windows-nt/Source/XPSP1/NT/drivers/video/matrox/mga/disp/fastfill.c

1312 lines
40 KiB
C
Raw Normal View History

2020-09-26 03:20:57 -05:00
/******************************Module*Header*******************************\
* Module Name: fastfill.c
*
* Draws fast convex rectangles.
*
* Copyright (c) 1993-1996 Microsoft Corporation
* Copyright (c) 1993-1996 Matrox Electronic Systems, Ltd.
\**************************************************************************/
#include "precomp.h"
#define RIGHT 0
#define LEFT 1
typedef struct _TRAPEZOIDDATA TRAPEZOIDDATA; // Handy forward declaration
typedef VOID (FNTRAPEZOID)(TRAPEZOIDDATA*, LONG, LONG);
// Prototype for trapezoid
// drawing routines
typedef struct _EDGEDATA {
LONG x; // Current x position
LONG dx; // # pixels to advance x on each scan
LONG lError; // Current DDA error
LONG lErrorUp; // DDA error increment on each scan
LONG dN; // Signed delta-y in fixed point form (also known
// as the DDA error adjustment, and used to be
// called 'lErrorDown')
LONG dM; // Signed delta-x in fixed point form
POINTFIX* pptfx; // Points to start of current edge
LONG dptfx; // Delta (in bytes) from pptfx to next point
LONG cy; // Number of scans to go for this edge
LONG bNew; // Set to TRUE when a new DDA must be started
// for the edge.
} EDGEDATA; /* ed, ped */
typedef struct _TRAPEZOIDDATA {
FNTRAPEZOID* pfnTrap; // Pointer to appropriate trapezoid drawing routine,
// or trapezoid clip routine
FNTRAPEZOID* pfnTrapClip;// Pointer to appropriate trapezoid drawing routine
// if doing clipping
PDEV* ppdev; // Pointer to PDEV
EDGEDATA aed[2]; // DDA information for both edges
POINTL ptlBrush; // Brush alignment
LONG yClipTop; // Top of clip rectangle
LONG yClipBottom;// Bottom of clip rectangle
// MGA specific stuff below here:
ULONG ulMgaSgn; // Current sign register, MGA specific
ULONG ulLinear; // Linear offset to brush in off-screen memory
} TRAPEZOIDDATA; /* td, ptd */
/******************************Public*Routine******************************\
* VOID vClipTrapezoid
*
* Clips a trapezoid.
*
* NOTE: This routine assumes that the polygon's dimensions are small
* enough that its QUOTIENT_REMAINDER calculations won't overflow.
* This means that large polygons must never make it here.
*
\**************************************************************************/
VOID vClipTrapezoid(
TRAPEZOIDDATA* ptd,
LONG yTrapTop,
LONG cyTrapezoid)
{
LONG yTrapBottom;
LONG dN;
LONG lNum;
LONG xDelta;
LONG lError;
yTrapBottom = yTrapTop + cyTrapezoid;
if (yTrapTop < ptd->yClipTop)
{
if ((ptd->aed[LEFT].bNew) &&
(yTrapBottom + ptd->aed[LEFT].cy > ptd->yClipTop))
{
dN = ptd->aed[LEFT].dN;
lNum = ptd->aed[LEFT].dM * (ptd->yClipTop - yTrapTop)
+ (ptd->aed[LEFT].lError + dN);
if (lNum >= 0)
{
QUOTIENT_REMAINDER(lNum, dN, xDelta, lError);
}
else
{
lNum = -lNum;
QUOTIENT_REMAINDER(lNum, dN, xDelta, lError);
xDelta = -xDelta;
if (lError != 0)
{
xDelta--;
lError = dN - lError;
}
}
ptd->aed[LEFT].x += xDelta;
ptd->aed[LEFT].lError = lError - dN;
}
if ((ptd->aed[RIGHT].bNew) &&
(yTrapBottom + ptd->aed[RIGHT].cy > ptd->yClipTop))
{
dN = ptd->aed[RIGHT].dN;
lNum = ptd->aed[RIGHT].dM * (ptd->yClipTop - yTrapTop)
+ (ptd->aed[RIGHT].lError + dN);
if (lNum >= 0)
{
QUOTIENT_REMAINDER(lNum, dN, xDelta, lError);
}
else
{
lNum = -lNum;
QUOTIENT_REMAINDER(lNum, dN, xDelta, lError);
xDelta = -xDelta;
if (lError != 0)
{
xDelta--;
lError = dN - lError;
}
}
ptd->aed[RIGHT].x += xDelta;
ptd->aed[RIGHT].lError = lError - dN;
}
}
// If this trapezoid vertically intersects our clip rectangle, draw it:
if ((yTrapBottom > ptd->yClipTop) &&
(yTrapTop < ptd->yClipBottom))
{
if (yTrapTop <= ptd->yClipTop)
{
yTrapTop = ptd->yClipTop;
// Have to let trapezoid drawer know that it has to load
// its DDAs for very first trapezoid drawn:
ptd->aed[RIGHT].bNew = TRUE;
ptd->aed[LEFT].bNew = TRUE;
}
if (yTrapBottom >= ptd->yClipBottom)
{
yTrapBottom = ptd->yClipBottom;
}
ptd->pfnTrapClip(ptd, yTrapTop, yTrapBottom - yTrapTop);
}
}
/******************************Public*Routine******************************\
* VOID vHardwareTrapezoid
*
* Uses the MGA's hardware trapezoid capability to draw solid or two-colour
* pattern trapezoids.
