windows-nt/Source/XPSP1/NT/drivers/video/ms/s3/disp/enable.c

1886 lines
64 KiB
C
Raw Normal View History

2020-09-26 03:20:57 -05:00
/******************************Module*Header*******************************\
*
* *******************
* * GDI SAMPLE CODE *
* *******************
*
* Module Name: enable.c
*
* This module contains the functions that enable and disable the
* driver, the pdev, and the surface.
*
* Copyright (c) 1992-1998 Microsoft Corporation
\**************************************************************************/
#include "precomp.h"
// Useful for visualizing the off-screen heap when set to '1':
#define DEBUG_HEAP 0
/******************************Public*Structure****************************\
* GDIINFO ggdiDefault
*
* This contains the default GDIINFO fields that are passed back to GDI
* during DrvEnablePDEV.
*
* NOTE: This structure defaults to values for an 8bpp palette device.
* Some fields are overwritten for different colour depths.
\**************************************************************************/
GDIINFO ggdiDefault = {
GDI_DRIVER_VERSION,
DT_RASDISPLAY, // ulTechnology
0, // ulHorzSize (filled in later)
0, // ulVertSize (filled in later)
0, // ulHorzRes (filled in later)
0, // ulVertRes (filled in later)
0, // cBitsPixel (filled in later)
0, // cPlanes (filled in later)
20, // ulNumColors (palette managed)
0, // flRaster (DDI reserved field)
0, // ulLogPixelsX (filled in later)
0, // ulLogPixelsY (filled in later)
TC_RA_ABLE, // flTextCaps -- If we had wanted console windows
// to scroll by repainting the entire window,
// instead of doing a screen-to-screen blt, we
// would have set TC_SCROLLBLT (yes, the flag is
// bass-ackwards).
0, // ulDACRed (filled in later)
0, // ulDACGreen (filled in later)
0, // ulDACBlue (filled in later)
0x0024, // ulAspectX
0x0024, // ulAspectY
0x0033, // ulAspectXY (one-to-one aspect ratio)
1, // xStyleStep
1, // yStyleSte;
3, // denStyleStep -- Styles have a one-to-one aspect
// ratio, and every 'dot' is 3 pixels long
{ 0, 0 }, // ptlPhysOffset
{ 0, 0 }, // szlPhysSize
256, // ulNumPalReg
// These fields are for halftone initialization. The actual values are
// a bit magic, but seem to work well on our display.
{ // ciDevice
{ 6700, 3300, 0 }, // Red
{ 2100, 7100, 0 }, // Green
{ 1400, 800, 0 }, // Blue
{ 1750, 3950, 0 }, // Cyan
{ 4050, 2050, 0 }, // Magenta
{ 4400, 5200, 0 }, // Yellow
{ 3127, 3290, 0 }, // AlignmentWhite
20000, // RedGamma
20000, // GreenGamma
20000, // BlueGamma
0, 0, 0, 0, 0, 0 // No dye correction for raster displays
},
0, // ulDevicePelsDPI (for printers only)
PRIMARY_ORDER_CBA, // ulPrimaryOrder
HT_PATSIZE_4x4_M, // ulHTPatternSize
HT_FORMAT_8BPP, // ulHTOutputFormat
HT_FLAG_ADDITIVE_PRIMS, // flHTFlags
0, // ulVRefresh
0, // ulPanningHorzRes
0, // ulPanningVertRes
0, // ulBltAlignment
};
/******************************Public*Structure****************************\
* DEVINFO gdevinfoDefault
*
* This contains the default DEVINFO fields that are passed back to GDI
* during DrvEnablePDEV.
*
* NOTE: This structure defaults to values for an 8bpp palette device.
* Some fields are overwritten for different colour depths.
\**************************************************************************/
#define SYSTM_LOGFONT {16,7,0,0,700,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\
CLIP_DEFAULT_PRECIS,DEFAULT_QUALITY,\
VARIABLE_PITCH | FF_DONTCARE,L"System"}
#define HELVE_LOGFONT {12,9,0,0,400,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\
CLIP_STROKE_PRECIS,PROOF_QUALITY,\
VARIABLE_PITCH | FF_DONTCARE,L"MS Sans Serif"}
#define COURI_LOGFONT {12,9,0,0,400,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\
CLIP_STROKE_PRECIS,PROOF_QUALITY,\
FIXED_PITCH | FF_DONTCARE, L"Courier"}
DEVINFO gdevinfoDefault = {
(GCAPS_OPAQUERECT |
GCAPS_DITHERONREALIZE |
GCAPS_PALMANAGED |
GCAPS_ALTERNATEFILL |
GCAPS_WINDINGFILL |
GCAPS_MONO_DITHER |
GCAPS_COLOR_DITHER |
GCAPS_DIRECTDRAW |
GCAPS_ASYNCMOVE), // NOTE: Only enable ASYNCMOVE if your code
// and hardware can handle DrvMovePointer
// calls at any time, even while another
// thread is in the middle of a drawing
// call such as DrvBitBlt.
// flGraphicsFlags
SYSTM_LOGFONT, // lfDefaultFont
HELVE_LOGFONT, // lfAnsiVarFont
COURI_LOGFONT, // lfAnsiFixFont
0, // cFonts
BMF_8BPP, // iDitherFormat
8, // cxDither
8, // cyDither
0 // hpalDefault (filled in later)
};
/******************************Public*Structure****************************\
* DFVFN gadrvfn[]
*
* Build the driver function table gadrvfn with function index/address
* pairs. This table tells GDI which DDI calls we support, and their
* location (GDI does an indirect call through this table to call us).
*
* Why haven't we implemented DrvSaveScreenBits? To save code.
*
* When the driver doesn't hook DrvSaveScreenBits, USER simulates on-
* the-fly by creating a temporary device-format-bitmap, and explicitly
* calling DrvCopyBits to save/restore the bits. Since we already hook
* DrvCreateDeviceBitmap, we'll end up using off-screen memory to store
* the bits anyway (which would have been the main reason for implementing
* DrvSaveScreenBits). So we may as well save some working set.
