windows-nt/Source/XPSP1/NT/base/busdrv/acpi/smbus/smbbatt/smbmisc.c

1258 lines
34 KiB
C
Raw Normal View History

2020-09-26 03:20:57 -05:00
/*++
Copyright (c) 1990 Microsoft Corporation
Module Name:
smbmisc.c
Abstract:
SMBus handler functions
Author:
Ken Reneris
Environment:
Notes:
Revision History:
Chris Windle 1/27/98 Bug Fixes
--*/
#include "smbbattp.h"
//
// Make the SelectorBit table pageable
//
//#ifdef ALLOC_DATA_PRAGMA
//#pragma data_seg("PAGE")
//#endif
//
// Lookup table for the battery that corresponds to bit positions and
// whether or not reverse logic is being used (to indicate charging or
// discharging).
//
// NOTE: To support Simultaneous Charging and Powering, this table
// has been modified to account for multiple bits. Also, it can't be
// used for battery index lookup since it assumes one bit set maximum.
// Instead, use special indexes for multiple batteries as follows:
//
// 1st Battery = Index & 0x03
// 2nd Battery = (Index >> 2) & 0x03 (Battery A not allowed)
// 3rd Battery = (Index >> 4) & 0x03 (Battery A not allowed)
//
// In < 4 battery systems the Battery D bit can be used to determine
// the nibbles that are inverted, and it allows the following combinations:
//
// Battery A & B
// Battery A & C
// Battery B & C
// Battery A, B, & C
//
const SELECTOR_STATE_LOOKUP SelectorBits [16] = {
{BATTERY_NONE, FALSE}, // Bit Pattern: 0000
{BATTERY_A, FALSE}, // 0001
{BATTERY_B, FALSE}, // 0010
{MULTIBATT_AB, FALSE}, // 0011
{BATTERY_C, FALSE}, // 0100
{MULTIBATT_AC, FALSE}, // 0101
{MULTIBATT_BC, FALSE}, // 0110
{MULTIBATT_ABC, FALSE}, // 0111
{MULTIBATT_ABC, TRUE}, // 1000
{MULTIBATT_BC, TRUE}, // 1001
{MULTIBATT_AC, TRUE}, // 1010
{BATTERY_C, TRUE}, // 1011
{MULTIBATT_AB, TRUE}, // 1100
{BATTERY_B, TRUE}, // 1101
{BATTERY_A, TRUE}, // 1110
{BATTERY_NONE, TRUE} // 1111
};
//
// Note: For 4-Battery Systems to support Simultaneous Capability
// properly, the following two assumptions must be made:
// - Battery D can never be used simultaneously.
// - Three batteries can not be used simultaneously.
//
// This allows for only the following possible battery combinations:
//
// Battery A & B
// Battery A & C
// Battery B & C
//
// The following table is used for 4-battery lookup
//
const SELECTOR_STATE_LOOKUP SelectorBits4 [16] = {
{BATTERY_NONE, FALSE}, // Bit Pattern: 0000
{BATTERY_A, FALSE}, // 0001
{BATTERY_B, FALSE}, // 0010
{MULTIBATT_AB, FALSE}, // 0011
{BATTERY_C, FALSE}, // 0100
{MULTIBATT_AC, FALSE}, // 0101
{MULTIBATT_BC, FALSE}, // 0110
{BATTERY_D, TRUE}, // 0111
{BATTERY_D, FALSE}, // 1000
{MULTIBATT_BC, TRUE}, // 1001
{MULTIBATT_AC, TRUE}, // 1010
{BATTERY_C, TRUE}, // 1011
{MULTIBATT_AB, TRUE}, // 1100
{BATTERY_B, TRUE}, // 1101
{BATTERY_A, TRUE}, // 1110
{BATTERY_NONE, TRUE} // 1111
};
#ifdef ALLOC_PRAGMA
#pragma alloc_text(PAGE,SmbBattLockDevice)
#pragma alloc_text(PAGE,SmbBattUnlockDevice)
#pragma alloc_text(PAGE,SmbBattLockSelector)
#pragma alloc_text(PAGE,SmbBattUnlockSelector)
#pragma alloc_text(PAGE,SmbBattRequest)