*
\**************************************************************************/
VOID vHardwareTrapezoid(
TRAPEZOIDDATA* ptd,
LONG yTrapezoid,
LONG cyTrapezoid)
{
PDEV* ppdev;
LONG dM;
LONG lError;
BYTE* pjBase;
ppdev = ptd->ppdev;
pjBase = ppdev->pjBase;
if (ptd->aed[LEFT].bNew)
{
dM = ptd->aed[LEFT].dM;
if (dM >= 0)
{
ptd->ulMgaSgn &= ~sdxl_SUB;
lError = -dM - ptd->aed[LEFT].lError - 1;
dM = -dM;
}
else
{
ptd->ulMgaSgn |= sdxl_SUB;
lError = dM + ptd->aed[LEFT].dN + ptd->aed[LEFT].lError;
}
CHECK_FIFO_SPACE(pjBase, 6);
CP_WRITE(pjBase, DWG_AR2, dM);
CP_WRITE(pjBase, DWG_AR1, lError);
CP_WRITE(pjBase, DWG_AR0, ptd->aed[LEFT].dN);
CP_WRITE(pjBase, DWG_FXLEFT, ptd->aed[LEFT].x + ppdev->xOffset);
}
if (ptd->aed[RIGHT].bNew)
{
dM = ptd->aed[RIGHT].dM;
if (dM >= 0)
{
ptd->ulMgaSgn &= ~sdxr_DEC;
lError = -dM - ptd->aed[RIGHT].lError - 1;
dM = -dM;
}
else
{
ptd->ulMgaSgn |= sdxr_DEC;
lError = dM + ptd->aed[RIGHT].dN + ptd->aed[RIGHT].lError;
}
CHECK_FIFO_SPACE(pjBase, 6);
CP_WRITE(pjBase, DWG_AR5, dM);
CP_WRITE(pjBase, DWG_AR4, lError);
CP_WRITE(pjBase, DWG_AR6, ptd->aed[RIGHT].dN);
CP_WRITE(pjBase, DWG_FXRIGHT, ptd->aed[RIGHT].x + ppdev->xOffset);
}
CP_WRITE(pjBase, DWG_SGN, ptd->ulMgaSgn);
CP_START(pjBase, DWG_LEN, cyTrapezoid);
}
/******************************Public*Routine******************************\
* VOID vMilSoftwareTrapezoid
*
* Draws a trapezoid using a software DDA.
*
\**************************************************************************/
VOID vMilSoftwareTrapezoid(
TRAPEZOIDDATA* ptd,
LONG yTrapezoid,
LONG cyTrapezoid)
{
PDEV* ppdev;
LONG xOffset;
LONG xBrush;
ULONG ulOffset;
ULONG ulLinear;
ULONG ulScan;
CHAR cFifo;
LONG lLeftError;
LONG xLeft;
LONG lRightError;
LONG xRight;
ULONG ulAr0Adj;
BYTE* pjBase;
ppdev = ptd->ppdev;
pjBase = ppdev->pjBase;
xBrush = ptd->ptlBrush.x;
ulOffset = ((yTrapezoid - ptd->ptlBrush.y) & 7) << PATTERN_PITCH_SHIFT;
ulLinear = ptd->ulLinear;
// For cjPelSize = 1, 2, 3, or 4,
// ulAr0Adj = 2, 4, 0, or 6.
if (ppdev->cjPelSize == 3)
{
ulAr0Adj = 0;
}
else
{
ulAr0Adj = (ppdev->cjPelSize + 2) & 0xfffffffe;
}
xOffset = ppdev->xOffset;
yTrapezoid += ppdev->yOffset;
// If the left and right edges are vertical, simply output as
// a rectangle.
if (((ptd->aed[LEFT].lErrorUp | ptd->aed[RIGHT].lErrorUp) == 0) &&
((ptd->aed[LEFT].dx | ptd->aed[RIGHT].dx) == 0))
{
xLeft = ptd->aed[LEFT].x + xOffset;
xRight = ptd->aed[RIGHT].x + xOffset - 1; // Inclusive of edge
if (xLeft <= xRight)
{
CHECK_FIFO_SPACE(pjBase, 4);
ulScan = ulLinear + ulOffset + ((xLeft - xBrush) & 7);
CP_WRITE(pjBase, DWG_AR3, ulScan);
if (ulAr0Adj)
{
CP_WRITE(pjBase, DWG_AR0, ((ulScan & 0xfffffff8) |
((ulScan + ulAr0Adj) & 7)));
}
else
{
CP_WRITE(pjBase, DWG_AR0, (ulScan + 7));
}
CP_WRITE(pjBase, DWG_FXBNDRY,
(xRight << bfxright_SHIFT) |
(xLeft & bfxleft_MASK));
CP_START(pjBase, DWG_YDSTLEN, (yTrapezoid << yval_SHIFT) |
(cyTrapezoid & ylength_MASK));
}
}
else
{
cFifo = 0;
lLeftError = ptd->aed[LEFT].lError;
xLeft = ptd->aed[LEFT].x + xOffset;
lRightError = ptd->aed[RIGHT].lError;
xRight = ptd->aed[RIGHT].x + xOffset - 1; // Inclusive of edge
while (TRUE)
{
/////////////////////////////////////////////////////////////////
// Run the DDAs
if (xLeft <= xRight)
{
// We get a little tricky here and try to amortize the cost of
// the read for checking the FIFO count on the MGA. Doing
// so got us a 25% win on large triangles on a P90.