\**************************************************************************/
DRVFN gadrvfn[] = {
{ INDEX_DrvEnablePDEV, (PFN) DrvEnablePDEV },
{ INDEX_DrvCompletePDEV, (PFN) DrvCompletePDEV },
{ INDEX_DrvDisablePDEV, (PFN) DrvDisablePDEV },
{ INDEX_DrvEnableSurface, (PFN) DrvEnableSurface },
{ INDEX_DrvDisableSurface, (PFN) DrvDisableSurface },
{ INDEX_DrvAssertMode, (PFN) DrvAssertMode },
{ INDEX_DrvMovePointer, (PFN) DrvMovePointer },
{ INDEX_DrvSetPointerShape, (PFN) DrvSetPointerShape },
{ INDEX_DrvSetPalette, (PFN) DrvSetPalette },
{ INDEX_DrvCopyBits, (PFN) DrvCopyBits },
{ INDEX_DrvBitBlt, (PFN) DrvBitBlt },
{ INDEX_DrvTextOut, (PFN) DrvTextOut },
{ INDEX_DrvGetModes, (PFN) DrvGetModes },
{ INDEX_DrvLineTo, (PFN) DrvLineTo },
{ INDEX_DrvStrokePath, (PFN) DrvStrokePath },
{ INDEX_DrvFillPath, (PFN) DrvFillPath },
{ INDEX_DrvRealizeBrush, (PFN) DrvRealizeBrush },
{ INDEX_DrvCreateDeviceBitmap, (PFN) DrvCreateDeviceBitmap },
{ INDEX_DrvDeleteDeviceBitmap, (PFN) DrvDeleteDeviceBitmap },
{ INDEX_DrvStretchBlt, (PFN) DrvStretchBlt },
{ INDEX_DrvDestroyFont, (PFN) DrvDestroyFont },
{ INDEX_DrvGetDirectDrawInfo, (PFN) DrvGetDirectDrawInfo },
{ INDEX_DrvEnableDirectDraw, (PFN) DrvEnableDirectDraw },
{ INDEX_DrvDisableDirectDraw, (PFN) DrvDisableDirectDraw },
{ INDEX_DrvSynchronize, (PFN) DrvSynchronize },
{ INDEX_DrvTransparentBlt, (PFN) DrvTransparentBlt },
{ INDEX_DrvDeriveSurface, (PFN) DrvDeriveSurface },
{ INDEX_DrvIcmSetDeviceGammaRamp, (PFN) DrvIcmSetDeviceGammaRamp },
};
ULONG gcdrvfn = sizeof(gadrvfn) / sizeof(DRVFN);
/******************************Public*Routine******************************\
* BOOL DrvEnableDriver
*
* Enables the driver by retrieving the drivers function table and version.
*
\**************************************************************************/
BOOL DrvEnableDriver(
ULONG iEngineVersion,
ULONG cj,
DRVENABLEDATA* pded)
{
// Engine Version is passed down so future drivers can support previous
// engine versions. A next generation driver can support both the old
// and new engine conventions if told what version of engine it is
// working with. For the first version the driver does nothing with it.
// Fill in as much as we can.
if (cj >= sizeof(DRVENABLEDATA))
pded->pdrvfn = gadrvfn;
if (cj >= (sizeof(ULONG) * 2))
pded->c = gcdrvfn;
// DDI version this driver was targeted for is passed back to engine.
// Future graphic's engine may break calls down to old driver format.
if (cj >= sizeof(ULONG))
pded->iDriverVersion = DDI_DRIVER_VERSION_NT4;
return(TRUE);
}
/******************************Public*Routine******************************\
* VOID DrvDisableDriver
*
* Tells the driver it is being disabled. Release any resources allocated in
* DrvEnableDriver.
*
\**************************************************************************/
VOID DrvDisableDriver(VOID)
{
return;
}
/******************************Public*Routine******************************\
* DHPDEV DrvEnablePDEV
*
* Initializes a bunch of fields for GDI, based on the mode we've been asked
* to do. This is the first thing called after DrvEnableDriver, when GDI
* wants to get some information about us.
*
* (This function mostly returns back information; DrvEnableSurface is used
* for initializing the hardware and driver components.)
*
\**************************************************************************/
DHPDEV DrvEnablePDEV(
DEVMODEW* pdm, // Contains data pertaining to requested mode
PWSTR pwszLogAddr, // Logical address
ULONG cPat, // Count of standard patterns
HSURF* phsurfPatterns, // Buffer for standard patterns
ULONG cjCaps, // Size of buffer for device caps 'pdevcaps'
ULONG* pdevcaps, // Buffer for device caps, also known as 'gdiinfo'
ULONG cjDevInfo, // Number of bytes in device info 'pdi'
DEVINFO* pdi, // Device information
HDEV hdev, // HDEV, used for callbacks
PWSTR pwszDeviceName, // Device name
HANDLE hDriver) // Kernel driver handle
{
PDEV* ppdev;
// Future versions of NT had better supply 'devcaps' and 'devinfo'
// structures that are the same size or larger than the current
// structures:
if ((cjCaps < sizeof(GDIINFO)) || (cjDevInfo < sizeof(DEVINFO)))
{
DISPDBG((0, "DrvEnablePDEV - Buffer size too small"));
goto ReturnFailure0;
}
// Allocate a physical device structure. Note that we definitely
// rely on the zero initialization:
ppdev = EngAllocMem(FL_ZERO_MEMORY, sizeof(PDEV), ALLOC_TAG);
if (ppdev == NULL)
{
DISPDBG((0, "DrvEnablePDEV - Failed EngAllocMem"));
goto ReturnFailure0;
}
ppdev->hDriver = hDriver;
// Get the current screen mode information. Set up device caps and
// devinfo:
if (!bInitializeModeFields(ppdev, (GDIINFO*) pdevcaps, pdi, pdm))
{
DISPDBG((0, "DrvEnablePDEV - Failed bInitializeModeFields"));
goto ReturnFailure1;
}
// Initialize palette information.
if (!bInitializePalette(ppdev, pdi))
{
DISPDBG((0, "DrvEnablePDEV - Failed bInitializePalette"));
goto ReturnFailure1;
}
return((DHPDEV) ppdev);
ReturnFailure1:
DrvDisablePDEV((DHPDEV) ppdev);
ReturnFailure0:
DISPDBG((0, "Failed DrvEnablePDEV"));
return(0);
}
/******************************Public*Routine******************************\
* DrvDisablePDEV
*
* Release the resources allocated in DrvEnablePDEV. If a surface has been
* enabled DrvDisableSurface will have already been called.
*
* Note that this function will be called when previewing modes in the
* Display Applet, but not at system shutdown. If you need to reset the
* hardware at shutdown, you can do it in the miniport by providing a
* 'HwResetHw' entry point in the VIDEO_HW_INITIALIZATION_DATA structure.