#pragma alloc_text(PAGE,SmbBattRB)
#pragma alloc_text(PAGE,SmbBattRW)
#pragma alloc_text(PAGE,SmbBattRSW)
#pragma alloc_text(PAGE,SmbBattWW)
#pragma alloc_text(PAGE,SmbBattGenericRW)
#pragma alloc_text(PAGE,SmbBattGenericWW)
#pragma alloc_text(PAGE,SmbBattGenericRequest)
#pragma alloc_text(PAGE,SmbBattSetSelectorComm)
#pragma alloc_text(PAGE,SmbBattResetSelectorComm)
#pragma alloc_text(PAGE,SmbBattDirectDataAccess)
#pragma alloc_text(PAGE,SmbBattIndex)
#pragma alloc_text(PAGE,SmbBattReverseLogic)
#pragma alloc_text(PAGE,SmbBattAcquireGlobalLock)
#pragma alloc_text(PAGE,SmbBattReleaseGlobalLock)
#endif
VOID
SmbBattLockDevice (
IN PSMB_BATT SmbBatt
)
{
PAGED_CODE();
//
// Get device lock on the battery
//
ExAcquireFastMutex (&SmbBatt->NP->Mutex);
}
VOID
SmbBattUnlockDevice (
IN PSMB_BATT SmbBatt
)
{
PAGED_CODE();
//
// Release device lock on the battery
//
ExReleaseFastMutex (&SmbBatt->NP->Mutex);
}
VOID
SmbBattLockSelector (
IN PBATTERY_SELECTOR Selector
)
{
PAGED_CODE();
//
// Get device lock on the selector
//
if (Selector) {
ExAcquireFastMutex (&Selector->Mutex);
}
}
VOID
SmbBattUnlockSelector (
IN PBATTERY_SELECTOR Selector
)
{
PAGED_CODE();
//
// Release device lock on the selector
//
if (Selector) {
ExReleaseFastMutex (&Selector->Mutex);
}
}
NTSTATUS
SmbBattSynchronousRequest (
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
IN PVOID Context
)
/*++
Routine Description:
Completion function for synchronous IRPs sent to this driver.
Context is the event to set
--*/
{
PKEVENT Event;
Event = (PKEVENT) Context;
KeSetEvent (Event, IO_NO_INCREMENT, FALSE);
return STATUS_MORE_PROCESSING_REQUIRED;
}
VOID
SmbBattRequest (
IN PSMB_BATT SmbBatt,
IN PSMB_REQUEST SmbReq
)
// function to issue SMBus request
{
KEVENT Event;
PIRP Irp;
PIO_STACK_LOCATION IrpSp;
NTSTATUS Status;
BOOLEAN useLock = SmbBattUseGlobalLock;
ACPI_MANIPULATE_GLOBAL_LOCK_BUFFER globalLock;
PAGED_CODE();
//
// Build Io Control for SMB bus driver for this request
//
KeInitializeEvent (&Event, NotificationEvent, FALSE);
if (!SmbBatt->SmbHcFdo) {
//
// The SMB host controller either hasn't been opened yet (in start device) or
// there was an error opening it and we did not get deleted somehow.
//
BattPrint(BAT_ERROR, ("SmbBattRequest: SmbHc hasn't been opened yet \n"));
SmbReq->Status = SMB_UNKNOWN_FAILURE;
return ;
}
Irp = IoAllocateIrp (SmbBatt->SmbHcFdo->StackSize, FALSE);
if (!Irp) {
SmbReq->Status = SMB_UNKNOWN_FAILURE;
return ;
}
IrpSp = IoGetNextIrpStackLocation(Irp);
IrpSp->MajorFunction = IRP_MJ_INTERNAL_DEVICE_CONTROL;
IrpSp->Parameters.DeviceIoControl.IoControlCode = SMB_BUS_REQUEST;
IrpSp->Parameters.DeviceIoControl.InputBufferLength = sizeof(SMB_REQUEST);
IrpSp->Parameters.DeviceIoControl.Type3InputBuffer = SmbReq;
IoSetCompletionRoutine (Irp, SmbBattSynchronousRequest, &Event, TRUE, TRUE, TRUE);
//
// Issue it
//
//
// Note: uselock is a cached value of the global variable, so in case the
// value changes, we won't aquire and not release etc.