cFifo -= 4;
if (cFifo < 0)
{
do
{
cFifo = GET_FIFO_SPACE(pjBase) - 4;
} while (cFifo < 0);
}
ulScan = ulLinear + ulOffset + ((xLeft - xBrush) & 7);
CP_WRITE(pjBase, DWG_AR3, ulScan);
if (ulAr0Adj)
{
CP_WRITE(pjBase, DWG_AR0, ((ulScan & 0xfffffff8) |
((ulScan + ulAr0Adj) & 7)));
}
else
{
CP_WRITE(pjBase, DWG_AR0, (ulScan + 7));
}
CP_WRITE(pjBase, DWG_FXBNDRY, (xRight << bfxright_SHIFT) |
(xLeft & bfxleft_MASK));
CP_START(pjBase, DWG_YDSTLEN, (yTrapezoid << yval_SHIFT) |
(1 & ylength_MASK));
}
ulOffset = (ulOffset + (1 << PATTERN_PITCH_SHIFT)) &
(7 << PATTERN_PITCH_SHIFT);
yTrapezoid++;
// Advance the right wall.
xRight += ptd->aed[RIGHT].dx;
lRightError += ptd->aed[RIGHT].lErrorUp;
if (lRightError >= 0)
{
lRightError -= ptd->aed[RIGHT].dN;
xRight++;
}
// Advance the left wall.
xLeft += ptd->aed[LEFT].dx;
lLeftError += ptd->aed[LEFT].lErrorUp;
if (lLeftError >= 0)
{
lLeftError -= ptd->aed[LEFT].dN;
xLeft++;
}
cyTrapezoid--;
if (cyTrapezoid == 0)
break;
}
ptd->aed[LEFT].lError = lLeftError;
ptd->aed[LEFT].x = xLeft - xOffset;
ptd->aed[RIGHT].lError = lRightError;
ptd->aed[RIGHT].x = xRight - xOffset + 1;
}
}
/******************************Public*Routine******************************\
* VOID vMilTrapezoidSetup
*
* Initialize the hardware and some state for doing trapezoids.
*
\**************************************************************************/
VOID vMilTrapezoidSetup(
PDEV* ppdev,
ULONG rop4,
ULONG iSolidColor,
RBRUSH* prb,
POINTL* pptlBrush,
TRAPEZOIDDATA* ptd,
LONG yStart, // First scan for drawing
RECTL* prclClip) // NULL if no clipping
{
ULONG ulHwMix;
ULONG ulDwg;
LONG xOffset;
LONG yOffset;
BRUSHENTRY* pbe;
BYTE* pjBase;
pjBase = ppdev->pjBase;
ptd->ppdev = ppdev;
ptd->ulMgaSgn = 0;
xOffset = ppdev->xOffset;
yOffset = ppdev->yOffset;
if ((prclClip != NULL) && (prclClip->top > yStart))
yStart = prclClip->top;
if (iSolidColor != -1)
{
// Solid fill.
ptd->pfnTrap = vHardwareTrapezoid;
CHECK_FIFO_SPACE(pjBase, 3);
if (rop4 == 0xf0f0)
{
CP_WRITE(pjBase, DWG_DWGCTL, (opcode_TRAP + atype_RPL +
solid_SOLID + bop_SRCCOPY +
transc_BG_OPAQUE));
}
else
{
ulHwMix = (rop4 & 0x03) + ((rop4 & 0x30) >> 2);
CP_WRITE(pjBase, DWG_DWGCTL, (opcode_TRAP + atype_RSTR +
solid_SOLID + (ulHwMix << 16) +
transc_BG_OPAQUE));
}
CP_WRITE(pjBase, DWG_FCOL, COLOR_REPLICATE(ppdev, iSolidColor));
CP_WRITE(pjBase, DWG_YDST, yStart + yOffset);
ppdev->HopeFlags = PATTERN_CACHE;
}
else
{
// Pattern fill.
if (prb->fl & RBRUSH_2COLOR)
{
// Monochrome brush.
ptd->pfnTrap = vHardwareTrapezoid;
if ((rop4 & 0xff) == 0xf0)
{
ulDwg = opcode_TRAP + atype_RPL + bop_SRCCOPY;
}
else
{
ulHwMix = (rop4 & 0x03) + ((rop4 & 0x30) >> 2);
ulDwg = opcode_TRAP + atype_RSTR + (ulHwMix << 16);
}
if (((rop4 >> 8) & 0xff) == (rop4 & 0xff))
{
// Normal opaque mode.
ulDwg |= transc_BG_OPAQUE;
}
else
{
// GDI guarantees us that if the foreground and background
// ROPs are different, the background rop is LEAVEALONE.
ulDwg |= transc_BG_TRANSP;
}
CHECK_FIFO_SPACE(pjBase, 9);
CP_WRITE(pjBase, DWG_DWGCTL, ulDwg);
CP_WRITE(pjBase, DWG_FCOL, COLOR_REPLICATE(ppdev, prb->ulColor[1]));
CP_WRITE(pjBase, DWG_BCOL, COLOR_REPLICATE(ppdev, prb->ulColor[0]));
CP_WRITE(pjBase, DWG_SRC0, prb->aulPattern[0]);
CP_WRITE(pjBase, DWG_SRC1, prb->aulPattern[1]);
CP_WRITE(pjBase, DWG_SRC2, prb->aulPattern[2]);
CP_WRITE(pjBase, DWG_SRC3, prb->aulPattern[3]);
CP_WRITE(pjBase, DWG_YDST, yStart + yOffset);
CP_WRITE(pjBase, DWG_SHIFT,
((-(pptlBrush->y + ppdev->yOffset) & 7) << 4) |
(-(pptlBrush->x + ppdev->xOffset) & 7));
}
else
{
// Color brush.