*
* Note: In an error, we may call this before DrvEnablePDEV is done.
*
\**************************************************************************/
VOID DrvDisablePDEV(
DHPDEV dhpdev)
{
PDEV* ppdev;
ppdev = (PDEV*) dhpdev;
vUninitializePalette(ppdev);
EngFreeMem(ppdev);
}
/******************************Public*Routine******************************\
* VOID DrvCompletePDEV
*
* Store the HPDEV, the engines handle for this PDEV, in the DHPDEV.
*
\**************************************************************************/
VOID DrvCompletePDEV(
DHPDEV dhpdev,
HDEV hdev)
{
((PDEV*) dhpdev)->hdevEng = hdev;
}
/******************************Public*Routine******************************\
* HSURF DrvEnableSurface
*
* Creates the drawing surface, initializes the hardware, and initializes
* driver components. This function is called after DrvEnablePDEV, and
* performs the final device initialization.
*
\**************************************************************************/
HSURF DrvEnableSurface(
DHPDEV dhpdev)
{
PDEV* ppdev;
HSURF hsurf;
SIZEL sizl;
DSURF* pdsurf;
VOID* pvTmpBuffer;
BYTE* pjScreen;
LONG lDelta;
FLONG flHooks;
ppdev = (PDEV*) dhpdev;
/////////////////////////////////////////////////////////////////////
// First enable all the subcomponents.
//
// Note that the order in which these 'Enable' functions are called
// may be significant in low off-screen memory conditions, because
// the off-screen heap manager may fail some of the later
// allocations...
if (!bEnableHardware(ppdev))
goto ReturnFailure;
if (!bEnableBanking(ppdev))
goto ReturnFailure;
if (!bEnableOffscreenHeap(ppdev))
goto ReturnFailure;
if (!bEnablePointer(ppdev))
goto ReturnFailure;
if (!bEnableText(ppdev))
goto ReturnFailure;
if (!bEnableBrushCache(ppdev))
goto ReturnFailure;
if (!bEnablePalette(ppdev))
goto ReturnFailure;
if (!bEnableDirectDraw(ppdev))
goto ReturnFailure;
/////////////////////////////////////////////////////////////////////
// Now create our private surface structure.
//
// Whenever we get a call to draw directly to the screen, we'll get
// passed a pointer to a SURFOBJ whose 'dhpdev' field will point
// to our PDEV structure, and whose 'dhsurf' field will point to the
// following DSURF structure.
//
// Every device bitmap we create in DrvCreateDeviceBitmap will also
// have its own unique DSURF structure allocated (but will share the
// same PDEV). To make our code more polymorphic for handling drawing
// to either the screen or an off-screen bitmap, we have the same
// structure for both.
pdsurf = &ppdev->dsurfScreen;
pdsurf->dt = 0;
pdsurf->x = 0;
pdsurf->y = 0;
pdsurf->fpVidMem = 0;
pdsurf->ppdev = ppdev;
/////////////////////////////////////////////////////////////////////
// Next, have GDI create the actual surface SURFOBJ structure.
sizl.cx = ppdev->cxScreen;
sizl.cy = ppdev->cyScreen;
// Create the primary surface. This defaults to a 'device-managed'
// surface, but EngModifySurface can change that.
hsurf = EngCreateDeviceSurface((DHSURF) pdsurf,
sizl,
ppdev->iBitmapFormat);
if (hsurf == 0)
{
DISPDBG((0, "DrvEnableSurface - Failed EngCreateDeviceSurface"));
goto ReturnFailure;
}
if ((ppdev->flCaps & CAPS_NEW_MMIO) &&
!(ppdev->flCaps & CAPS_NO_DIRECT_ACCESS))
{
// On all cards where we linearly map the frame buffer, create our
// drawing surface as a GDI-managed surface, meaning that we give
// GDI a pointer to the framebuffer and GDI can draw on the bits
// directly. This will allow us good performance with drawing such
// as GradientFills, even though our hardware can't accelerate the
// drawing and so we don't hook DrvGradientFill. This way GDI can
// do write-combined writes directly to the framebuffer and still be
// very fast.
//
// Note that this requires that we hook DrvSynchronize and
// set HOOK_SYNCHRONIZE.
pjScreen = ppdev->pjScreen;
lDelta = ppdev->lDelta;
flHooks = ppdev->flHooks | HOOK_SYNCHRONIZE;
}
else
{
// Ugh, we're running on an ancient S3 card where we can't completely
// map the entire frame buffer into memory. We have to create the
// primary surface as a 'GDI-opaque' device-managed surface, and GDI
// will be forced to go through only Drv calls that we've hooked.
// (In this case, drawing such as GradientFills will be pathetically
// slow.)
pjScreen = NULL;
lDelta = 0;
flHooks = ppdev->flHooks;
}
// Note that this call is new to NT5, and takes the place of
// EngAssociateSurface.
if (!EngModifySurface(hsurf,
ppdev->hdevEng,
flHooks,
MS_NOTSYSTEMMEMORY, // It's in video memory
(DHSURF) pdsurf,
pjScreen,
lDelta,
NULL))
{
DISPDBG((0, "DrvEnableSurface - Failed EngModifySurface"));
goto ReturnFailure;
}
ppdev->hsurfScreen = hsurf; // Remember it for clean-up
ppdev->bEnabled = TRUE; // We'll soon be in graphics mode
// Create our generic temporary buffer, which may be used by any
// component.
pvTmpBuffer = EngAllocMem(0, TMP_BUFFER_SIZE, ALLOC_TAG);
if (pvTmpBuffer == NULL)
{
DISPDBG((0, "DrvEnableSurface - Failed VirtualAlloc"));
goto ReturnFailure;
}
ppdev->pvTmpBuffer = pvTmpBuffer;
DISPDBG((5, "Passed DrvEnableSurface"));
return(hsurf);
ReturnFailure:
DrvDisableSurface((DHPDEV) ppdev);
DISPDBG((0, "Failed DrvEnableSurface"));
return(0);
}
/******************************Public*Routine******************************\
* VOID DrvDisableSurface
*
* Free resources allocated by DrvEnableSurface. Release the surface.
*
* Note that this function will be called when previewing modes in the
* Display Applet, but not at system shutdown. If you need to reset the
* hardware at shutdown, you can do it in the miniport by providing a
* 'HwResetHw' entry point in the VIDEO_HW_INITIALIZATION_DATA structure.
*
* Note: In an error case, we may call this before DrvEnableSurface is
* completely done.
