windows-nt/Source/XPSP1/NT/base/crts/fpw32/tran/tanh.c

108 lines
2.7 KiB
C
Raw Normal View History

2020-09-26 03:20:57 -05:00
/***
*tanh.c - hyperbolic tangent
*
* Copyright (c) 1991-2001, Microsoft Corporation. All rights reserved.
*
*Purpose:
*
*Revision History:
* 8-15-91 GDP written
* 12-22-91 GDP support IEEE exceptions
* 06-23-92 GDP tanh(denormal) now raises underflow exception (NCEG)
* 02-06-95 JWM Mac merge
* 05-17-99 PML Remove all Macintosh support.
*
*******************************************************************************/
#include <math.h>
#include <trans.h>
/* constants */
static double const EPS = 5.16987882845642297e-26; /* 2^(-53) / 2 */
static double const XBIG = 1.90615474653984960096e+001; /* ln(2)(53+2)/2 */
static double const C0 = 0.54930614433405484570; /* ln(3)/2 */
/* constants for rational approximation */
static double const p0 = -0.16134119023996228053e+4;
static double const p1 = -0.99225929672236083313e+2;
static double const p2 = -0.96437492777225469787e+0;
static double const q0 = 0.48402357071988688686e+4;
static double const q1 = 0.22337720718962312926e+4;
static double const q2 = 0.11274474380534949335e+3;
static double const q3 = 0.10000000000000000000e+1;
#define Q(g) ((((g) + q2) * (g) + q1) * (g) + q0)
#define R(g) ((((p2 * (g) + p1) * (g) + p0) * (g)) / Q(g))
#if !defined(_M_PPC) && !defined(_M_AMD64)
#pragma function(tanh)
#endif
/***
*double tanh(double x) - hyperbolic tangent
*
*Purpose:
* Compute the hyperbolic tangent of a number.
* The algorithm (reduction / rational approximation) is
* taken from Cody & Waite.
*
*Entry:
*
*Exit:
*
*Exceptions:
* I P
*******************************************************************************/
double tanh(double x)
{
uintptr_t savedcw;
double f,g;
double result;
/* save user fp control word */
savedcw = _maskfp();
if (IS_D_SPECIAL(x)){
switch(_sptype(x)) {
case T_PINF:
RETURN(savedcw,1.0);
case T_NINF:
RETURN(savedcw,-1.0);
case T_QNAN:
return _handle_qnan1(OP_TANH, x, savedcw);
default: //T_SNAN
return _except1(FP_I,OP_TANH,x,_s2qnan(x),savedcw);
}
}
if (x == 0.0) {
// no precision exception
RETURN(savedcw,x);
}
f = ABS(x);
if (f > XBIG) {
result = 1;
}
else if (f > C0) {
result = 0.5 - 1.0 / (exp(f+f) + 1.0);
result = result + result;
}
else if (f < EPS) {
result = f;
if (IS_D_DENORM(result)) {
return _except1(FP_U | FP_P,OP_TANH,x,_add_exp(x, IEEE_ADJUST),savedcw);
}
}
else {
g = f * f;
result = f + f * R(g);
}
if (x < 0)
result = -result;
RETURN_INEXACT1(OP_TANH,x,result,savedcw);
}