// We have to ensure that no other brush took our spot in
// off-screen memory.
pbe = prb->apbe[IBOARD(ppdev)];
if (pbe->prbVerify != prb)
{
// Download the brush into the cache.
if (ppdev->cjPelSize != 3)
{
vMilPatRealize(ppdev, prb);
}
else
{
vMilPatRealize24bpp(ppdev, prb);
}
pbe = prb->apbe[IBOARD(ppdev)];
}
ptd->pfnTrap = vMilSoftwareTrapezoid;
ptd->ulLinear = pbe->ulLinear;
ptd->ptlBrush = *pptlBrush;
CHECK_FIFO_SPACE(pjBase, 2);
if (rop4 == 0xf0f0) // PATCOPY
{
CP_WRITE(pjBase, DWG_DWGCTL, (opcode_BITBLT + atype_RPL +
sgnzero_ZERO + shftzero_ZERO +
bop_SRCCOPY + bltmod_BFCOL +
pattern_ON + transc_BG_OPAQUE));
}
else
{
ulHwMix = (rop4 & 0x03) + ((rop4 & 0x30) >> 2);
CP_WRITE(pjBase, DWG_DWGCTL, (opcode_BITBLT + atype_RSTR +
sgnzero_ZERO + shftzero_ZERO +
(ulHwMix << 16) +
bltmod_BFCOL + pattern_ON +
transc_BG_OPAQUE));
}
CP_WRITE(pjBase, DWG_AR5, PATTERN_PITCH);
}
ppdev->HopeFlags = 0;
}
if (prclClip != NULL)
{
ptd->pfnTrapClip = ptd->pfnTrap;
ptd->pfnTrap = vClipTrapezoid;
ptd->yClipTop = prclClip->top;
ptd->yClipBottom = prclClip->bottom;
CHECK_FIFO_SPACE(pjBase, 2);
CP_WRITE(pjBase, DWG_CXLEFT, prclClip->left + xOffset);
CP_WRITE(pjBase, DWG_CXRIGHT, prclClip->right + xOffset - 1);
}
}
/******************************Public*Routine******************************\
* VOID vMgaSoftwareTrapezoid
*
* Draws a trapezoid using a software DDA.
*
\**************************************************************************/
VOID vMgaSoftwareTrapezoid(
TRAPEZOIDDATA* ptd,
LONG yTrapezoid,
LONG cyTrapezoid)
{
PDEV* ppdev;
BYTE* pjBase;
LONG xOffset;
LONG xBrush;
ULONG ulOffset;
ULONG ulLinear;
ULONG ulScan;
CHAR cFifo;
LONG lLeftError;
LONG xLeft;
LONG lRightError;
LONG xRight;
ppdev = ptd->ppdev;
pjBase = ppdev->pjBase;
xBrush = ptd->ptlBrush.x;
ulOffset = ((yTrapezoid - ptd->ptlBrush.y) & 7) << 5;
ulLinear = ptd->ulLinear;
xOffset = ppdev->xOffset;
yTrapezoid += ppdev->yOffset;
// If the left and right edges are vertical, simply output as
// a rectangle:
if (((ptd->aed[LEFT].lErrorUp | ptd->aed[RIGHT].lErrorUp) == 0) &&
((ptd->aed[LEFT].dx | ptd->aed[RIGHT].dx) == 0))
{
xLeft = ptd->aed[LEFT].x + xOffset;
xRight = ptd->aed[RIGHT].x + xOffset - 1; // Inclusive of edge
if (xLeft <= xRight)
{
CHECK_FIFO_SPACE(pjBase, 6);
CP_WRITE(pjBase, DWG_FXLEFT, xLeft); // xOffset already added in
CP_WRITE(pjBase, DWG_FXRIGHT, xRight);
ulScan = ulLinear + ulOffset;
CP_WRITE(pjBase, DWG_AR3, ulScan + ((xLeft - xBrush) & 7));
CP_WRITE(pjBase, DWG_AR0, ulScan + 15);
CP_WRITE(pjBase, DWG_LEN, cyTrapezoid);
CP_START(pjBase, DWG_YDST, yTrapezoid);
}
}
else
{
cFifo = 0;
lLeftError = ptd->aed[LEFT].lError;
xLeft = ptd->aed[LEFT].x + xOffset;
lRightError = ptd->aed[RIGHT].lError;
xRight = ptd->aed[RIGHT].x + xOffset - 1; // Inclusive of edge
while (TRUE)
{
/////////////////////////////////////////////////////////////////
// Run the DDAs
if (xLeft <= xRight)
{
// We get a little tricky here and try to amortize the cost of
// the read for checking the FIFO count on the MGA. Doing
// so got us a 25% win on large triangles on a P90:
cFifo -= 6;
if (cFifo < 0)
{
do {
cFifo = GET_FIFO_SPACE(pjBase) - 6;
} while (cFifo < 0);
}
CP_WRITE(pjBase, DWG_FXLEFT, xLeft);
CP_WRITE(pjBase, DWG_FXRIGHT, xRight);
ulScan = ulLinear + ulOffset;
CP_WRITE(pjBase, DWG_AR0, ulScan + 15);
CP_WRITE(pjBase, DWG_AR3, ulScan + ((xLeft - xBrush) & 7));
CP_WRITE(pjBase, DWG_LEN, 1);
CP_START(pjBase, DWG_YDST, yTrapezoid);
}
ulOffset = (ulOffset + (1 << 5)) & (7 << 5);
yTrapezoid++;
// Advance the right wall:
xRight += ptd->aed[RIGHT].dx;
lRightError += ptd->aed[RIGHT].lErrorUp;
if (lRightError >= 0)
{
lRightError -= ptd->aed[RIGHT].dN;
xRight++;
}
// Advance the left wall:
xLeft += ptd->aed[LEFT].dx;
lLeftError += ptd->aed[LEFT].lErrorUp;
if (lLeftError >= 0)
{
