windows-nt/Source/XPSP1/NT/base/subsys/sm/sfc/dll/btree.h

164 lines
3.6 KiB
C
Raw Normal View History

2020-09-26 03:20:57 -05:00
/*++
Copyright (c) 1999 Microsoft Corporation
Module Name:
btree.h
Abstract:
Prototypes and node structure definition for red-black binary trees.
See btree.c for details and implementation.
Author:
Tom McGuire (tommcg) 1-Jan-1998
Wesley Witt (wesw) 18-Dec-1998
Revision History:
--*/
#ifndef _BTREE_H_
#define _BTREE_H_
#pragma warning( disable: 4200 ) // zero-sized array in struct/union
typedef struct _NAME_NODE NAME_NODE, *PNAME_NODE;
typedef struct _NAME_TREE NAME_TREE, *PNAME_TREE;
struct _NAME_NODE {
PNAME_NODE Left;
PNAME_NODE Right;
ULONG Hash;
union {
ULONG NameLengthAndColorBit;
struct {
ULONG NameLength:31;
ULONG Red:1;
};
};
PVOID Context;
CHAR Name[ 0 ];
};
struct _NAME_TREE {
PNAME_NODE Root;
};
#define RBNIL ((PNAME_NODE)&NameRbEmptyNode)
extern const NAME_NODE NameRbEmptyNode;
typedef struct _DWORD_NODE DWORD_NODE, *PDWORD_NODE;
typedef struct _DWORD_TREE DWORD_TREE, *PDWORD_TREE;
typedef LPCVOID DWORD_CONTEXT;
struct _DWORD_NODE {
PDWORD_NODE Left;
PDWORD_NODE Right;
struct {
ULONG Key:31;
ULONG Red:1;
};
INT_PTR Context[0]; // everything that goes into Context is guaranteed to be aligned on a machine-word boundary
};
struct _DWORD_TREE {
PDWORD_NODE Root;
};
#define NODE_NIL ((PDWORD_NODE) &EmptyNode)
extern const DWORD_NODE EmptyNode;
//
// Although "Red" can be stored in its own 1-byte or 4-byte field, keeping the
// nodes smaller by encoding "Red" as a one-bit field with another value
// provides better performance (more nodes tend to stay in the cache). To
// provide flexibility in storage of the RED property, all references to RED
// and BLACK are made through the following macros which can be changed as
// necessary:
//
#define IS_RED( Node ) ( (Node)->Red )
#define IS_BLACK( Node ) ( ! (Node)->Red )
#define MARK_RED( Node ) ( (Node)->Red = 1 )
#define MARK_BLACK( Node ) ( (Node)->Red = 0 )
//
// The maximum tree depth is 2*Lg(N). Since we could never have more than
// 2^X nodes with X-bit pointers, we can safely say the absolute maximum
// depth will be 2*Lg(2^X) which is 2*X. The size of a pointer in bits is
// its size in bytes times 8 bits, so 2*(sizeof(p)*8) is our maximum depth.
// So for 32-bit pointers, our maximum depth is 64.
//
// If you know the maximum possible number of nodes in advance (like the size
// of the address space divided by the size of a node), you can tweak this
// value a bit smaller to 2*Lg(N). Note that it's important for this max
// depth be evalutated to a constant value at compile time.
//
// For this implementation, we'll assume the maximum number of nodes is
// 1 million, so the max depth is 40 (2*Lg(2^20)). Note that no runtime
// checks are made to ensure we don't exceed this number.
//
#define MAX_DEPTH 40
//
// The following prototypes are the red-black tree interface.
//
VOID
BtreeInit(
IN OUT PNAME_TREE Tree
);
PNAME_NODE
BtreeInsert(
IN OUT PNAME_TREE Tree,
IN LPCWSTR Name,
IN DWORD NameLength // in bytes, NOT characters
);
PNAME_NODE
BtreeFind(
IN PNAME_TREE Tree,
IN LPCWSTR Name,
IN DWORD NameLength // in bytes, NOT characters
);
VOID
TreeInit(
OUT PDWORD_TREE Tree
);
DWORD_CONTEXT
TreeFind(
IN PDWORD_TREE Tree,
IN ULONG Key
);
DWORD_CONTEXT
TreeInsert(
IN OUT PDWORD_TREE Tree,
IN ULONG Key,
IN DWORD_CONTEXT Context,
IN ULONG ContextSize
);
VOID
TreeDestroy(
IN OUT PDWORD_TREE Tree
);
#endif // _BTREE_H_