1 || wPublExpLen > 4)
throw iop::Exception(iop::ccInvalidParameter);
BYTE bPublExponent[4];
memset(bPublExponent,0,4);
memcpy(bPublExponent,bpPublExp,wPublExpLen);
// Pre-define public key
CPublicKeyBlob PublKey;
PublKey.bModulusLength = bModulusLength;
memset(PublKey.bModulus,0,bModulusLength);
memset(PublKey.bExponent,0,4);
WritePublicKey(PublKey, 0); // Write in first position.
// Specify the correct key number in this position
BYTE bKeyNumPlus1 = bKeyNum + 1; // Cryptoflex key numbers are offset by one on the file...
Select(0x1012);
WriteBinary(2, 1, &bKeyNumPlus1);
// Pre-define private key
CPrivateKeyBlob PrivKey;
PrivKey.bPLen = bModulusLength/2;
memset(PrivKey.bP,0,PrivKey.bPLen);
PrivKey.bQLen = bModulusLength/2;
memset(PrivKey.bQ,0,PrivKey.bQLen);
PrivKey.bInvQLen = bModulusLength/2;
memset(PrivKey.bInvQ,0,PrivKey.bInvQLen);
PrivKey.bKsecModQLen = bModulusLength/2;
memset(PrivKey.bKsecModQ,0,PrivKey.bKsecModQLen);
PrivKey.bKsecModPLen = bModulusLength/2;
memset(PrivKey.bKsecModP,0,PrivKey.bKsecModPLen);
WritePrivateKey(PrivKey, bKeyNum); // Write in actual position.
// Generate the key pair
SendCardAPDU(0xF0, insKeyGeneration, bKeyNum, bModulusLength,
4, bPublExponent, 0, NULL);
ReadPublicKey(&PublKey,0);
return PublKey;
}
void
CCryptoCard::ChangeCHV(const BYTE bKey_nb, const BYTE *bOldCHV,
const BYTE *bNewCHV)
{
CLockWrap wrap(&m_IOPLock);
BYTE bDataIn[16];
memcpy((void*)(bDataIn), (void*)bOldCHV, 8);
memcpy((void*)(bDataIn + 8), (void*)bNewCHV, 8);
SendCardAPDU(0xF0, insChangeChv, 0x00, bKey_nb, 0x10, bDataIn, 0, NULL);
m_apSharedMarker->UpdateMarker(CMarker::PinMarker);
}
void
CCryptoCard::ChangeCHV(const BYTE bKey_nb, const BYTE *bNewCHV)
{
CLockWrap wrap(&m_IOPLock);
switch (bKey_nb)
{
case 1: Select("/3f00/0000"); // CHV1 and CHV2 are the only CHV's supported
break;
case 2: Select("/3f00/0100");
break;
default: throw iop::Exception(iop::ccInvalidChv);
break;
}
WriteBinary(3, 8, bNewCHV);
BYTE bRemaingAttempts = 1;
WriteBinary(12, 1, &bRemaingAttempts);
m_apSharedMarker->UpdateMarker(CMarker::PinMarker);
VerifyCHV(bKey_nb,bNewCHV);
}
void
CCryptoCard::UnblockCHV(const BYTE bKey_nb, const BYTE *bUnblockPIN,
const BYTE *bNewPin)
{
CLockWrap wrap(&m_IOPLock);
BYTE bDataIn[16];
memcpy((void*)(bDataIn), (void*)bUnblockPIN, 8);
memcpy((void*)(bDataIn + 8), (void*)bNewPin, 8);
SendCardAPDU(0xF0, insUnblockChv, 0x00, bKey_nb, 0x10, bDataIn, 0, NULL);
m_apSharedMarker->UpdateMarker(CMarker::PinMarker);
}
void
CCryptoCard::ChangeUnblockKey(const BYTE bKey_nb, const BYTE *bNewPIN)
{
CLockWrap wrap(&m_IOPLock);
switch (bKey_nb)
{
case 1: Select("/3f00/0000"); // CHV1 and CHV2 are the only CHV's supported
break;
case 2: Select("/3f00/0100");
break;
default: throw iop::Exception(iop::ccInvalidChv);