lLeftError -= ptd->aed[LEFT].dN;
xLeft++;
}
cyTrapezoid--;
if (cyTrapezoid == 0)
break;
}
ptd->aed[LEFT].lError = lLeftError;
ptd->aed[LEFT].x = xLeft - xOffset;
ptd->aed[RIGHT].lError = lRightError;
ptd->aed[RIGHT].x = xRight - xOffset + 1;
}
}
/******************************Public*Routine******************************\
* VOID vMgaTrapezoidSetup
*
* Initialize the hardware and some state for doing trapezoids.
*
\**************************************************************************/
VOID vMgaTrapezoidSetup(
PDEV* ppdev,
ULONG rop4,
ULONG iSolidColor,
RBRUSH* prb,
POINTL* pptlBrush,
TRAPEZOIDDATA* ptd,
LONG yStart, // First scan for drawing
RECTL* prclClip) // NULL if no clipping
{
BYTE* pjBase;
ULONG ulHwMix;
ULONG ulDwg;
BRUSHENTRY* pbe;
ptd->ppdev = ppdev;
ptd->ulMgaSgn = 0;
pjBase = ppdev->pjBase;
if ((prclClip != NULL) && (prclClip->top > yStart))
yStart = prclClip->top;
if (iSolidColor != -1)
{
ptd->pfnTrap = vHardwareTrapezoid;
CHECK_FIFO_SPACE(pjBase, 7);
if (rop4 == 0xf0f0)
{
CP_WRITE(pjBase, DWG_DWGCTL, opcode_TRAP + transc_BG_OPAQUE +
blockm_ON + atype_RPL + bop_SRCCOPY);
}
else
{
ulHwMix = (rop4 & 0x03) + ((rop4 & 0x30) >> 2);
CP_WRITE(pjBase, DWG_DWGCTL, opcode_TRAP + transc_BG_OPAQUE +
blockm_OFF + atype_RSTR +
(ulHwMix << 16));
}
CP_WRITE(pjBase, DWG_FCOL, COLOR_REPLICATE(ppdev, iSolidColor));
CP_WRITE(pjBase, DWG_YDST, yStart + ppdev->yOffset);
if (!(GET_CACHE_FLAGS(ppdev, PATTERN_CACHE)))
{
CP_WRITE(pjBase, DWG_SRC0, 0xFFFFFFFF);
CP_WRITE(pjBase, DWG_SRC1, 0xFFFFFFFF);
CP_WRITE(pjBase, DWG_SRC2, 0xFFFFFFFF);
CP_WRITE(pjBase, DWG_SRC3, 0xFFFFFFFF);
}
ppdev->HopeFlags = PATTERN_CACHE;
}
else
{
if (prb->fl & RBRUSH_2COLOR)
{
ptd->pfnTrap = vHardwareTrapezoid;
if ((rop4 & 0xff) == 0xf0)
{
ulDwg = opcode_TRAP + blockm_OFF + atype_RPL + bop_SRCCOPY;
}
else
{
ulHwMix = (rop4 & 0x03) + ((rop4 & 0x30) >> 2);
ulDwg = opcode_TRAP + blockm_OFF + atype_RSTR + (ulHwMix << 16);
}
if (((rop4 >> 8) & 0xff) == (rop4 & 0xff))
{
// Normal opaque mode:
ulDwg |= transc_BG_OPAQUE;
}
else
{
// GDI guarantees us that if the foreground and background
// ROPs are different, the background rop is LEAVEALONE:
ulDwg |= transc_BG_TRANSP;
}
CHECK_FIFO_SPACE(pjBase, 9);
CP_WRITE(pjBase, DWG_DWGCTL, ulDwg);
CP_WRITE(pjBase, DWG_FCOL, COLOR_REPLICATE(ppdev, prb->ulColor[1]));
CP_WRITE(pjBase, DWG_BCOL, COLOR_REPLICATE(ppdev, prb->ulColor[0]));
CP_WRITE(pjBase, DWG_SRC0, prb->aulPattern[0]);
CP_WRITE(pjBase, DWG_SRC1, prb->aulPattern[1]);
CP_WRITE(pjBase, DWG_SRC2, prb->aulPattern[2]);
CP_WRITE(pjBase, DWG_SRC3, prb->aulPattern[3]);
CP_WRITE(pjBase, DWG_YDST, yStart + ppdev->yOffset);
CP_WRITE(pjBase, DWG_SHIFT,
((-(pptlBrush->y + ppdev->yOffset) & 7) << 4) |
(-(pptlBrush->x + ppdev->xOffset) & 7));
ppdev->HopeFlags = 0;
}
else
{
// We have to ensure that no other brush took our spot in off-screen
// memory:
ASSERTDD(ppdev->iBitmapFormat == BMF_8BPP,
"Can only do 8bpp patterned fastfills");
if (prb->apbe[IBOARD(ppdev)]->prbVerify != prb)
{
vMgaPatRealize8bpp(ppdev, prb);
}
pjBase = ppdev->pjBase;
pbe = prb->apbe[IBOARD(ppdev)];
ptd->pfnTrap = vMgaSoftwareTrapezoid;
ptd->ulLinear = pbe->ulLinear;
ptd->ptlBrush = *pptlBrush;
CHECK_FIFO_SPACE(pjBase, 4);
if (rop4 == 0xf0f0) // PATCOPY
{
CP_WRITE(pjBase, DWG_DWGCTL, (opcode_BITBLT + atype_RPL + blockm_OFF +
trans_0 + bltmod_BFCOL + pattern_ON +
transc_BG_OPAQUE + bop_SRCCOPY));
}
else
{
RIP("Shouldn't allow ROPs for now, because of h/w bug!");
ulHwMix = (rop4 & 0x03) + ((rop4 & 0x30) >> 2);
CP_WRITE(pjBase, DWG_DWGCTL, (opcode_BITBLT + atype_RSTR + blockm_OFF +
trans_0 + bltmod_BFCOL + pattern_ON +
transc_BG_OPAQUE + (ulHwMix << 16)));
}
if (!(GET_CACHE_FLAGS(ppdev, SIGN_CACHE)))
{
CP_WRITE(pjBase, DWG_SGN, 0);
}
ppdev->HopeFlags = SIGN_CACHE;
CP_WRITE(pjBase, DWG_SHIFT, 0);
