windows-nt/Source/XPSP1/NT/drivers/video/ms/s3/disp/debug.c

461 lines
12 KiB
C
Raw Normal View History

2020-09-26 03:20:57 -05:00
/******************************Module*Header*******************************\
*
* *******************
* * GDI SAMPLE CODE *
* *******************
*
* Module Name: debug.c
*
* Debug helper routines.
*
* Copyright (c) 1992-1998 Microsoft Corporation
*
\**************************************************************************/
#include "precomp.h"
#if DBG
////////////////////////////////////////////////////////////////////////////
// DEBUGGING INITIALIZATION CODE
//
// When you're bringing up your display for the first time, you can
// recompile with 'DebugLevel' set to 100. That will cause absolutely
// all DISPDBG messages to be displayed on the kernel debugger (this
// is known as the "PrintF Approach to Debugging" and is about the only
// viable method for debugging driver initialization code).
LONG DebugLevel = 0; // Set to '100' to debug initialization code
// (the default is '0')
////////////////////////////////////////////////////////////////////////////
LONG gcFifo = 0; // Number of currently free FIFO entries
BOOL gbCrtcCriticalSection = FALSE;
// Have we acquired the CRTC register
// critical section?
#define LARGE_LOOP_COUNT 10000000
////////////////////////////////////////////////////////////////////////////
// Miscellaneous Driver Debug Routines
////////////////////////////////////////////////////////////////////////////
/*****************************************************************************
*
* Routine Description:
*
* This function is variable-argument, level-sensitive debug print
* routine.
* If the specified debug level for the print statement is lower or equal
* to the current debug level, the message will be printed.
*
* Arguments:
*
* DebugPrintLevel - Specifies at which debugging level the string should
* be printed
*
* DebugMessage - Variable argument ascii c string
*
* Return Value:
*
* None.
*
***************************************************************************/
VOID
DebugPrint(
LONG DebugPrintLevel,
PCHAR DebugMessage,
...
)
{
va_list ap;
va_start(ap, DebugMessage);
if (DebugPrintLevel <= DebugLevel)
{
EngDebugPrint(STANDARD_DEBUG_PREFIX, DebugMessage, ap);
EngDebugPrint("", "\n", ap);
}
va_end(ap);
} // DebugPrint()
/******************************Public*Routine******************************\
* VOID vCheckDataComplete
\**************************************************************************/
VOID vCheckDataReady(
PDEV* ppdev)
{
ASSERTDD((IO_GP_STAT(ppdev) & HARDWARE_BUSY),
"Not ready for data transfer.");
}
/******************************Public*Routine******************************\
* VOID vCheckDataComplete
\**************************************************************************/
VOID vCheckDataComplete(
PDEV* ppdev)
{
LONG i;
// We loop because it may take a while for the hardware to finish
// digesting all the data we transferred:
for (i = LARGE_LOOP_COUNT; i > 0; i--)
{
if (!(IO_GP_STAT(ppdev) & HARDWARE_BUSY))
return;
}
RIP("Data transfer not complete.");
}
/******************************Public*Routine******************************\
* VOID vOutFifoW
\**************************************************************************/
VOID vOutFifoW(
VOID* p,
ULONG v)
{
gcFifo--;
if (gcFifo < 0)
{
gcFifo = 0;
RIP("Incorrect FIFO wait count");
}
WRITE_PORT_USHORT(p, (USHORT)v);
}
/******************************Public*Routine******************************\
* VOID vOutFifoPseudoD
\**************************************************************************/
VOID vOutFifoPseudoD(
PDEV* ppdev,
VOID* p,
ULONG v)
{
ULONG ulMiscState;
ASSERTDD(!(ppdev->flCaps & CAPS_MM_IO),
"No pseudo 32-bit writes when using memory-mapped I/O");
ASSERTDD(ppdev->iBitmapFormat == BMF_32BPP,
"We're trying to do 32bpp output while not in 32bpp mode");
IO_GP_WAIT(ppdev); // Wait so we don't interfere with any
// pending commands waiting on the
// FIFO
IO_READ_SEL(ppdev, 6); // We'll be reading index 0xE
IO_GP_WAIT(ppdev); // Wait until that's processed
IO_RD_REG_DT(ppdev, ulMiscState); // Read ulMiscState
ASSERTDD((ulMiscState & 0x10) == 0,
"Register select flag is out of sync");
gcFifo -= 2;
if (gcFifo < 0)
{
gcFifo = 0;
RIP("Incorrect FIFO wait count");
}