*
\**************************************************************************/
VOID DrvDisableSurface(
DHPDEV dhpdev)
{
PDEV* ppdev;
ppdev = (PDEV*) dhpdev;
// Note: In an error case, some of the following relies on the
// fact that the PDEV is zero-initialized, so fields like
// 'hsurfScreen' will be zero unless the surface has been
// sucessfully initialized, and makes the assumption that
// EngDeleteSurface can take '0' as a parameter.
vDisableDirectDraw(ppdev);
vDisablePalette(ppdev);
vDisableBrushCache(ppdev);
vDisableText(ppdev);
vDisablePointer(ppdev);
vDisableOffscreenHeap(ppdev);
vDisableBanking(ppdev);
vDisableHardware(ppdev);
EngFreeMem(ppdev->pvTmpBuffer);
EngDeleteSurface(ppdev->hsurfScreen);
}
/******************************Public*Routine******************************\
* BOOL DrvGetDirectDrawInfo
*
* Will be called after DrvEnablesurface. Will be called twice before
* DrvEnableDirectDraw is called.
*
\**************************************************************************/
BOOL DrvGetDirectDrawInfo(
DHPDEV dhpdev,
DD_HALINFO* pHalInfo,
DWORD* pdwNumHeaps,
VIDEOMEMORY* pvmList, // Will be NULL on first call
DWORD* pdwNumFourCC,
DWORD* pdwFourCC) // Will be NULL on first call
{
PDEV* ppdev;
LONGLONG li;
DWORD cProcessors;
DWORD cHeaps;
ppdev = (PDEV*) dhpdev;
*pdwNumFourCC = 0;
*pdwNumHeaps = 0;
// We may not support DirectDraw on this card.
//
// The 765 (Trio64V+) has a bug such that writing to the frame
// buffer during an accelerator operation may cause a hang if
// you do the write soon enough after starting the blt. (There is
// a small window of opportunity.) On UP machines, the context
// switch time seems to be enough to avoid the problem. However,
// on MP machines, we'll have to disable direct draw.
//
// NOTE: We can identify the 765 since it is the only chip with
// the CAPS_STREAMS_CAPABLE flag.
if (ppdev->flCaps & CAPS_STREAMS_CAPABLE)
{
if (!EngQuerySystemAttribute(EngNumberOfProcessors, &cProcessors) ||
(cProcessors != 1))
{
return(FALSE);
}
}
if (!(ppdev->flCaps & CAPS_NEW_MMIO) ||
(ppdev->flCaps & CAPS_NO_DIRECT_ACCESS))
{
return(FALSE);
}
pHalInfo->dwSize = sizeof(*pHalInfo);
// Current primary surface attributes. Since HalInfo is zero-initialized
// by GDI, we only have to fill in the fields which should be non-zero:
pHalInfo->vmiData.pvPrimary = ppdev->pjScreen;
pHalInfo->vmiData.dwDisplayWidth = ppdev->cxScreen;
pHalInfo->vmiData.dwDisplayHeight = ppdev->cyScreen;
pHalInfo->vmiData.lDisplayPitch = ppdev->lDelta;
pHalInfo->vmiData.ddpfDisplay.dwSize = sizeof(DDPIXELFORMAT);
pHalInfo->vmiData.ddpfDisplay.dwFlags = DDPF_RGB;
pHalInfo->vmiData.ddpfDisplay.dwRGBBitCount = 8 * ppdev->cjPelSize;
if (ppdev->iBitmapFormat == BMF_8BPP)
{
pHalInfo->vmiData.ddpfDisplay.dwFlags |= DDPF_PALETTEINDEXED8;
}
// These masks will be zero at 8bpp:
pHalInfo->vmiData.ddpfDisplay.dwRBitMask = ppdev->flRed;
pHalInfo->vmiData.ddpfDisplay.dwGBitMask = ppdev->flGreen;
pHalInfo->vmiData.ddpfDisplay.dwBBitMask = ppdev->flBlue;
// The S3 has to do everything using 'rectangular' memory, because
// the accelerator doesn't know how to set arbitrary strides.
cHeaps = 0;
// Snag a pointer to the video-memory list so that we can use it to
// call back to DirectDraw to allocate video memory:
ppdev->pvmList = pvmList;
// Create one heap to describe the unused portion of video
// memory to the right of the visible screen (if any):
if (ppdev->cxScreen < ppdev->cxHeap)
{
cHeaps++;
if (pvmList != NULL)
{
pvmList->dwFlags = VIDMEM_ISRECTANGULAR;
pvmList->fpStart = ppdev->cxScreen * ppdev->cjPelSize;
pvmList->dwWidth = (ppdev->cxHeap - ppdev->cxScreen)
* ppdev->cjPelSize;
pvmList->dwHeight = ppdev->cyScreen;
pvmList->ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN;
pvmList++;
}
}
// Create another heap to describe the unused portion of video
// memory below the visible screen (if any):
if (ppdev->cyScreen < ppdev->cyHeap)
{
cHeaps++;
if (pvmList != NULL)
{
pvmList->dwFlags = VIDMEM_ISRECTANGULAR;
pvmList->fpStart = ppdev->cyScreen * ppdev->lDelta;
pvmList->dwWidth = ppdev->cxHeap * ppdev->cjPelSize;
pvmList->dwHeight = ppdev->cyHeap - ppdev->cyScreen;
pvmList->ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN;
pvmList++;
}
}
// Update the number of heaps:
ppdev->cHeaps = cHeaps;
*pdwNumHeaps = cHeaps;
// dword alignment must be guaranteed for off-screen surfaces:
pHalInfo->vmiData.dwOffscreenAlign = 4;
// Capabilities supported:
pHalInfo->ddCaps.dwCaps = DDCAPS_BLT
| DDCAPS_BLTCOLORFILL
| DDCAPS_COLORKEY;
pHalInfo->ddCaps.dwCKeyCaps = DDCKEYCAPS_SRCBLT;
pHalInfo->ddCaps.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN
| DDSCAPS_PRIMARYSURFACE
| DDSCAPS_FLIP;
// The Trio 64V+ has overlay streams capabilities which are a superset
// of the above:
if (ppdev->flCaps & CAPS_STREAMS_CAPABLE)
{
// Overlays need 8-byte alignment. Note that if 24bpp overlays are
// ever supported, this will have to change to compensate:
pHalInfo->vmiData.dwOverlayAlign = 8;
pHalInfo->ddCaps.dwCaps |= DDCAPS_OVERLAY
| DDCAPS_OVERLAYSTRETCH
| DDCAPS_OVERLAYFOURCC
| DDCAPS_OVERLAYCANTCLIP;
pHalInfo->ddCaps.dwFXCaps |= DDFXCAPS_OVERLAYSTRETCHX
| DDFXCAPS_OVERLAYSTRETCHY;
// We support only destination colour keying because that's the
// only permutation we've had a chance to test.
