windows-nt/Source/XPSP1/NT/base/subsys/sm/sfc/dll/btree.c

640 lines
18 KiB
C
Raw Normal View History

2020-09-26 03:20:57 -05:00
/*++
Copyright (c) 1999 Microsoft Corporation
Module Name:
btree.c
Abstract:
Implementation of red-black binary tree insertion, deletion, and search.
This algorithm efficiently guarantees that the tree depth will never exceed
2*Lg(N), so a one million node tree would have a worst case depth of 40.
This insertion implementation is non-recursive and very efficient (the
average insertion speed is less than twice the average search speed).
Author:
Tom McGuire (tommcg) 1-Jan-1998
Wesley Witt (wesw) 18-Dec-1998
Revision History:
Tom McGuire (tommcg) 13-Apr-2000 fixed hash collision search bug
--*/
#include "sfcp.h"
#pragma hdrstop
//
// Rather than storing NULL links as NULL, we point NULL links to a special
// "Empty" node which is always black and its children links point to itself.
// We do this to simplify the color testing for children and grandchildren
// such that any link can be dereferenced and even double-dereferenced without
// explicitly checking for NULL. The empty node must be colored black.
//
const NAME_NODE NameRbEmptyNode = { RBNIL, RBNIL };
const DWORD_NODE EmptyNode = { NODE_NIL, NODE_NIL };
VOID
BtreeInit(
IN OUT PNAME_TREE Tree
)
{
Tree->Root = RBNIL;
}
PNAME_NODE
BtreeFind(
IN PNAME_TREE Tree,
IN LPCWSTR Name,
IN DWORD NameLength
)
{
PNAME_NODE Node;
ULONG Hash;
HASH_DYN_CONVERT_KEY( Name, (NameLength/sizeof(WCHAR)), &Hash );
Node = Tree->Root;
while ( Node != RBNIL ) {
if ( Hash < Node->Hash ) {
Node = Node->Left;
}
else if ( Hash > Node->Hash ) {
Node = Node->Right;
}
else { // hashes equal, compare lengths
if ( NameLength < Node->NameLength ) {
Node = Node->Left;
}
else if ( NameLength > Node->NameLength ) {
Node = Node->Right;
}
else { // hashes and lengths equal, compare strings
int Compare = memcmp( Name, Node->Name, NameLength );
if ( Compare == 0 ) {
return Node;
}
else if ( Compare < 0 ) {
Node = Node->Left;
}
else {
Node = Node->Right;
}
}
}
}
return NULL;
}
PNAME_NODE
BtreeInsert(
IN OUT PNAME_TREE Tree,
IN LPCWSTR Name,
IN DWORD NameLength
)
{
PNAME_NODE * Stack[ MAX_DEPTH ];
PNAME_NODE **StackPointer = Stack;
PNAME_NODE * Link;
PNAME_NODE Node;
PNAME_NODE Sibling;
PNAME_NODE Parent;
PNAME_NODE Child;
PNAME_NODE NewNode;
ULONG Hash;
HASH_DYN_CONVERT_KEY( Name, (NameLength/sizeof(WCHAR)), &Hash );
*StackPointer++ = &Tree->Root;
Node = Tree->Root;
//
// Walk down the tree to find either an existing node with the same key
// (in which case we simply return) or the insertion point for the new
// node. At each traversal we need to store the address of the link to
// the next node so we can retrace the traversal path for balancing.
// The speed of insertion is highly dependent on traversing the tree
// quickly, so all balancing operations are deferred until after the
// traversal is complete.
//
// Implementation Note: The compiler is smart enough to collapse each
// of the three following "go left" and "go right" clauses into single
// "go left" and "go right" instruction sequences, so the code remains
// verbose for clarity.
//
while ( Node != RBNIL ) {
if ( Hash < Node->Hash ) {
*StackPointer++ = &Node->Left;
Node = Node->Left;
}
else if ( Hash > Node->Hash ) {
*StackPointer++ = &Node->Right;
Node = Node->Right;
}
else { // hashes equal, compare lengths
if ( NameLength < Node->NameLength ) {
*StackPointer++ = &Node->Left;
Node = Node->Left;
}
else if ( NameLength > Node->NameLength ) {
*StackPointer++ = &Node->Right;
Node = Node->Right;
}
else { // lengths equal, compare strings
int Compare = memcmp( Name, Node->Name, NameLength );
if ( Compare == 0 ) {
return Node;
}
else if ( Compare < 0 ) {
*StackPointer++ = &Node->Left;
Node = Node->Left;
}
else {
*StackPointer++ = &Node->Right;
Node = Node->Right;
}
}
}
}
//
// Didn't find a matching entry, so allocate a new node and add it
// to the tree. Note that we're not allocating space for a terminator
// for the name data since we store the length of the name in the node.