//
if (useLock) {
if (!NT_SUCCESS (SmbBattAcquireGlobalLock (SmbBatt->SmbHcFdo, &globalLock))) {
useLock = FALSE;
}
}
IoCallDriver (SmbBatt->SmbHcFdo, Irp);
KeWaitForSingleObject(&Event, Executive, KernelMode, FALSE, NULL);
Status = Irp->IoStatus.Status;
IoFreeIrp (Irp);
if (useLock) {
SmbBattReleaseGlobalLock (SmbBatt->SmbHcFdo, &globalLock);
}
//
// Check result code
//
if (!NT_SUCCESS(Status)) {
BattPrint(BAT_ERROR, ("SmbBattRequest: error in SmbHc request - %x\n", Status));
SmbReq->Status = SMB_UNKNOWN_FAILURE;
}
}
VOID
SmbBattRB(
IN PSMB_BATT SmbBatt,
IN UCHAR SmbCmd,
OUT PUCHAR Buffer,
OUT PUCHAR BufferLength
)
// function to read-block from the battery
{
SMB_REQUEST SmbReq;
PAGED_CODE();
SmbReq.Protocol = SMB_READ_BLOCK;
SmbReq.Address = SMB_BATTERY_ADDRESS;
SmbReq.Command = SmbCmd;
SmbBattRequest (SmbBatt, &SmbReq);
if (SmbReq.Status == SMB_STATUS_OK) {
ASSERT (SmbReq.BlockLength < SMB_MAX_DATA_SIZE);
memcpy (Buffer, SmbReq.Data, SmbReq.BlockLength);
*BufferLength = SmbReq.BlockLength;
} else {
// some sort of failure, check tag data for cache validity
SmbBatt->Info.Valid &= ~VALID_TAG_DATA;
}
}
VOID
SmbBattRW(
IN PSMB_BATT SmbBatt,
IN UCHAR SmbCmd,
OUT PULONG Result
)
// function to read-word from the battery
// N.B. word is returned as a ULONG
{
SMB_REQUEST SmbReq;
PAGED_CODE();
SmbReq.Protocol = SMB_READ_WORD;
SmbReq.Address = SMB_BATTERY_ADDRESS;
SmbReq.Command = SmbCmd;
SmbBattRequest (SmbBatt, &SmbReq);
if (SmbReq.Status != SMB_STATUS_OK) {
// some sort of failure, check tag data for cache validity
SmbBatt->Info.Valid &= ~VALID_TAG_DATA;
}
*Result = SmbReq.Data[0] | SmbReq.Data[1] << WORD_MSB_SHIFT;
BattPrint(BAT_IO, ("SmbBattRW: Command: %02x == %04x\n", SmbCmd, *Result));
}
VOID
SmbBattRSW(
IN PSMB_BATT SmbBatt,
IN UCHAR SmbCmd,
OUT PLONG Result
)
// function to read-signed-word from the battery
// N.B. word is returned as a LONG
{
ULONG i;
PAGED_CODE();
SmbBattRW(SmbBatt, SmbCmd, &i);
*Result = ((SHORT) i);
}
VOID
SmbBattWW(
IN PSMB_BATT SmbBatt,
IN UCHAR SmbCmd,
IN ULONG Data
)
// function to write-word to the battery
{
SMB_REQUEST SmbReq;
PAGED_CODE();
SmbReq.Protocol = SMB_WRITE_WORD;
SmbReq.Address = SMB_BATTERY_ADDRESS;
SmbReq.Command = SmbCmd;
SmbReq.Data[0] = (UCHAR) (Data & WORD_LSB_MASK);
SmbReq.Data[1] = (UCHAR) (Data >> WORD_MSB_SHIFT) & WORD_LSB_MASK;
BattPrint(BAT_IO, ("SmbBattWW: Command: %02x = %04x\n", SmbCmd, Data));
SmbBattRequest (SmbBatt, &SmbReq);
if (SmbReq.Status != SMB_STATUS_OK) {
// some sort of failure, check tag data for cache validity
SmbBatt->Info.Valid &= ~VALID_TAG_DATA;
}
}
UCHAR
SmbBattGenericRW(
IN PDEVICE_OBJECT SmbHcFdo,
IN UCHAR Address,
IN UCHAR SmbCmd,
OUT PULONG Result
)
// function to read-word from the SMB device (charger or selector)
// N.B. word is returned as a ULONG
{
SMB_REQUEST SmbReq;
PAGED_CODE();
SmbReq.Protocol = SMB_READ_WORD;
SmbReq.Address = Address;
SmbReq.Command = SmbCmd;
SmbBattGenericRequest (SmbHcFdo, &SmbReq);
*Result = SmbReq.Data[0] | (SmbReq.Data[1] << WORD_MSB_SHIFT);
BattPrint(BAT_IO, ("SmbBattGenericRW: Address: %02x:%02x == %04x\n", Address, SmbCmd, *Result));
return SmbReq.Status;
}
UCHAR
SmbBattGenericWW(
IN PDEVICE_OBJECT SmbHcFdo,
IN UCHAR Address,
IN UCHAR SmbCmd,
IN ULONG Data
)
// function to write-word to SMB device (charger or selector)
{
SMB_REQUEST SmbReq;
PAGED_CODE();
SmbReq.Protocol = SMB_WRITE_WORD;
SmbReq.Address = Address;
SmbReq.Command = SmbCmd;
SmbReq.Data[0] = (UCHAR) (Data & WORD_LSB_MASK);
SmbReq.Data[1] = (UCHAR) (Data >> WORD_MSB_SHIFT) & WORD_LSB_MASK;
BattPrint(BAT_IO, ("SmbBattGenericWW: Address: %02x:%02x = %04x\n", Address, SmbCmd, Data));
SmbBattGenericRequest (SmbHcFdo, &SmbReq);
return SmbReq.Status;
}
VOID
SmbBattGenericRequest (
IN PDEVICE_OBJECT SmbHcFdo,
IN PSMB_REQUEST SmbReq
)
// function to issue SMBus request
{
KEVENT Event;
PIRP Irp;
PIO_STACK_LOCATION IrpSp;
NTSTATUS Status;
BOOLEAN useLock = SmbBattUseGlobalLock;
ACPI_MANIPULATE_GLOBAL_LOCK_BUFFER globalLock;
PAGED_CODE();
//
// Build Io Control for SMB bus driver for this request
//
KeInitializeEvent (&Event, NotificationEvent, FALSE);
if (!SmbHcFdo) {
//
// The SMB host controller either hasn't been opened yet (in start device) or
// there was an error opening it and we did not get deleted somehow.