break;
}
WriteBinary(13, 8, bNewPIN);
}
void
CCryptoCard::ChangeTransportKey(const BYTE *bNewKey)
{
CLockWrap wrap(&m_IOPLock);
Select("/3f00/0011");
//////////////////////////////////////////
// Build byte string to write to card //
//////////////////////////////////////////
BYTE bKeyString[10] =
{
0x08, // length of key
0x00, // tag to identify key as a DES key
0, 0, 0, 0, 0, 0, 0, 0 // 8 bytes for key
};
//////////////////////////////////////////////////////
// insert new key into key string to pass to card //
//////////////////////////////////////////////////////
memcpy((void*)(bKeyString + 2), (void*)bNewKey, 8);
WriteBinary(13, 10, bKeyString);
BYTE bRemainingAttempt = 1; // Minumum # of verification attempts remaining before card is blocked
WriteBinary(24, 1, &bRemainingAttempt);
// Make a (hopefully) successfull verification to re-set attempt counter
VerifyTransportKey(bNewKey);
}
void
CCryptoCard::ChangeACL(const BYTE *bACL)
{
throw iop::Exception(iop::ccUnsupportedCommand);
}
void
CCryptoCard::AccessToCryptoACL(bool* fAccessACL, CryptoACL* pCryptoACL)
{
if (fAccessACL[0] == true)
pCryptoACL->Level = 0;
else
{
pCryptoACL->Level = 0x0F;
for(BYTE i = 1; i < 3; i++)
{
if (fAccessACL[i] == true)
{
pCryptoACL->CHVcounter++;
pCryptoACL->CHVnumber = i;
}
if (pCryptoACL->CHVcounter > 1 )
{
// More than one CHV for a single action
// is not supported by Cryptoflex
throw iop::Exception(iop::ccAclNotSupported);
}
}
for(i = 3; i < 8; i++)
{
if (fAccessACL[i] == true)
{
pCryptoACL->AUTcounter++;
pCryptoACL->AUTnumber = i - 3; // AUT0 starts with an index of 3
}
if (pCryptoACL->AUTcounter > 1)
{
// More than one AUT for a single action
// is not supported by Cryptoflex
throw iop::Exception(iop::ccAclNotSupported);
}
}
}
if (pCryptoACL->CHVcounter == 1 && pCryptoACL->AUTcounter == 1)
{
if(pCryptoACL->CHVnumber == 1)
pCryptoACL->Level = 8;
else
pCryptoACL->Level = 9;
}
if (pCryptoACL->CHVcounter == 1 && pCryptoACL->AUTcounter == 0)
{
if(pCryptoACL->CHVnumber == 1)
pCryptoACL->Level = 1;
else
pCryptoACL->Level = 2;
}
if (pCryptoACL->CHVcounter == 0 && pCryptoACL->AUTcounter == 1)
pCryptoACL->Level = 4;
}
void CCryptoCard::CryptoToAccessACL(BYTE* bAccessACL, const BYTE bACLNibble,
const BYTE bKeyNibble, const BYTE bShift)
{
switch (bACLNibble)
{
case 0x00: bAccessACL[0] = (1 << bShift) | bAccessACL[0];
break;
case 0x01:
case 0x06:
case 0x08: bAccessACL[1] = (1 << bShift) | bAccessACL[1];
break;
case 0x02:
case 0x07:
case 0x09: bAccessACL[2] = (1 << bShift) | bAccessACL[2];
break;
default: // bAccessACL already initialized to 0x00
break;
}
if (bACLNibble == 0x04 || bACLNibble == 0x08 || bACLNibble == 0x09)
{
////////////////////////////////////////////////////////////////////////////