//
NewNode = MemAlloc( sizeof(NAME_NODE)+NameLength );
if ( NewNode == NULL ) {
return NULL;
}
NewNode->Left = RBNIL;
NewNode->Right = RBNIL;
NewNode->Hash = Hash;
NewNode->NameLengthAndColorBit = NameLength | 0x80000000; // MARK_RED
memcpy( NewNode->Name, Name, NameLength );
//
// Insert new node under last link we traversed. The top of the stack
// contains the address of the last link we traversed.
//
Link = *( --StackPointer );
*Link = NewNode;
//
// Now walk back up the traversal chain to see if any balancing is
// needed. This terminates in one of three ways: we walk all the way
// up to the root (StackPointer == Stack), or find a black node that
// we don't need to change (no balancing needs to be done above a
// black node), or we perform a balancing rotation (only one necessary).
//
Node = NewNode;
Child = RBNIL;
while ( StackPointer > Stack ) {
Link = *( --StackPointer );
Parent = *Link;
//
// Node is always red here.
//
if ( IS_BLACK( Parent )) {
Sibling = ( Parent->Left == Node ) ? Parent->Right : Parent->Left;
if ( IS_RED( Sibling )) {
//
// Both Node and its Sibling are red, so change them both to
// black and make the Parent red. This essentially moves the
// red link up the tree so balancing can be performed at a
// higher level.
//
// Pb Pr
// / \ ----> / \
// Cr Sr Cb Sb
//
MARK_BLACK( Sibling );
MARK_BLACK( Node );
MARK_RED( Parent );
}
else {
//
// This is a terminal case. The Parent is black, and it's
// not going to be changed to red. If the Node's child is
// red, we perform an appropriate rotation to balance the
// tree. If the Node's child is black, we're done.
//
if ( IS_RED( Child )) {
if ( Node->Left == Child ) {
if ( Parent->Left == Node ) {
//
// Pb Nb
// / \ / \
// Nr Z to Cr Pr
// / \ / \
// Cr Y Y Z
//
MARK_RED( Parent );
Parent->Left = Node->Right;
Node->Right = Parent;
MARK_BLACK( Node );
*Link = Node;
}
else {
//
// Pb Cb
// / \ / \
// W Nr to Pr Nr
// / \ / \ / \
// Cr Z W X Y Z
// / \
// X Y
//
MARK_RED( Parent );
Parent->Right = Child->Left;
Child->Left = Parent;
Node->Left = Child->Right;
Child->Right = Node;
MARK_BLACK( Child );
*Link = Child;
}
}
else {
if ( Parent->Right == Node ) {
MARK_RED( Parent );
Parent->Right = Node->Left;
Node->Left = Parent;
MARK_BLACK( Node );
*Link = Node;
}
else {
MARK_RED( Parent );
Parent->Left = Child->Right;
Child->Right = Parent;
Node->Right = Child->Left;
Child->Left = Node;
MARK_BLACK( Child );
*Link = Child;
}
}
}
return NewNode;
}
}
Child = Node;
Node = Parent;
}
//
// We bubbled red up to the root -- restore it to black.
//
MARK_BLACK( Tree->Root );
return NewNode;
}
VOID
TreeInit(
OUT PDWORD_TREE Tree
)
{
Tree->Root = NODE_NIL;
}
DWORD_CONTEXT
TreeFind(
IN PDWORD_TREE Tree,
IN ULONG Key
)
{
PDWORD_NODE Node;
ASSERT(Tree != NULL);
ASSERT(Key < (1 << 31));
Node = Tree->Root;
while ( Node != NODE_NIL ) {
if ( Key < Node->Key ) {
Node = Node->Left;
}
else if ( Key > Node->Key ) {
Node = Node->Right;
}
else {
return (DWORD_CONTEXT) Node->Context;
}
}
return NULL;
}
DWORD_CONTEXT
TreeInsert(
IN OUT PDWORD_TREE Tree,
IN ULONG Key,
IN DWORD_CONTEXT Context,
IN ULONG ContextSize
)
{
PDWORD_NODE * Stack[ MAX_DEPTH ];
PDWORD_NODE **StackPointer = Stack;
PDWORD_NODE * Link;
PDWORD_NODE Node;
PDWORD_NODE Sibling;
PDWORD_NODE Parent;
PDWORD_NODE Child;
PDWORD_NODE NewNode;
ASSERT(Tree != NULL && Context != NULL && ContextSize != 0);
ASSERT(Key < (1 << 31));
*StackPointer++ = &Tree->Root;
Node = Tree->Root;
//
// Walk down the tree to find either an existing node with the same key
// (in which case we simply return) or the insertion point for the new
// node. At each traversal we need to store the address of the link to
// the next node so we can retrace the traversal path for balancing.
// The speed of insertion is highly dependent on traversing the tree
// quickly, so all balancing operations are deferred until after the
// traversal is complete.