OUT_PSEUDO_DWORD(p, v);
}
/******************************Public*Routine******************************\
* VOID vWriteFifoW
\**************************************************************************/
VOID vWriteFifoW(
VOID* p,
ULONG v)
{
gcFifo--;
if (gcFifo < 0)
{
gcFifo = 0;
RIP("Incorrect FIFO wait count");
}
WRITE_REGISTER_USHORT(p, (USHORT) v);
}
/******************************Public*Routine******************************\
* VOID vWriteFifoD
\**************************************************************************/
VOID vWriteFifoD(
VOID* p,
ULONG v)
{
gcFifo--;
if (gcFifo < 0)
{
gcFifo = 0;
RIP("Incorrect FIFO wait count");
}
WRITE_REGISTER_ULONG(p, v);
}
/******************************Public*Routine******************************\
* VOID vIoFifoWait
\**************************************************************************/
VOID vIoFifoWait(
PDEV* ppdev,
LONG level)
{
LONG i;
ASSERTDD((level > 0) && (level <= 8), "Illegal wait level");
gcFifo = level;
for (i = LARGE_LOOP_COUNT; i != 0; i--)
{
if (!(IO_FIFO_BUSY(ppdev, level)))
return;
}
RIP("vIoFifoWait timeout -- The hardware is in a funky state.");
}
/******************************Public*Routine******************************\
* VOID vMmFifoWait
\**************************************************************************/
VOID vMmFifoWait(
PDEV* ppdev,
BYTE* pjMmBase,
LONG level)
{
LONG i;
// We only enabled MM I/O on the 864/964 and newer, so we can wait
// for up to 13 FIFO slots:
ASSERTDD((level > 0) && (level <= 13), "Illegal wait level");
gcFifo = level;
for (i = LARGE_LOOP_COUNT; i != 0; i--)
{
if (!(MM_FIFO_BUSY(ppdev, pjMmBase, level)))
return;
}
RIP("vMmFifoWait timeout -- The hardware is in a funky state.");
}
/******************************Public*Routine******************************\
* VOID vNwFifoWait
\**************************************************************************/
VOID vNwFifoWait(
PDEV* ppdev,
BYTE* pjMmBase,
LONG level)
{
LONG i;
ASSERTDD((level > 0) && (level <= 13), "Illegal wait level");
gcFifo = level;
for (i = LARGE_LOOP_COUNT; i != 0; i--)
{
if (!(NW_FIFO_BUSY(ppdev, pjMmBase, level)))
return;
}
RIP("vNwFifoWait timeout -- The hardware is in a funky state.");
}
/******************************Public*Routine******************************\
* VOID vDbgFakeWait
\**************************************************************************/
VOID vDbgFakeWait(
PDEV* ppdev,
BYTE* pjMmBase,
LONG level)
{
gcFifo = level;
}
/******************************Public*Routine******************************\
* VOID vIoGpWait
\**************************************************************************/
VOID vIoGpWait(
PDEV* ppdev)
{
LONG i;
gcFifo = (ppdev->flCaps & CAPS_16_ENTRY_FIFO) ? 16 : 8;
for (i = LARGE_LOOP_COUNT; i != 0; i--)
{
if (!(IO_GP_STAT(ppdev) & HARDWARE_BUSY))
return; // It isn't busy
}
RIP("vIoGpWait timeout -- The hardware is in a funky state.");
}
/******************************Public*Routine******************************\
* VOID vNwGpWait
\**************************************************************************/
VOID vNwGpWait(
PDEV* ppdev,
BYTE* pjMmBase)
{
LONG i;
gcFifo = 16;
for (i = LARGE_LOOP_COUNT; i != 0; i--)
{
if (!NW_GP_BUSY(ppdev, pjMmBase))
return; // It isn't busy
}
RIP("vNwGpWait timeout -- The hardware is in a funky state.");
}
/******************************Public*Routine******************************\
* VOID vIoAllEmpty
\**************************************************************************/
VOID vIoAllEmpty(
PDEV* ppdev)
{
LONG i;
ASSERTDD(ppdev->flCaps & CAPS_16_ENTRY_FIFO,
"Can't call ALL_EMPTY on chips with 8-deep FIFOs");
gcFifo = 16;
for (i = LARGE_LOOP_COUNT; i != 0; i--)
{
if (IO_GP_STAT(ppdev) & GP_ALL_EMPTY) // Not implemented on 911/924s
return;
}
RIP("ALL_EMPTY timeout -- The hardware is in a funky state.");
}
/******************************Public*Routines*****************************\
* UCHAR jInp() - INP()
* USHORT wInpW() - INPW()
* VOID vOutp() - OUTP()
* VOID vOutpW() - OUTPW()
*
* Debug thunks for general I/O routines. This is used primarily to verify
* that any code accessing the CRTC register has grabbed the CRTC critical
* section (necessary because with GCAPS_ASYNCMOVE, DrvMovePointer calls
* may happen at any time, and they need to access the CRTC register).