CP_WRITE(pjBase, DWG_AR5, 32);
}
}
if (prclClip != NULL)
{
ptd->pfnTrapClip = ptd->pfnTrap;
ptd->pfnTrap = vClipTrapezoid;
ptd->yClipTop = prclClip->top;
ptd->yClipBottom = prclClip->bottom;
CHECK_FIFO_SPACE(pjBase, 2);
CP_WRITE(pjBase, DWG_CXLEFT, ppdev->xOffset + prclClip->left);
CP_WRITE(pjBase, DWG_CXRIGHT, ppdev->xOffset + prclClip->right - 1);
}
}
/******************************Public*Routine******************************\
* BOOL bFastFill
*
* Draws a non-complex, unclipped polygon. 'Non-complex' is defined as
* having only two edges that are monotonic increasing in 'y'. That is,
* the polygon cannot have more than one disconnected segment on any given
* scan. Note that the edges of the polygon can self-intersect, so hourglass
* shapes are permissible. This restriction permits this routine to run two
* simultaneous DDAs, and no sorting of the edges is required.
*
* Note that NT's fill convention is different from that of Win 3.1 or Win95.
* With the additional complication of fractional end-points, our convention
* is the same as in 'X-Windows'. But a DDA is a DDA is a DDA, so once you
* figure out how we compute the DDA terms for NT, you're golden.
*
* Returns TRUE if the polygon was drawn; FALSE if the polygon was complex.
*
\**************************************************************************/
BOOL bFastFill(
PDEV* ppdev,
LONG cEdges, // Includes close figure edge
POINTFIX* pptfxFirst,
ULONG rop4,
ULONG iSolidColor,
RBRUSH* prb,
POINTL* pptlBrush,
RECTL* prclClip) // NULL if no clipping
{
LONG yTrapezoid; // Top scan for next trapezoid
LONG cyTrapezoid; // Number of scans in current trapezoid
LONG yStart; // y-position of start point in current edge
LONG dM; // Edge delta in FIX units in x direction
LONG dN; // Edge delta in FIX units in y direction
LONG i;
LONG lCross; // Cross-product result
POINTFIX* pptfxLast; // Points to the last point in the polygon array
POINTFIX* pptfxTop; // Points to the top-most point in the polygon
POINTFIX* pptfxOld; // Start point in current edge
POINTFIX* pptfxScan; // Current edge pointer for finding pptfxTop
LONG cScanEdges; // Number of edges scanned to find pptfxTop
// (doesn't include the closefigure edge)
LONG iEdge;
LONG lQuotient;
LONG lRemainder;
BYTE* pjBase;
TRAPEZOIDDATA td; // Edge data and stuff
EDGEDATA* ped; // Points to current edge being processed
/////////////////////////////////////////////////////////////////
// See if the polygon is convex
pptfxScan = pptfxFirst;
pptfxTop = pptfxFirst; // Assume for now that the first
// point in path is the topmost
pptfxLast = pptfxFirst + cEdges - 1;
// Watch for close figure points, because we have the later restriction
// that we won't allow coincident vertices:
if ((pptfxLast->x == pptfxFirst->x) && (pptfxLast->y == pptfxFirst->y))
{
pptfxLast--;
cEdges--;
}
if (cEdges <= 2)
goto ReturnTrue;
// 'pptfxScan' will always point to the first point in the current
// edge, and 'cScanEdges' will the number of edges remaining, including
// the current one:
cScanEdges = cEdges - 1; // The number of edges, not counting close figure
if ((pptfxScan + 1)->y > pptfxScan->y)
{
// Collect all downs:
do {
if (--cScanEdges == 0)
goto SetUpForFilling;
pptfxScan++;
} while ((pptfxScan + 1)->y >= pptfxScan->y);
// Collect all ups:
do {
if (--cScanEdges == 0)
goto SetUpForFillingCheck;
pptfxScan++;
} while ((pptfxScan + 1)->y <= pptfxScan->y);
// Collect all downs:
pptfxTop = pptfxScan;
do {
if ((pptfxScan + 1)->y > pptfxFirst->y)
break;
if (--cScanEdges == 0)
goto SetUpForFilling;
pptfxScan++;
} while ((pptfxScan + 1)->y >= pptfxScan->y);
goto ReturnFalse;
}
else
{
// Collect all ups:
do {
pptfxTop++; // We increment this now because we
// want it to point to the very last
// point if we early out in the next
// statement...