//
BattPrint(BAT_ERROR, ("SmbBattGenericRequest: SmbHc hasn't been opened yet \n"));
SmbReq->Status = SMB_UNKNOWN_FAILURE;
return ;
}
Irp = IoAllocateIrp (SmbHcFdo->StackSize, FALSE);
if (!Irp) {
SmbReq->Status = SMB_UNKNOWN_FAILURE;
return ;
}
IrpSp = IoGetNextIrpStackLocation(Irp);
IrpSp->MajorFunction = IRP_MJ_INTERNAL_DEVICE_CONTROL;
IrpSp->Parameters.DeviceIoControl.IoControlCode = SMB_BUS_REQUEST;
IrpSp->Parameters.DeviceIoControl.InputBufferLength = sizeof(SMB_REQUEST);
IrpSp->Parameters.DeviceIoControl.Type3InputBuffer = SmbReq;
IoSetCompletionRoutine (Irp, SmbBattSynchronousRequest, &Event, TRUE, TRUE, TRUE);
//
// Issue it
//
//
// Note: uselock is a cached value of the global variable, so in case the
// value changes, we won't acquire and not release etc.
//
if (useLock) {
if (!NT_SUCCESS (SmbBattAcquireGlobalLock (SmbHcFdo, &globalLock))) {
useLock = FALSE;
}
}
IoCallDriver (SmbHcFdo, Irp);
KeWaitForSingleObject(&Event, Executive, KernelMode, FALSE, NULL);
Status = Irp->IoStatus.Status;
IoFreeIrp (Irp);
if (useLock) {
SmbBattReleaseGlobalLock (SmbHcFdo, &globalLock);
}
//
// Check result code
//
if (!NT_SUCCESS(Status)) {
BattPrint(BAT_ERROR, ("SmbBattGenericRequest: error in SmbHc request - %x\n", Status));
SmbReq->Status = SMB_UNKNOWN_FAILURE;
}
}
NTSTATUS
SmbBattSetSelectorComm (
IN PSMB_BATT SmbBatt,
OUT PULONG OldSelectorState
)
/*++
Routine Description:
This routine sets the communication path through the selector to the calling
battery. It returns the original selector state in the variable provided.
NOTE: It is assumed that the caller already has acquired the device lock on the
selector before calling us.
NOTE: This function should always be called in a pair with SmbBattResetSelectorComm
Arguments:
SmbBatt - Nonpaged extension for current battery
OldSelectorState - Original selector state at start of this function
Return Value:
NTSTATUS
--*/
{
PBATTERY_SELECTOR selector;
UCHAR smbStatus;
ULONG requestData;
PAGED_CODE();
BattPrint(BAT_TRACE, ("SmbBattSetSelectorComm: ENTERING\n"));
//
// We only need to do this if there is a selector in the system.
//
if (SmbBatt->SelectorPresent) {
selector = SmbBatt->Selector;
*OldSelectorState = selector->SelectorState;
//
// If the battery isn't present, fail the request.
//
if (!(selector->SelectorState & SmbBatt->SelectorBitPosition)) {
return STATUS_NO_SUCH_DEVICE;
}
//
// See if we are already set up to talk with the requesting battery.
// We will check against the cached information in the selector struct.