pHalInfo->ddCaps.dwCKeyCaps |= DDCKEYCAPS_DESTOVERLAY;
pHalInfo->ddCaps.ddsCaps.dwCaps |= DDSCAPS_OVERLAY;
*pdwNumFourCC = 1;
if (pdwFourCC)
{
pdwFourCC[0] = FOURCC_YUY2;
}
pHalInfo->ddCaps.dwMaxVisibleOverlays = 1;
pHalInfo->ddCaps.dwMinOverlayStretch = ppdev->ulMinOverlayStretch;
pHalInfo->ddCaps.dwMinLiveVideoStretch = ppdev->ulMinOverlayStretch;
pHalInfo->ddCaps.dwMinHwCodecStretch = ppdev->ulMinOverlayStretch;
pHalInfo->ddCaps.dwMaxOverlayStretch = 9999;
pHalInfo->ddCaps.dwMaxLiveVideoStretch = 9999;
pHalInfo->ddCaps.dwMaxHwCodecStretch = 9999;
}
// The 868 and 968 have a pixel formatter which is capable of doing
// colour space conversions and hardware stretching from off-screen
// surfaces:
else if (ppdev->flCaps & CAPS_PIXEL_FORMATTER)
{
pHalInfo->ddCaps.dwCaps |= DDCAPS_BLTSTRETCH;
pHalInfo->ddCaps.dwFXCaps |= DDFXCAPS_BLTSTRETCHX
| DDFXCAPS_BLTSTRETCHY;
// YUV is supported only above 8bpp:
if (ppdev->iBitmapFormat != BMF_8BPP)
{
pHalInfo->ddCaps.dwCaps |= DDCAPS_BLTFOURCC;
*pdwNumFourCC = 1;
if (pdwFourCC)
{
*pdwFourCC = FOURCC_YUY2;
}
}
}
// Tell DirectDraw that we support additional callbacks via
// DdGetDriverInfo:
pHalInfo->GetDriverInfo = DdGetDriverInfo;
pHalInfo->dwFlags |= DDHALINFO_GETDRIVERINFOSET;
return(TRUE);
}
/******************************Public*Routine******************************\
* BOOL DrvEnableDirectDraw
*
* This function is called by GDI when a new mode is set, immediately after
* it calls our DrvEnableSurface and DrvGetDirectDrawInfo.
*
\**************************************************************************/
BOOL DrvEnableDirectDraw(
DHPDEV dhpdev,
DD_CALLBACKS* pCallBacks,
DD_SURFACECALLBACKS* pSurfaceCallBacks,
DD_PALETTECALLBACKS* pPaletteCallBacks)
{
PDEV* ppdev;
ppdev = (PDEV*) dhpdev;
pCallBacks->WaitForVerticalBlank = DdWaitForVerticalBlank;
pCallBacks->MapMemory = DdMapMemory;
pCallBacks->dwFlags = DDHAL_CB32_WAITFORVERTICALBLANK
| DDHAL_CB32_MAPMEMORY;
pSurfaceCallBacks->Blt = DdBlt;
pSurfaceCallBacks->Flip = DdFlip;
pSurfaceCallBacks->Lock = DdLock;
pSurfaceCallBacks->GetBltStatus = DdGetBltStatus;
pSurfaceCallBacks->GetFlipStatus = DdGetFlipStatus;
pSurfaceCallBacks->dwFlags = DDHAL_SURFCB32_BLT
| DDHAL_SURFCB32_FLIP
| DDHAL_SURFCB32_LOCK
| DDHAL_SURFCB32_GETBLTSTATUS
| DDHAL_SURFCB32_GETFLIPSTATUS;
// We can do overlays only when the Streams processor is enabled:
if (ppdev->flCaps & CAPS_STREAMS_CAPABLE)
{
pCallBacks->CreateSurface = DdCreateSurface;
pCallBacks->CanCreateSurface = DdCanCreateSurface;
pCallBacks->dwFlags |= DDHAL_CB32_CREATESURFACE
| DDHAL_CB32_CANCREATESURFACE;
pSurfaceCallBacks->SetColorKey = DdSetColorKey;
pSurfaceCallBacks->UpdateOverlay = DdUpdateOverlay;
pSurfaceCallBacks->SetOverlayPosition = DdSetOverlayPosition;
pSurfaceCallBacks->dwFlags |= DDHAL_SURFCB32_SETCOLORKEY
| DDHAL_SURFCB32_UPDATEOVERLAY
| DDHAL_SURFCB32_SETOVERLAYPOSITION;
ppdev->ulColorKey = 0;
}
// We can do blts with funky surface formats only when the pixel
// formatter is enabled:
else if (ppdev->flCaps & CAPS_PIXEL_FORMATTER)
{
pCallBacks->CreateSurface = DdCreateSurface;
pCallBacks->CanCreateSurface = DdCanCreateSurface;
pCallBacks->dwFlags |= DDHAL_CB32_CREATESURFACE
| DDHAL_CB32_CANCREATESURFACE;
}
return(TRUE);
}
/******************************Public*Routine******************************\
* VOID DrvDisableDirectDraw
*
* This function is called by GDI when the driver is to be disabled, just
* before it calls DrvDisableSurface.
*
\**************************************************************************/
VOID DrvDisableDirectDraw(
DHPDEV dhpdev)
{
}
/******************************Public*Routine******************************\
* VOID DrvAssertMode
*
* This asks the device to reset itself to the mode of the pdev passed in.