if (--cScanEdges == 0)
goto SetUpForFilling;
} while ((pptfxTop + 1)->y <= pptfxTop->y);
// Collect all downs:
pptfxScan = pptfxTop;
do {
if (--cScanEdges == 0)
goto SetUpForFilling;
pptfxScan++;
} while ((pptfxScan + 1)->y >= pptfxScan->y);
// Collect all ups:
do {
if ((pptfxScan + 1)->y < pptfxFirst->y)
break;
if (--cScanEdges == 0)
goto SetUpForFilling;
pptfxScan++;
} while ((pptfxScan + 1)->y <= pptfxScan->y);
goto ReturnFalse;
}
SetUpForFillingCheck:
// We check to see if the end of the current edge is higher
// than the top edge we've found so far:
if ((pptfxScan + 1)->y < pptfxTop->y)
pptfxTop = pptfxScan + 1;
SetUpForFilling:
pptfxScan = pptfxFirst;
cScanEdges = cEdges - 2;
// NOTE: For a bit of speed and simplicity, we will assume that
// our cross product calculations will not overflow. A
// consequence of this is that the caller MUST ensure that
// the bounds of the polygon are small enough that there
// will be no overflow.
lCross = (((pptfxScan + 1)->x - (pptfxScan + 0)->x)
* ((pptfxScan + 2)->y - (pptfxScan + 1)->y)
- ((pptfxScan + 1)->y - (pptfxScan + 0)->y)
* ((pptfxScan + 2)->x - (pptfxScan + 1)->x));
if (lCross == 0)
{
// We don't allow any colinear points into FastFill. We do this
// here because we would need a non-zero cross product to determine
// which direction the rest of the edges should go. We do this
// later so that coincident vertices will never mess us up by
// hiding a cross product sign change.
goto ReturnFalse;
}
else if (lCross > 0)
{
// Make sure all cross products are positive:
pptfxScan++;
while (--cScanEdges != 0)
{
if (((pptfxScan + 1)->x - (pptfxScan + 0)->x)
* ((pptfxScan + 2)->y - (pptfxScan + 1)->y)
- ((pptfxScan + 1)->y - (pptfxScan + 0)->y)
* ((pptfxScan + 2)->x - (pptfxScan + 1)->x) <= 0)
{
goto ReturnFalse;
}
pptfxScan++;
}
// Check the angles formed by the closefigure edge:
if (((pptfxScan + 1)->x - (pptfxScan + 0)->x)
* ((pptfxFirst )->y - (pptfxScan + 1)->y)
- ((pptfxScan + 1)->y - (pptfxScan + 0)->y)
* ((pptfxFirst )->x - (pptfxScan + 1)->x) <= 0)
{
goto ReturnFalse;
}
if (((pptfxFirst )->x - (pptfxScan + 1)->x)
* ((pptfxFirst + 1)->y - (pptfxFirst )->y)
- ((pptfxFirst )->y - (pptfxScan + 1)->y)
* ((pptfxFirst + 1)->x - (pptfxFirst )->x) <= 0)
{
goto ReturnFalse;
}
// The figure has its points ordered in a clockwise direction:
td.aed[LEFT].dptfx = -(LONG) sizeof(POINTFIX);
td.aed[RIGHT].dptfx = sizeof(POINTFIX);
}
else
{
// Make sure all cross products are negative:
pptfxScan++;
while (--cScanEdges != 0)
{
if (((pptfxScan + 1)->x - (pptfxScan + 0)->x)
* ((pptfxScan + 2)->y - (pptfxScan + 1)->y)
- ((pptfxScan + 1)->y - (pptfxScan + 0)->y)
* ((pptfxScan + 2)->x - (pptfxScan + 1)->x) >= 0)
{
goto ReturnFalse;
}
pptfxScan++;
}
// Check the angles formed by the closefigure edge:
if (((pptfxScan + 1)->x - (pptfxScan + 0)->x)
* ((pptfxFirst )->y - (pptfxScan + 1)->y)
- ((pptfxScan + 1)->y - (pptfxScan + 0)->y)
* ((pptfxFirst )->x - (pptfxScan + 1)->x) >= 0)
{
goto ReturnFalse;
}
if (((pptfxFirst )->x - (pptfxScan + 1)->x)
* ((pptfxFirst + 1)->y - (pptfxFirst )->y)
- ((pptfxFirst )->y - (pptfxScan + 1)->y)
* ((pptfxFirst + 1)->x - (pptfxFirst )->x) >= 0)
{
goto ReturnFalse;
}
// The figure has its points ordered in a counter-clockwise direction:
td.aed[LEFT].dptfx = sizeof(POINTFIX);
td.aed[RIGHT].dptfx = -(LONG) sizeof(POINTFIX);
}