//
if (selector->SelectorState & (SmbBatt->SelectorBitPosition << SELECTOR_SHIFT_COM)) {
return STATUS_SUCCESS;
}
//
// Build the data word to change the selector communications. This will
// look like the following:
//
// PRESENT field 0xf we don't want to change anything here
// CHARGE field 0xf we don't want to change anything here
// POWER BY field 0xf we don't want to change anything here
// SMB field 0x_ the bit set according to the battery number
//
requestData = (SmbBatt->SelectorBitPosition << SELECTOR_SHIFT_COM) | SELECTOR_SET_COM_MASK;
smbStatus = SmbBattGenericWW (
SmbBatt->SmbHcFdo,
selector->SelectorAddress,
selector->SelectorStateCommand,
requestData
);
if (smbStatus != SMB_STATUS_OK) {
BattPrint (BAT_ERROR, ("SmbBattSetSelectorComm: couldn't write selector state - %x\n", smbStatus));
return STATUS_UNSUCCESSFUL;
} else {
selector->SelectorState |= SELECTOR_STATE_SMB_MASK;
selector->SelectorState &= requestData;
BattPrint (BAT_IO, ("SmbBattSetSelectorComm: state after write - %x\n", selector->SelectorState));
}
} // if (subsystemExt->SelectorPresent)
BattPrint(BAT_TRACE, ("SmbBattSetSelectorComm: EXITING\n"));
return STATUS_SUCCESS;
}
NTSTATUS
SmbBattResetSelectorComm (
IN PSMB_BATT SmbBatt,
IN ULONG OldSelectorState
)
/*++
Routine Description:
This routine resets the communication path through the selector to the its
original state. It returns the original selector state in the variable provided.
NOTE: It is assumed that the caller already has acquired the device lock on the
selector before calling us.
NOTE: This function should always be called in a pair with SmbBattSetSelectorComm
Arguments:
SmbBatt - Nonpaged extension for current battery
OldSelectorState - Original selector state to be restored
Return Value:
NTSTATUS
--*/
{
PBATTERY_SELECTOR selector;
UCHAR smbStatus;
ULONG tmpState;
NTSTATUS status = STATUS_SUCCESS;
PAGED_CODE();
BattPrint(BAT_TRACE, ("SmbBattResetSelectorComm: ENTERING\n"));
//
// We only need to do this if there is a selector in the system.
//
if (SmbBatt->SelectorPresent) {
selector = SmbBatt->Selector;
//
// See if we were already set up to talk with the requesting battery.
// We will check against the cached information in the selector struct.
//
if ((OldSelectorState & selector->SelectorState) & SELECTOR_STATE_SMB_MASK) {
return STATUS_SUCCESS;
}
//
// Change the selector communications back. The SMB field is the only
// that we will write.
//
tmpState = SELECTOR_SET_COM_MASK;
tmpState |= OldSelectorState & SELECTOR_STATE_SMB_MASK;
smbStatus = SmbBattGenericWW (
SmbBatt->SmbHcFdo,
selector->SelectorAddress,
selector->SelectorStateCommand,
tmpState
);
if (smbStatus != SMB_STATUS_OK) {
BattPrint (
BAT_ERROR,
("SmbBattResetSelectorComm: couldn't write selector state - %x\n",
smbStatus)
);
status = STATUS_UNSUCCESSFUL;
} else {
selector->SelectorState |= SELECTOR_STATE_SMB_MASK;
selector->SelectorState &= tmpState;
BattPrint (
BAT_IO,
("SmbBattResetSelectorComm: state after write - %x\n",
selector->SelectorState)
);
}
} // if (subsystemExt->SelectorPresent)
BattPrint(BAT_TRACE, ("SmbBattResetSelectorComm: EXITING\n"));
return status;
}
NTSTATUS
SmbBattDirectDataAccess (
IN PSMB_NP_BATT DeviceExtension,
IN PSMBBATT_DATA_STRUCT IoBuffer,
IN ULONG InputLen,
IN ULONG OutputLen
)
/*++
Routine Description:
This routine is used to handle IOCTLs acessing the SMBBatt commands directly.
Arguments:
DeviceExtension - Device extension for the smart battery subsystem
IoBuffer - Buffer that contains the input structure and will
contain the results of the read.