// Cyberflex only supports 5 AUT keys, and AUT0 starts at bAccessACL[3] //
////////////////////////////////////////////////////////////////////////////
if (bKeyNibble < 0x05)
bAccessACL[3 + bKeyNibble] = (1 << bShift) | bAccessACL[3 + bKeyNibble];
}
}
void
CCryptoCard::DefaultDispatchError(ClassByte cb,
Instruction ins,
StatusWord sw) const
{
CauseCode cc;
bool fDoThrow = true;
switch (sw)
{
case 0x6281:
cc = ccDataPossiblyCorrupted;
break;
case 0x6300:
cc = ccAuthenticationFailed;
break;
case 0x6982:
cc = ccAccessConditionsNotMet;
break;
case 0x6981:
cc = ccNoEfExistsOrNoChvKeyDefined;
break;
case 0x6985:
cc = ccNoGetChallengeBefore;
break;
case 0x6986:
cc = ccNoEfSelected;
break;
case 0x6A83:
cc = ccOutOfRangeOrRecordNotFound;
break;
case 0x6A84:
cc = ccInsufficientSpace;
break;
case 0x6A82:
cc = ccFileNotFoundOrNoMoreFilesInDf;
break;
default:
fDoThrow = false;
break;
}
if (fDoThrow)
throw Exception(cc, cb, ins, sw);
CSmartCard::DefaultDispatchError(cb, ins, sw);
}
void
CCryptoCard::DispatchError(ClassByte cb,
Instruction ins,
StatusWord sw) const
{
CauseCode cc;
bool fDoThrow = true;
switch (ins)
{
case insChangeChv:
// fall-through intentional
case insUnblockChv:
switch (sw)
{
case 0x6300:
cc = ccChvVerificationFailedMoreAttempts;
break;
case 0x6581:
cc = ccUpdateImpossible;
break;
default:
fDoThrow = false;
break;
}
break;
case insCreateFile:
switch (sw)
{
case 0x6A80:
cc = ccFileIdExistsOrTypeInconsistentOrRecordTooLong;
break;
default:
fDoThrow = false;
break;
}
break;
case insGetResponse:
switch (sw)
{
case 0x6500:
cc = ccTooMuchDataForProMode;
break;
default:
fDoThrow = false;
break;
}
break;
case insReadBinary:
switch (sw)
{
case 0x6B00:
cc = ccCannotReadOutsideFileBoundaries;
break;
default:
fDoThrow = false;
break;
}
break;
case insVerifyChv:
switch (sw)
{
case 0x6300:
cc = ccChvVerificationFailedMoreAttempts;
break;
default:
fDoThrow = false;
break;
}
break;
default:
fDoThrow = false;
break;
}
if (fDoThrow)
throw Exception(cc, cb, ins, sw);
DefaultDispatchError(cb, ins, sw);
}
void
CCryptoCard::DoReadBlock(WORD wOffset,
BYTE *pbBuffer,
BYTE bLength)
{
SendCardAPDU(0xC0, insReadBinary, HIBYTE(wOffset),
LOBYTE(wOffset), 0, 0, bLength, pbBuffer);
}
void
CCryptoCard::DoWriteBlock(WORD wOffset,
BYTE const *pbBuffer,
BYTE cLength)
{
SendCardAPDU(0xC0, insUpdateBinary, HIBYTE(wOffset),
LOBYTE(wOffset), cLength, pbBuffer, 0, 0);
}
bool
CCryptoCard::SupportLogout()
{
bool fSuccess = true;
try
{
CLockWrap wrap(&m_IOPLock);
SendCardAPDU(0xF0, 0x22, 0x07, 0, 0, NULL, 0, NULL);
}
catch(...)
{
fSuccess = false;
}
return fSuccess;
}
void CCryptoCard::GetACL(BYTE *bACL)
{
CLockWrap wrap(&m_IOPLock);
memcpy(bACL,m_bLastACL,4);
BYTE bTemp[5];
SendCardAPDU(0xF0, 0xC4, 0x00, 0x00, 0x00, NULL, 0x03, bTemp);
memcpy(&bACL[4], bTemp, 3);
}