*
\**************************************************************************/
BOOL DrvAssertMode(
DHPDEV dhpdev,
BOOL bEnable)
{
PDEV* ppdev;
ppdev = (PDEV*) dhpdev;
if (!bEnable)
{
//////////////////////////////////////////////////////////////
// Disable - Switch to full-screen mode
vAssertModeDirectDraw(ppdev, FALSE);
vAssertModePalette(ppdev, FALSE);
vAssertModeBrushCache(ppdev, FALSE);
vAssertModeText(ppdev, FALSE);
vAssertModePointer(ppdev, FALSE);
if (bAssertModeOffscreenHeap(ppdev, FALSE))
{
vAssertModeBanking(ppdev, FALSE);
if (bAssertModeHardware(ppdev, FALSE))
{
ppdev->bEnabled = FALSE;
return(TRUE);
}
//////////////////////////////////////////////////////////
// We failed to switch to full-screen. So undo everything:
vAssertModeBanking(ppdev, TRUE);
bAssertModeOffscreenHeap(ppdev, TRUE); // We don't need to check
} // return code with TRUE
// there is HW setup in bEnablePointer that needs to be done at assert time too
// coming back from full-screen DOS or hibernate so call enablepointer which
// then calls vAssertModePointer itself. In 8bpp, the DAC resolution was not
// being set correctly after FSdos or Hib. causing screen to be dim
bEnablePointer(ppdev);
vAssertModeText(ppdev, TRUE);
vAssertModeBrushCache(ppdev, TRUE);
vAssertModePalette(ppdev, TRUE);
vAssertModeDirectDraw(ppdev, TRUE);
}
else
{
//////////////////////////////////////////////////////////////
// Enable - Switch back to graphics mode
// We have to enable every subcomponent in the reverse order
// in which it was disabled:
if (bAssertModeHardware(ppdev, TRUE))
{
vAssertModeBanking(ppdev, TRUE);
bAssertModeOffscreenHeap(ppdev, TRUE); // We don't need to check
// return code with TRUE
bEnablePointer(ppdev);
vAssertModeText(ppdev, TRUE);
vAssertModeBrushCache(ppdev, TRUE);
vAssertModePalette(ppdev, TRUE);
vAssertModeDirectDraw(ppdev, TRUE);
ppdev->bEnabled = TRUE;
return(TRUE);
}
}
return(FALSE);
}
/******************************Public*Routine******************************\
* ULONG DrvGetModes
*
* Returns the list of available modes for the device.
*
\**************************************************************************/
ULONG DrvGetModes(
HANDLE hDriver,
ULONG cjSize,
DEVMODEW* pdm)
{
DWORD cModes;
DWORD cbOutputSize;
PVIDEO_MODE_INFORMATION pVideoModeInformation;
PVIDEO_MODE_INFORMATION pVideoTemp;
DWORD cOutputModes = cjSize / (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE);
DWORD cbModeSize;
cModes = getAvailableModes(hDriver,
(PVIDEO_MODE_INFORMATION *) &pVideoModeInformation,
&cbModeSize);
if (cModes == 0)
{
DISPDBG((0, "DrvGetModes failed to get mode information"));
return(0);
}
if (pdm == NULL)
{
cbOutputSize = cModes * (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE);
}
else
{
//
// Now copy the information for the supported modes back into the
// output buffer
//
cbOutputSize = 0;
pVideoTemp = pVideoModeInformation;
do
{
if (pVideoTemp->Length != 0)
{
if (cOutputModes == 0)
{
break;
}
//
// Zero the entire structure to start off with.
//
memset(pdm, 0, sizeof(DEVMODEW));
//
// Set the name of the device to the name of the DLL.
//
memcpy(pdm->dmDeviceName, DLL_NAME, sizeof(DLL_NAME));
pdm->dmSpecVersion = DM_SPECVERSION;
pdm->dmDriverVersion = DM_SPECVERSION;
pdm->dmSize = sizeof(DEVMODEW);
pdm->dmDriverExtra = DRIVER_EXTRA_SIZE;
pdm->dmBitsPerPel = pVideoTemp->NumberOfPlanes *
pVideoTemp->BitsPerPlane;
pdm->dmPelsWidth = pVideoTemp->VisScreenWidth;
pdm->dmPelsHeight = pVideoTemp->VisScreenHeight;
pdm->dmDisplayFrequency = pVideoTemp->Frequency;
pdm->dmDisplayFlags = 0;
pdm->dmFields = DM_BITSPERPEL |
DM_PELSWIDTH |
DM_PELSHEIGHT |
DM_DISPLAYFREQUENCY |
DM_DISPLAYFLAGS ;
//
// Go to the next DEVMODE entry in the buffer.
//
cOutputModes--;
pdm = (LPDEVMODEW) ( ((ULONG_PTR)pdm) + sizeof(DEVMODEW) +
DRIVER_EXTRA_SIZE);
cbOutputSize += (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE);
}
pVideoTemp = (PVIDEO_MODE_INFORMATION)
(((PUCHAR)pVideoTemp) + cbModeSize);
} while (--cModes);
}
EngFreeMem(pVideoModeInformation);
return(cbOutputSize);
}
/******************************Public*Routine******************************\
* BOOL bAssertModeHardware
*
* Sets the appropriate hardware state for graphics mode or full-screen.
*
\**************************************************************************/
BOOL bAssertModeHardware(
PDEV* ppdev,
BOOL bEnable)
{
BYTE* pjIoBase;
BYTE* pjMmBase;
DWORD ReturnedDataLength;
ULONG ulReturn;
BYTE jExtendedMemoryControl;
VIDEO_MODE_INFORMATION VideoModeInfo;
LONG cjEndOfFrameBuffer;
LONG cjPointerOffset;
LONG lDelta;
ULONG ulMiscState;
pjIoBase = ppdev->pjIoBase;
pjMmBase = ppdev->pjMmBase;
if (bEnable)
{
// Call the miniport via an IOCTL to set the graphics mode.
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_SET_CURRENT_MODE,
&ppdev->ulMode, // input buffer
sizeof(DWORD),
NULL,
0,
&ReturnedDataLength))
{
DISPDBG((0, "bAssertModeHardware - Failed VIDEO_SET_CURRENT_MODE"));
goto ReturnFalse;
}
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_QUERY_CURRENT_MODE,
NULL,
0,
&VideoModeInfo,
sizeof(VideoModeInfo),
&ReturnedDataLength))
{
DISPDBG((0, "bAssertModeHardware - failed VIDEO_QUERY_CURRENT_MODE"));
goto ReturnFalse;
}
#if DEBUG_HEAP
VideoModeInfo.VideoMemoryBitmapWidth = VideoModeInfo.VisScreenWidth;
VideoModeInfo.VideoMemoryBitmapHeight = VideoModeInfo.VisScreenHeight;
#endif
// The following variables are determined only after the initial
// modeset:
ppdev->lDelta = VideoModeInfo.ScreenStride;
ppdev->flCaps = VideoModeInfo.DriverSpecificAttributeFlags;
ppdev->cxMemory = VideoModeInfo.VideoMemoryBitmapWidth;
ppdev->cxHeap = VideoModeInfo.VideoMemoryBitmapWidth;
ppdev->cyMemory = VideoModeInfo.VideoMemoryBitmapHeight;
ppdev->cyHeap = VideoModeInfo.VideoMemoryBitmapHeight;
ppdev->bMmIo = ((ppdev->flCaps & CAPS_MM_IO) > 0);
// If we're using the S3 hardware pointer, reserve the last 1k of
// the frame buffer to store the pointer shape:
if (!(ppdev->flCaps & (CAPS_SW_POINTER | CAPS_DAC_POINTER)))
{
// Byte offset from start of frame buffer to end:
cjEndOfFrameBuffer = ppdev->cyMemory * ppdev->lDelta;
// We'll reserve the end of off-screen memory for the hardware
// pointer shape. Unfortunately, the S3 chips have a bug
// where the shape has to be stored on a 1K multiple,
// regardless of what the current screen stride is.