Return Value:
NTSTATUS
--*/
{
PSMB_BATT_SUBSYSTEM SubsystemExt;
PSMB_BATT SmbBatt;
UCHAR address;
UCHAR command;
UCHAR smbStatus;
ULONG oldSelectorState;
ULONG ReturnBufferLength;
UCHAR strLength;
UCHAR strBuffer[SMB_MAX_DATA_SIZE+1]; // +1 extra char to hold NULL
UCHAR strBuffer2[SMB_MAX_DATA_SIZE+1];
UNICODE_STRING unicodeString;
ANSI_STRING ansiString;
UCHAR tempFlags;
NTSTATUS status = STATUS_SUCCESS;
PAGED_CODE();
if ((DeviceExtension->SmbBattFdoType == SmbTypeBattery)
&& (IoBuffer->Address == SMB_BATTERY_ADDRESS)) {
// This is a battery data request
SmbBatt = DeviceExtension->Batt;
SmbBattLockSelector (SmbBatt->Selector);
SmbBattLockDevice (SmbBatt);
status = SmbBattSetSelectorComm (SmbBatt, &oldSelectorState);
if (NT_SUCCESS (status)) {
if ((InputLen >= sizeof(SMBBATT_DATA_STRUCT)) && (OutputLen == 0)) {
// This is a write command
status = STATUS_NOT_IMPLEMENTED;
} else if ((InputLen == sizeof(SMBBATT_DATA_STRUCT)) && (OutputLen > 0)){
// This is a Read command
if ((IoBuffer->Command >= BAT_REMAINING_CAPACITY_ALARM) &&
(IoBuffer->Command <= BAT_SERIAL_NUMBER)) {
// ReadWord Commands
if (OutputLen == sizeof(SMBBATT_DATA_STRUCT)) {
tempFlags = SmbBatt->Info.Valid;
SmbBatt->Info.Valid |= VALID_TAG_DATA;
SmbBattRW(SmbBatt, IoBuffer->Command, &IoBuffer->Data.Ulong);
if (SmbBatt->Info.Valid & VALID_TAG_DATA) {
ReturnBufferLength = sizeof(ULONG);
} else {
status = STATUS_DATA_ERROR;
}
SmbBatt->Info.Valid = tempFlags;
} else {
status = STATUS_INVALID_BUFFER_SIZE;
}
} else if ((IoBuffer->Command >= BAT_MANUFACTURER_NAME) &&
(IoBuffer->Command <= BAT_MANUFACTURER_DATA)) {
// ReadBlock Commands
if (OutputLen == (SMBBATT_DATA_STRUCT_SIZE)+(SMB_MAX_DATA_SIZE*2)) {
memset (&IoBuffer->Data.Block[0], 0, (SMB_MAX_DATA_SIZE*2));
unicodeString.Buffer = &IoBuffer->Data.Block[0];
unicodeString.MaximumLength = SMB_MAX_DATA_SIZE*2;
unicodeString.Length = 0;
memset (strBuffer, 0, sizeof(strBuffer));
memset (strBuffer2, 0, sizeof(strBuffer2));
do {
SmbBattRB (
SmbBatt,
IoBuffer->Command,
strBuffer,
&strLength
);
SmbBattRB (
SmbBatt,
IoBuffer->Command,
strBuffer2,
&strLength
);
} while (strcmp (strBuffer, strBuffer2));
RtlInitAnsiString (&ansiString, strBuffer);
RtlAnsiStringToUnicodeString (&unicodeString, &ansiString, FALSE);
ReturnBufferLength = unicodeString.Length;
} else {
status = STATUS_INVALID_BUFFER_SIZE;
}
} else {
// Unsupported Commands
status = STATUS_INVALID_PARAMETER;
}
}
}
SmbBattResetSelectorComm (SmbBatt, oldSelectorState);
SmbBattUnlockDevice (SmbBatt);
SmbBattUnlockSelector (SmbBatt->Selector);
} else if (DeviceExtension->SmbBattFdoType == SmbTypeSubsystem) {
// This is a battery subsystem
SubsystemExt = (PSMB_BATT_SUBSYSTEM) DeviceExtension;
SmbBattLockSelector (SubsystemExt->Selector);
if ((InputLen >= sizeof(SMBBATT_DATA_STRUCT)) && (OutputLen == 0)) {
// This is a write command
status = STATUS_NOT_IMPLEMENTED;
} else if ((InputLen == sizeof(SMBBATT_DATA_STRUCT)) && (OutputLen > 0)){
// This is a Read command
switch (IoBuffer->Address) {
case SMB_SELECTOR_ADDRESS:
//
// We have to do some translation for selector requests depending
// on whether the selector is stand alone or implemented in the
// charger.
//
if ((SubsystemExt->SelectorPresent) && (SubsystemExt->Selector)) {
address = SubsystemExt->Selector->SelectorAddress;
command = IoBuffer->Command;
// Map to Charger if Selector is implemented in the Charger
if (address == SMB_CHARGER_ADDRESS) {
switch (command) {
case SELECTOR_SELECTOR_STATE:
case SELECTOR_SELECTOR_PRESETS:
case SELECTOR_SELECTOR_INFO:
command |= CHARGER_SELECTOR_COMMANDS;
break;
default:
status = STATUS_NOT_SUPPORTED;
break;
}
}
} else {
status = STATUS_NO_SUCH_DEVICE;
}
break;
case SMB_CHARGER_ADDRESS:
//
// For this one we currently only support the ChargerStatus and
// ChargerSpecInfo commands.