/////////////////////////////////////////////////////////////////
// Some Initialization
td.aed[LEFT].pptfx = pptfxTop;
td.aed[RIGHT].pptfx = pptfxTop;
yTrapezoid = (pptfxTop->y + 15) >> 4;
// Make sure we initialize the DDAs appropriately:
td.aed[LEFT].cy = 0;
td.aed[RIGHT].cy = 0;
if (ppdev->ulBoardId == MGA_STORM)
{
vMilTrapezoidSetup(ppdev, rop4, iSolidColor, prb, pptlBrush, &td,
yTrapezoid, prclClip);
}
else
{
vMgaTrapezoidSetup(ppdev, rop4, iSolidColor, prb, pptlBrush, &td,
yTrapezoid, prclClip);
}
NewTrapezoid:
/////////////////////////////////////////////////////////////////
// DDA initialization
for (iEdge = 1; iEdge >= 0; iEdge--)
{
ped = &td.aed[iEdge];
ped->bNew = FALSE;
if (ped->cy == 0)
{
// Our trapezoid drawing routine may want to be notified when
// it will have to reset its DDA to start a new edge:
ped->bNew = TRUE;
// Need a new DDA:
do {
cEdges--;
if (cEdges < 0)
goto ResetClippingAndReturnTrue;
// Find the next left edge, accounting for wrapping:
pptfxOld = ped->pptfx;
ped->pptfx = (POINTFIX*) ((BYTE*) ped->pptfx + ped->dptfx);
if (ped->pptfx < pptfxFirst)
ped->pptfx = pptfxLast;
else if (ped->pptfx > pptfxLast)
ped->pptfx = pptfxFirst;
// Have to find the edge that spans yTrapezoid:
ped->cy = ((ped->pptfx->y + 15) >> 4) - yTrapezoid;
// With fractional coordinate end points, we may get edges
// that don't cross any scans, in which case we try the
// next one:
} while (ped->cy <= 0);
// 'pptfx' now points to the end point of the edge spanning
// the scan 'yTrapezoid'.
dN = ped->pptfx->y - pptfxOld->y;
dM = ped->pptfx->x - pptfxOld->x;
ASSERTDD(dN > 0, "Should be going down only");
// Compute the DDA increment terms:
ped->dM = dM; // Not used for software trapezoid
if (dM < 0)
{
dM = -dM;
if (dM < dN) // Can't be '<='
{
ped->dx = -1;
ped->lErrorUp = dN - dM;
}
else
{
QUOTIENT_REMAINDER(dM, dN, lQuotient, lRemainder);
ped->dx = -lQuotient; // - dM / dN
ped->lErrorUp = lRemainder; // dM % dN
if (ped->lErrorUp > 0)
{
ped->dx--;
ped->lErrorUp = dN - ped->lErrorUp;
}
}
}
else
{
if (dM < dN) // Can't be '<='
{
ped->dx = 0;
ped->lErrorUp = dM;
}
else
{
QUOTIENT_REMAINDER(dM, dN, lQuotient, lRemainder);
ped->dx = lQuotient; // dM / dN
ped->lErrorUp = lRemainder; // dM % dN
}
}
ped->dN = dN; // DDA limit
ped->lError = -1; // Error is initially zero (add dN - 1 for
// the ceiling, but subtract off dN so that
// we can check the sign instead of comparing
// to dN)
ped->x = pptfxOld->x;
yStart = pptfxOld->y;
if ((yStart & 15) != 0)
{
// Advance to the next integer y coordinate
for (i = 16 - (yStart & 15); i != 0; i--)
{
ped->x += ped->dx;
ped->lError += ped->lErrorUp;
if (ped->lError >= 0)
{
ped->lError -= ped->dN;
ped->x++;
}
}
}
if ((ped->x & 15) != 0)
{
ped->lError -= ped->dN * (16 - (ped->x & 15));
ped->x += 15; // We'll want the ceiling in just a bit...
}
// Chop off those fractional bits:
ped->x >>= 4;
ped->lError >>= 4;
}
}
cyTrapezoid = min(td.aed[LEFT].cy, td.aed[RIGHT].cy); // # of scans in this trap
td.aed[LEFT].cy -= cyTrapezoid;
td.aed[RIGHT].cy -= cyTrapezoid;
td.pfnTrap(&td, yTrapezoid, cyTrapezoid);
yTrapezoid += cyTrapezoid;
goto NewTrapezoid;
ResetClippingAndReturnTrue:
if (prclClip != NULL)
{
pjBase = ppdev->pjBase;
CHECK_FIFO_SPACE(pjBase, 2);
CP_WRITE(pjBase, DWG_CXLEFT, 0);
CP_WRITE(pjBase, DWG_CXRIGHT, ppdev->cxMemory - 1);
}
ReturnTrue:
return(TRUE);
ReturnFalse:
return(FALSE);
}