*
\**************************************************************************/
UCHAR jInp(BYTE* pjIoBase, ULONG p)
{
if (((p == CRTC_INDEX) || (p == CRTC_DATA)) &&
(!gbCrtcCriticalSection))
{
RIP("Must have acquired CRTC critical section to access CRTC register");
}
CP_EIEIO();
return((UCHAR) READ_PORT_UCHAR(pjIoBase + (p)));
}
USHORT wInpW(BYTE* pjIoBase, ULONG p)
{
if (((p == CRTC_INDEX) || (p == CRTC_DATA)) &&
(!gbCrtcCriticalSection))
{
RIP("Must have acquired CRTC critical section to access CRTC register");
}
CP_EIEIO();
return(READ_PORT_USHORT(pjIoBase + (p)));
}
VOID vOutp(BYTE* pjIoBase, ULONG p, ULONG v)
{
if (((p == CRTC_INDEX) || (p == CRTC_DATA)) &&
(!gbCrtcCriticalSection))
{
RIP("Must have acquired CRTC critical section to access CRTC register");
}
CP_EIEIO();
WRITE_PORT_UCHAR((PUCHAR)((ULONG_PTR)(pjIoBase + p)), (UCHAR)(v));
CP_EIEIO();
}
VOID vOutpW(BYTE* pjIoBase, ULONG p, ULONG v)
{
if (((p == CRTC_INDEX) || (p == CRTC_DATA)) &&
(!gbCrtcCriticalSection))
{
RIP("Must have acquired CRTC critical section to access CRTC register");
}
CP_EIEIO();
WRITE_PORT_USHORT(pjIoBase + (p), (USHORT)(v));
CP_EIEIO();
}
/******************************Public*Routine******************************\
* VOID vAcquireCrtc()
* VOID vReleaseCrtc()
*
* Debug thunks for grabbing the CRTC register critical section.
*
\**************************************************************************/
VOID vAcquireCrtc(PDEV* ppdev)
{
EngAcquireSemaphore(ppdev->csCrtc);
if (gbCrtcCriticalSection)
RIP("Had already acquired Critical Section");
gbCrtcCriticalSection = TRUE;
}
VOID vReleaseCrtc(PDEV* ppdev)
{
// 80x/805i/928 and 928PCI chips have a bug where if I/O registers
// are left unlocked after accessing them, writes to memory with
// similar addresses can cause writes to I/O registers. The problem
// registers are 0x40, 0x58, 0x59 and 0x5c. We will simply always
// leave the index set to an innocuous register (namely, the text
// mode cursor start scan line):
OUTP(ppdev->pjIoBase, CRTC_INDEX, 0xa);
if (!gbCrtcCriticalSection)
RIP("Hadn't yet acquired Critical Section");
gbCrtcCriticalSection = FALSE;
EngReleaseSemaphore(ppdev->csCrtc);
}
////////////////////////////////////////////////////////////////////////////
#endif // DBG