windows-nt/Source/XPSP1/NT/shell/osshell/accesory/ratpak/fact.c

253 lines
6.1 KiB
C
Raw Normal View History

2020-09-26 03:20:57 -05:00
//-----------------------------------------------------------------------------
// Package Title ratpak
// File fact.c
// Author Timothy David Corrie Jr. (timc@microsoft.com)
// Copyright (C) 1995-96 Microsoft
// Date 01-16-95
//
//
// Description
//
// Contains fact(orial) and supporting _gamma functions.
//
//-----------------------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#if defined( DOS )
#include <dosstub.h>
#else
#include <windows.h>
#endif
#include <ratpak.h>
#define ABSRAT(x) (((x)->pp->sign=1),((x)->pq->sign=1))
#define NEGATE(x) ((x)->pp->sign *= -1)
//-----------------------------------------------------------------------------
//
// FUNCTION: factrat, _gamma, gamma
//
// ARGUMENTS: x PRAT representation of number to take the sine of
//
// RETURN: factorial of x in PRAT form.
//
// EXPLANATION: This uses Taylor series
//
// n
// ___ 2j
// n \ ] A 1 A
// A \ -----[ ---- - ---------------]
// / (2j)! n+2j (n+2j+1)(2j+1)
// /__]
// j=0
//
// / oo
// | n-1 -x __
// This was derived from | x e dx = |
// | | (n) { = (n-1)! for +integers}
// / 0
//
// GregSte showed the above series to be within precision if A was chosen
// big enough.
// A n precision
// Based on the relation ne = A 10 A was chosen as
//
// precision
// A = ln(Base /n)+1
// A += n*ln(A) This is close enough for precision > base and n < 1.5
//
//
//-----------------------------------------------------------------------------
void _gamma( PRAT *pn )
{
PRAT factorial=NULL;
PNUMBER count=NULL;
PRAT tmp=NULL;
PRAT one_pt_five=NULL;
PRAT a=NULL;
PRAT a2=NULL;
PRAT term=NULL;
PRAT sum=NULL;
PRAT err=NULL;
PRAT mpy=NULL;
PRAT ratprec = NULL;
PRAT ratRadix = NULL;
long oldprec;
// Set up constants and initial conditions
oldprec = maxout;
ratprec = longtorat( oldprec );
// Find the best 'A' for convergence to the required precision.
a=longtorat( nRadix );
lograt(&a);
mulrat(&a,ratprec);
// Really is -ln(n)+1, but -ln(n) will be < 1
// if we scale n between 0.5 and 1.5
addrat(&a,rat_two);
DUPRAT(tmp,a);
lograt(&tmp);
mulrat(&tmp,*pn);
addrat(&a,tmp);
addrat(&a,rat_one);
// Calculate the necessary bump in precision and up the precision.
// The following code is equivalent to
// maxout += ln(exp(a)*pow(a,n+1.5))-ln(nRadix));
DUPRAT(tmp,*pn);
one_pt_five=longtorat( 3L );
divrat( &one_pt_five, rat_two );
addrat( &tmp, one_pt_five );
DUPRAT(term,a);
powrat( &term, tmp );
DUPRAT( tmp, a );
exprat( &tmp );
mulrat( &term, tmp );
lograt( &term );
ratRadix = longtorat( nRadix );
DUPRAT(tmp,ratRadix);
lograt( &tmp );
subrat( &term, tmp );
maxout += rattolong( term );
// Set up initial terms for series, refer to series in above comment block.
DUPRAT(factorial,rat_one); // Start factorial out with one
count = longtonum( 0L, BASEX );
DUPRAT(mpy,a);
powrat(&mpy,*pn);
// a2=a^2
DUPRAT(a2,a);
mulrat(&a2,a);
// sum=(1/n)-(a/(n+1))
DUPRAT(sum,rat_one);
divrat(&sum,*pn);
DUPRAT(tmp,*pn);
addrat(&tmp,rat_one);
DUPRAT(term,a);
divrat(&term,tmp);
subrat(&sum,term);
DUPRAT(err,ratRadix);
NEGATE(ratprec);
powrat(&err,ratprec);
divrat(&err,ratRadix);
// Just get something not tiny in term
DUPRAT(term, rat_two );
// Loop until precision is reached, or asked to halt.
while ( !zerrat( term ) && rat_gt( term, err) && !fhalt )
{
addrat(pn,rat_two);
// WARNING: mixing numbers and rationals here.
// for speed and efficiency.
INC(count);
mulnumx(&(factorial->pp),count);
INC(count)
mulnumx(&(factorial->pp),count);
divrat(&factorial,a2);
DUPRAT(tmp,*pn);
addrat( &tmp, rat_one );
destroyrat(term);
createrat(term);
DUPNUM(term->pp,count);
DUPNUM(term->pq,num_one);
addrat( &term, rat_one );
mulrat( &term, tmp );
DUPRAT(tmp,a);
divrat( &tmp, term );
DUPRAT(term,rat_one);
divrat( &term, *pn);
subrat( &term, tmp);
divrat (&term, factorial);
addrat( &sum, term);
ABSRAT(term);
}
// Multiply by factor.
mulrat( &sum, mpy );
// And cleanup
maxout = oldprec;
destroyrat(ratprec);
destroyrat(err);
destroyrat(term);
destroyrat(a);
destroyrat(a2);
destroyrat(tmp);
destroyrat(one_pt_five);
destroynum(count);
destroyrat(factorial);
destroyrat(*pn);
DUPRAT(*pn,sum);
destroyrat(sum);
}
void factrat( PRAT *px )
{
PRAT fact = NULL;
PRAT frac = NULL;
PRAT neg_rat_one = NULL;
DUPRAT(fact,rat_one);
DUPRAT(neg_rat_one,rat_one);
neg_rat_one->pp->sign *= -1;
DUPRAT( frac, *px );
fracrat( &frac );
// Check for negative integers and throw an error.
if ( ( zerrat(frac) || ( LOGRATRADIX(frac) <= -maxout ) ) &&
( (*px)->pp->sign * (*px)->pq->sign == -1 ) )
{
throw CALC_E_DOMAIN;
}
while ( rat_gt( *px, rat_zero ) && !fhalt &&
( LOGRATRADIX(*px) > -maxout ) )
{
mulrat( &fact, *px );
subrat( px, rat_one );
}
// Added to make numbers 'close enough' to integers use integer factorial.
if ( LOGRATRADIX(*px) <= -maxout )
{
DUPRAT((*px),rat_zero);
intrat(&fact);
}
while ( rat_lt( *px, neg_rat_one ) && !fhalt )
{
addrat( px, rat_one );
divrat( &fact, *px );
}
if ( rat_neq( *px, rat_zero ) )
{
addrat( px, rat_one );
_gamma( px );
mulrat( px, fact );
}
else
{
DUPRAT(*px,fact);
}
}