//
// Other commands are not currently supported.
//
address = IoBuffer->Address;
switch (IoBuffer->Command) {
case CHARGER_SPEC_INFO:
case CHARGER_STATUS:
command = IoBuffer->Command;
break;
default:
status = STATUS_NOT_SUPPORTED;
break;
}
break;
default:
status = STATUS_NOT_SUPPORTED;
break;
} // switch (readStruct->Address)
if (status == STATUS_SUCCESS) {
//
// Do the read command
//
smbStatus = SmbBattGenericRW (
SubsystemExt->SmbHcFdo,
address,
command,
&IoBuffer->Data.Ulong
);
if (smbStatus != SMB_STATUS_OK) {
BattPrint (
BAT_ERROR,
("SmbBattDirectDataAccess: Couldn't read from - %x, status - %x\n",
address,
smbStatus)
);
status = STATUS_UNSUCCESSFUL;
}
}
}
SmbBattUnlockSelector (SubsystemExt->Selector);
} else {
status=STATUS_INVALID_DEVICE_REQUEST;
BattPrint (
BAT_ERROR,
("SmbBattDirectDataAccess: Invalid SmbBattFdoType")
);
}
return status;
}
UCHAR
SmbBattIndex (
IN PBATTERY_SELECTOR Selector,
IN ULONG SelectorNibble,
IN UCHAR SimultaneousIndex
)
/*++
Routine Description:
This routine is provided as a helper routine to determine which
battery is selected in a given selector nibble, based on the number
of batteries supported in the system.
Arguments:
Selector - Structure defining selector address and commands
SelectorNibble - The nibble of the SelectorState, moved to the low
order 4 bits, to check reverse logic on.
SimultaneousIndex - Which batteryindex is requested in simultaneous-
battery situations (0, 1, or 2)
Return Value:
BatteryIndex = 0 - Battery A
1 - Battery B
2 - Battery C
3 - Battery D
FF - No Battery
--*/
{
UCHAR batteryIndex;
PAGED_CODE();
// Assume if SelectorInfo supports 4 batteries, use SelectorBits4 table
if (Selector->SelectorInfo & BATTERY_D_PRESENT) {
batteryIndex = SelectorBits4[SelectorNibble].BatteryIndex;
} else {
batteryIndex = SelectorBits[SelectorNibble].BatteryIndex;
}
// If it's valid
if (batteryIndex != BATTERY_NONE) {
// return index for First Battery
if (SimultaneousIndex == 0) {
return (batteryIndex & 3);
// return index for Second Battery
} else if (SimultaneousIndex == 1) {
batteryIndex = (batteryIndex >> 2) & 3;
if (batteryIndex != BATTERY_A) {
return (batteryIndex);
}
// return index for Third Battery
} else if (SimultaneousIndex == 2) {
batteryIndex = (batteryIndex >> 2) & 3;
if (batteryIndex != BATTERY_A) {
return (batteryIndex);
}
}
}
// return no battery index
return (BATTERY_NONE);
}
BOOLEAN
SmbBattReverseLogic (
IN PBATTERY_SELECTOR Selector,
IN ULONG SelectorNibble
)
/*++
Routine Description:
This routine is provided as a helper routine to determine the reverse
logic on a given selector nibble, based on the number of batteries
supported in the system.
Arguments:
Selector - Structure defining selector address and commands
SelectorNibble - The nibble of the SelectorState, moved to the low
order 4 bits, to check reverse logic on.
Return Value:
FALSE if the nibble is normal
TRUE if the nibble is inverted
--*/
{
PAGED_CODE();
// Assume if SelectorInfo supports 4 batteries, use SelectorBits4 table
if (Selector->SelectorInfo & BATTERY_D_PRESENT) {
return (SelectorBits4[SelectorNibble].ReverseLogic);
} else {
return (SelectorBits[SelectorNibble].ReverseLogic);
}
}
NTSTATUS
SmbBattAcquireGlobalLock (
IN PDEVICE_OBJECT LowerDeviceObject,
OUT PACPI_MANIPULATE_GLOBAL_LOCK_BUFFER GlobalLock
)
/*++
Routine Description:
Call ACPI driver to obtain the global lock
Note: This routine can be called at dispatch level
Arguments:
LowerDeviceObject - The FDO to pass the request to.