cjPointerOffset = (cjEndOfFrameBuffer - HW_POINTER_TOTAL_SIZE)
& ~(HW_POINTER_TOTAL_SIZE - 1);
// Figure out the coordinate where the pointer shape starts:
lDelta = ppdev->lDelta;
ppdev->cjPointerOffset = cjPointerOffset;
ppdev->yPointerShape = (cjPointerOffset / lDelta);
ppdev->xPointerShape =
CONVERT_FROM_BYTES((cjPointerOffset % lDelta), ppdev);
if (ppdev->yPointerShape >= ppdev->cyScreen)
{
// There's enough room for the pointer shape at the
// bottom of off-screen memory; reserve its room by
// lying about how much off-screen memory there is:
ppdev->cyMemory = ppdev->yPointerShape;
}
else
{
// There's not enough room for the pointer shape in
// off-screen memory; we'll have to simulate:
ppdev->flCaps |= CAPS_SW_POINTER;
}
}
// Do some parameter checking on the values that the miniport
// returned to us:
ASSERTDD(ppdev->cxMemory >= ppdev->cxScreen, "Invalid cxMemory");
ASSERTDD(ppdev->cyMemory >= ppdev->cyScreen, "Invalid cyMemory");
ASSERTDD((ppdev->flCaps &
(CAPS_NEW_BANK_CONTROL | CAPS_NEWER_BANK_CONTROL)) ||
((ppdev->cxMemory <= 1024) && (ppdev->cyMemory <= 1024)),
"Have to have new bank control if more than 1meg memory");
ASSERTDD((ppdev->flCaps & (CAPS_SW_POINTER | CAPS_DAC_POINTER)) !=
(CAPS_SW_POINTER | CAPS_DAC_POINTER),
"Should not set both Software and DAC cursor flags");
ASSERTDD(!(ppdev->flCaps & CAPS_MM_IO) ||
(ppdev->flCaps & (CAPS_MM_TRANSFER | CAPS_MM_32BIT_TRANSFER)),
"Must enable memory-mapped transfer if memory-mapped I/O");
// First thing we do is unlock the accelerator registers:
ACQUIRE_CRTC_CRITICAL_SECTION(ppdev);
OUTPW(pjIoBase, CRTC_INDEX, ((SYSCTL_UNLOCK << 8) | CR39));
OUTPW(pjIoBase, CRTC_INDEX, ((REG_UNLOCK_1 << 8) | S3R8));
// Enable memory-mapped IO. Note that ulMiscState should not be
// read on non-memory mapped I/O S3's because it does not exist
// on 911/924's.
if (ppdev->flCaps & CAPS_MM_IO)
{
OUTP(pjIoBase, CRTC_INDEX, 0x53);
jExtendedMemoryControl = INP(pjIoBase, CRTC_DATA);
OUTP(pjIoBase, CRTC_DATA, jExtendedMemoryControl | 0x10);
// Read the default MULTI_MISC register state.
IO_GP_WAIT(ppdev); // Wait so we don't interfere with any
// pending commands waiting on the
// FIFO
IO_READ_SEL(ppdev, 6); // We'll be reading index 0xE
IO_GP_WAIT(ppdev); // Wait until that's processed
IO_RD_REG_DT(ppdev, ulMiscState); // Read ulMiscState
// Make the colour and mask registers '32-bit'.
//
// NOTE: This is what precludes enabling MM I/O on 928 boards.
ulMiscState |= 0x0200;
IO_MULT_MISC(ppdev, ulMiscState);
ppdev->ulMiscState = ulMiscState;
}
RELEASE_CRTC_CRITICAL_SECTION(ppdev);
// Then set the rest of the default registers:
vResetClipping(ppdev);
if (ppdev->flCaps & CAPS_MM_IO)
{
IO_FIFO_WAIT(ppdev, 1);
MM_WRT_MASK(ppdev, pjMmBase, -1);
}
else
{
if (DEPTH32(ppdev))
{
IO_FIFO_WAIT(ppdev, 2);
IO_WRT_MASK32(ppdev, -1);
}
else
{
IO_FIFO_WAIT(ppdev, 1);
IO_WRT_MASK(ppdev, -1);
}
}
}
else
{
// Call the kernel driver to reset the device to a known state.
// NTVDM will take things from there:
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_RESET_DEVICE,
NULL,
0,
NULL,
0,
&ulReturn))
{
DISPDBG((0, "bAssertModeHardware - Failed reset IOCTL"));
goto ReturnFalse;
}
}
DISPDBG((5, "Passed bAssertModeHardware"));
return(TRUE);
ReturnFalse:
DISPDBG((0, "Failed bAssertModeHardware"));
return(FALSE);
}
/******************************Public*Routine******************************\
* BOOL bEnableHardware
*
* Puts the hardware in the requested mode and initializes it.
*
* Note: Should be called before any access is done to the hardware from
* the display driver.
*
\**************************************************************************/
BOOL bEnableHardware(
PDEV* ppdev)
{
BYTE* pjIoBase;
VIDEO_PUBLIC_ACCESS_RANGES VideoAccessRange[2];
VIDEO_MEMORY VideoMemory;
VIDEO_MEMORY_INFORMATION VideoMemoryInfo;
DWORD ReturnedDataLength;
UCHAR* pj;
USHORT* pw;
ULONG* pd;
ULONG i;
// We need a critical section merely because of some S3 weirdness:
// both the bank control registers and the cursor registers have
// to be accessed through the shared CRTC registers. We want to
// set the GCAPS_ASYNCMOVE flag to allow the cursor to move even
// while we're using the bank registers for a blt -- so we have to
// synchronize all accesses to the CRTC registers.