//
// Implementation Note: The compiler is smart enough to collapse each
// of the three following "go left" and "go right" clauses into single
// "go left" and "go right" instruction sequences, so the code remains
// verbose for clarity.
//
while ( Node != NODE_NIL ) {
if ( Key < Node->Key ) {
*StackPointer++ = &Node->Left;
Node = Node->Left;
}
else if ( Key > Node->Key ) {
*StackPointer++ = &Node->Right;
Node = Node->Right;
}
else {
return (DWORD_CONTEXT) Node->Context;
}
}
//
// Didn't find a matching entry, so allocate a new node and add it
// to the tree. Note that we're not allocating space for a terminator
// for the name data since we store the length of the name in the node.
//
NewNode = MemAlloc( sizeof(DWORD_NODE) + ContextSize);
if ( NewNode == NULL ) {
return NULL;
}
NewNode->Left = NODE_NIL;
NewNode->Right = NODE_NIL;
NewNode->Key = Key;
MARK_RED(NewNode);
memcpy( NewNode->Context, Context, ContextSize );
//
// Insert new node under last link we traversed. The top of the stack
// contains the address of the last link we traversed.
//
Link = *( --StackPointer );
*Link = NewNode;
//
// Now walk back up the traversal chain to see if any balancing is
// needed. This terminates in one of three ways: we walk all the way
// up to the root (StackPointer == Stack), or find a black node that
// we don't need to change (no balancing needs to be done above a
// black node), or we perform a balancing rotation (only one necessary).
//
Node = NewNode;
Child = NODE_NIL;
while ( StackPointer > Stack ) {
Link = *( --StackPointer );
Parent = *Link;
//
// Node is always red here.
//
if ( IS_BLACK( Parent )) {
Sibling = ( Parent->Left == Node ) ? Parent->Right : Parent->Left;
if ( IS_RED( Sibling )) {
//
// Both Node and its Sibling are red, so change them both to
// black and make the Parent red. This essentially moves the
// red link up the tree so balancing can be performed at a
// higher level.
//
// Pb Pr
// / \ ----> / \
// Cr Sr Cb Sb
//
MARK_BLACK( Sibling );
MARK_BLACK( Node );
MARK_RED( Parent );
}
else {
//
// This is a terminal case. The Parent is black, and it's
// not going to be changed to red. If the Node's child is
// red, we perform an appropriate rotation to balance the
// tree. If the Node's child is black, we're done.
//
if ( IS_RED( Child )) {
if ( Node->Left == Child ) {
if ( Parent->Left == Node ) {
//
// Pb Nb
// / \ / \
// Nr Z to Cr Pr
// / \ / \
// Cr Y Y Z
//
MARK_RED( Parent );
Parent->Left = Node->Right;
Node->Right = Parent;
MARK_BLACK( Node );
*Link = Node;
}
else {
//
// Pb Cb
// / \ / \
// W Nr to Pr Nr
// / \ / \ / \
// Cr Z W X Y Z
// / \
// X Y
//
MARK_RED( Parent );
Parent->Right = Child->Left;
Child->Left = Parent;
Node->Left = Child->Right;
Child->Right = Node;
MARK_BLACK( Child );
*Link = Child;
}
}
else {
if ( Parent->Right == Node ) {
MARK_RED( Parent );
Parent->Right = Node->Left;
Node->Left = Parent;
MARK_BLACK( Node );
*Link = Node;
}
else {
MARK_RED( Parent );
Parent->Left = Child->Right;
Child->Right = Parent;
Node->Right = Child->Left;
Child->Left = Node;
MARK_BLACK( Child );
*Link = Child;
}
}
}
return (DWORD_CONTEXT) NewNode->Context;
}
}
Child = Node;
Node = Parent;
}
//
// We bubbled red up to the root -- restore it to black.
//
MARK_BLACK( Tree->Root );
return (DWORD_CONTEXT) NewNode->Context;
}
VOID
TreeDestroy(
IN OUT PDWORD_TREE Tree
)
//
// We walk the tree left first, then right, until we find a leaf. We delete the leaf and continue
// our walking to the right of the parent since we must've been to the parent's left before
//
{
PDWORD_NODE * Stack[ MAX_DEPTH ];
PDWORD_NODE **StackPointer;
PDWORD_NODE Node;
if(NODE_NIL == Tree->Root)
return;
StackPointer = Stack;
*StackPointer = &Tree->Root;
lTryLeft:
Node = **StackPointer;
if(Node->Left != NODE_NIL)
{
*++StackPointer = &Node->Left;
goto lTryLeft;
}
lTryRight:
if(Node->Right != NODE_NIL)
{
*++StackPointer = &Node->Right;
goto lTryLeft;
}
MemFree(Node);
**StackPointer = NODE_NIL;
if(StackPointer > Stack) // this is true if the current node is not the root
{
Node = **--StackPointer;
goto lTryRight;
}
}