Return Value:
Return Value from IOCTL.
--*/
{
NTSTATUS status;
PIRP irp;
PIO_STACK_LOCATION irpSp;
KEVENT event;
BattPrint (BAT_TRACE, ("SmbBattAcquireGlobalLock: Entering\n"));
//
// We wish to acquire the lock
//
GlobalLock->Signature = ACPI_ACQUIRE_GLOBAL_LOCK_SIGNATURE;
GlobalLock->LockObject = NULL;
//
// setup the irp
//
KeInitializeEvent(&event, NotificationEvent, FALSE);
irp = IoAllocateIrp (LowerDeviceObject->StackSize, FALSE);
if (!irp) {
return STATUS_INSUFFICIENT_RESOURCES;
}
irpSp = IoGetNextIrpStackLocation(irp);
irpSp->MajorFunction = IRP_MJ_DEVICE_CONTROL;
irpSp->Parameters.DeviceIoControl.IoControlCode = IOCTL_ACPI_ACQUIRE_GLOBAL_LOCK;
irpSp->Parameters.DeviceIoControl.InputBufferLength = sizeof(ACPI_MANIPULATE_GLOBAL_LOCK_BUFFER);
irpSp->Parameters.DeviceIoControl.OutputBufferLength = sizeof(ACPI_MANIPULATE_GLOBAL_LOCK_BUFFER);
irp->AssociatedIrp.SystemBuffer = GlobalLock;
IoSetCompletionRoutine (irp, SmbBattSynchronousRequest, &event, TRUE, TRUE, TRUE);
//
// Send to ACPI driver
//
IoCallDriver (LowerDeviceObject, irp);
KeWaitForSingleObject(&event, Executive, KernelMode, FALSE, NULL);
status = irp->IoStatus.Status;
IoFreeIrp (irp);
if (!NT_SUCCESS(status)) {
BattPrint(
BAT_ERROR,
("SmbBattAcquireGlobalLock: Acquire Lock failed, status = %08x\n",
status )
);
DbgBreakPoint ();
}
BattPrint (BAT_TRACE, ("SmbBattAcquireGlobalLock: Returning %x\n", status));
return status;
}
NTSTATUS
SmbBattReleaseGlobalLock (
IN PDEVICE_OBJECT LowerDeviceObject,
IN PACPI_MANIPULATE_GLOBAL_LOCK_BUFFER GlobalLock
)
/*++
Routine Description:
Call ACPI driver to release the global lock
Arguments:
LowerDeviceObject - The FDO to pass the request to.
Return Value:
Return Value from IOCTL.
--*/
{
NTSTATUS status;
PIRP irp;
PIO_STACK_LOCATION irpSp;
KEVENT event;
BattPrint (BAT_TRACE, ("SmbBattReleaseGlobalLock: Entering\n"));
//
// We wish to acquire the lock
//
GlobalLock->Signature = ACPI_RELEASE_GLOBAL_LOCK_SIGNATURE;
//
// setup the irp
//
KeInitializeEvent(&event, NotificationEvent, FALSE);
irp = IoAllocateIrp (LowerDeviceObject->StackSize, FALSE);
if (!irp) {
return STATUS_INSUFFICIENT_RESOURCES;
}
irpSp = IoGetNextIrpStackLocation(irp);
irpSp->MajorFunction = IRP_MJ_DEVICE_CONTROL;
irpSp->Parameters.DeviceIoControl.IoControlCode = IOCTL_ACPI_RELEASE_GLOBAL_LOCK;
irpSp->Parameters.DeviceIoControl.InputBufferLength = sizeof(ACPI_MANIPULATE_GLOBAL_LOCK_BUFFER);
irpSp->Parameters.DeviceIoControl.OutputBufferLength = sizeof(ACPI_MANIPULATE_GLOBAL_LOCK_BUFFER);
irp->AssociatedIrp.SystemBuffer = GlobalLock;
IoSetCompletionRoutine (irp, SmbBattSynchronousRequest, &event, TRUE, TRUE, TRUE);
//
// Send to ACPI driver
//
IoCallDriver (LowerDeviceObject, irp);
KeWaitForSingleObject(&event, Executive, KernelMode, FALSE, NULL);
status = irp->IoStatus.Status;
IoFreeIrp (irp);
if (!NT_SUCCESS(status)) {
BattPrint(
BAT_ERROR,
("SmbBattReleaseGlobalLock: Acquire Lock failed, status = %08x\n",
status )
);
}
BattPrint (BAT_TRACE, ("SmbBattReleaseGlobalLock: Returning %x\n", status));
return status;
}