//
// (Note that in the case of GCAPS_ASYNCMOVE, GDI automatically
// synchronizes with DrvSetPalette, so you don't have to worry
// about overlap between asynchronous cursor moves and the palette
// registers.)
ppdev->csCrtc = EngCreateSemaphore();
if (ppdev->csCrtc == 0)
{
DISPDBG((0, "bEnableHardware - Error creating CRTC semaphore"));
goto ReturnFalse;
}
// Map io ports into virtual memory:
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_QUERY_PUBLIC_ACCESS_RANGES,
NULL, // input buffer
0,
&VideoAccessRange, // output buffer
sizeof(VideoAccessRange),
&ReturnedDataLength))
{
DISPDBG((0, "bEnableHardware - Initialization error mapping IO port base"));
goto ReturnFalse;
}
ppdev->pjIoBase = (UCHAR*) VideoAccessRange[0].VirtualAddress;
ppdev->pjMmBase = (BYTE*) VideoAccessRange[1].VirtualAddress;
pjIoBase = ppdev->pjIoBase;
// Get the linear memory address range.
VideoMemory.RequestedVirtualAddress = NULL;
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_MAP_VIDEO_MEMORY,
&VideoMemory, // input buffer
sizeof(VIDEO_MEMORY),
&VideoMemoryInfo, // output buffer
sizeof(VideoMemoryInfo),
&ReturnedDataLength))
{
DISPDBG((0, "bEnableHardware - Error mapping buffer address"));
goto ReturnFalse;
}
// Record the Frame Buffer Linear Address.
ppdev->pjScreen = (BYTE*) VideoMemoryInfo.FrameBufferBase;
ppdev->cjBank = VideoMemoryInfo.FrameBufferLength;
DISPDBG((1, "pjScreen: %lx pjMmBase: %lx", ppdev->pjScreen, ppdev->pjMmBase));
// Set all the register addresses.
ppdev->ioCur_y = pjIoBase + CUR_Y;
ppdev->ioCur_x = pjIoBase + CUR_X;
ppdev->ioDesty_axstp = pjIoBase + DEST_Y;
ppdev->ioDestx_diastp = pjIoBase + DEST_X;
ppdev->ioErr_term = pjIoBase + ERR_TERM;
ppdev->ioMaj_axis_pcnt = pjIoBase + MAJ_AXIS_PCNT;
ppdev->ioGp_stat_cmd = pjIoBase + CMD;
ppdev->ioShort_stroke = pjIoBase + SHORT_STROKE;
ppdev->ioBkgd_color = pjIoBase + BKGD_COLOR;
ppdev->ioFrgd_color = pjIoBase + FRGD_COLOR;
ppdev->ioWrt_mask = pjIoBase + WRT_MASK;
ppdev->ioRd_mask = pjIoBase + RD_MASK;
ppdev->ioColor_cmp = pjIoBase + COLOR_CMP;
ppdev->ioBkgd_mix = pjIoBase + BKGD_MIX;
ppdev->ioFrgd_mix = pjIoBase + FRGD_MIX;
ppdev->ioMulti_function = pjIoBase + MULTIFUNC_CNTL;
ppdev->ioPix_trans = pjIoBase + PIX_TRANS;
for (pw = (USHORT*) ppdev->pjMmBase, i = 0; i < XFER_BUFFERS; i++, pw += 2)
{
ppdev->apwMmXfer[i] = pw;
}
for (pd = (ULONG*) ppdev->pjMmBase, i = 0; i < XFER_BUFFERS; i++, pd++)
{
ppdev->apdMmXfer[i] = pd;
}
// Now we can set the mode, unlock the accelerator, and reset the
// clipping:
if (!bAssertModeHardware(ppdev, TRUE))
goto ReturnFalse;
if (ppdev->flCaps & CAPS_MM_IO)
{
// Can do memory-mapped IO:
ppdev->pfnFillSolid = vMmFillSolid;
ppdev->pfnFillPat = vMmFillPatFast;
ppdev->pfnXfer1bpp = vMmXfer1bpp;
ppdev->pfnXfer4bpp = vMmXfer4bpp;
ppdev->pfnXferNative = vMmXferNative;
ppdev->pfnCopyBlt = vMmCopyBlt;
ppdev->pfnFastPatRealize = vMmFastPatRealize;
ppdev->pfnTextOut = bMmTextOut;
ppdev->pfnLineToTrivial = vMmLineToTrivial;
ppdev->pfnLineToClipped = vMmLineToClipped;
ppdev->pfnCopyTransparent = vMmCopyTransparent;
if (ppdev->flCaps & CAPS_MM_32BIT_TRANSFER)
ppdev->pfnImageTransfer = vMmImageTransferMm32;
else
ppdev->pfnImageTransfer = vMmImageTransferMm16;
// On some cards, it may be faster to use the old I/O based
// glyph routine, which uses the CPU to draw all the glyphs
// to a monochrome buffer, and then uses the video hardware
// to colour expand the result:
if (!(ppdev->flCaps & CAPS_MM_GLYPH_EXPAND))
ppdev->pfnTextOut = bIoTextOut;
if (ppdev->flCaps & CAPS_NEW_MMIO)
{
ppdev->pfnTextOut = bNwTextOut;
ppdev->pfnLineToTrivial = vNwLineToTrivial;
ppdev->pfnLineToClipped = vNwLineToClipped;
}
}
else
{
// Have to do IN/OUTs:
ppdev->pfnFillSolid = vIoFillSolid;
ppdev->pfnFillPat = vIoFillPatFast;
// bEnableBrushCache may override this value
ppdev->pfnXfer1bpp = vIoXfer1bpp;
ppdev->pfnXfer4bpp = vIoXfer4bpp;
ppdev->pfnXferNative = vIoXferNative;
ppdev->pfnCopyBlt = vIoCopyBlt;
ppdev->pfnFastPatRealize = vIoFastPatRealize;
ppdev->pfnTextOut = bIoTextOut;
ppdev->pfnLineToTrivial = vIoLineToTrivial;
ppdev->pfnLineToClipped = vIoLineToClipped;
ppdev->pfnCopyTransparent = vIoCopyTransparent;
if (ppdev->flCaps & CAPS_MM_TRANSFER)
ppdev->pfnImageTransfer = vIoImageTransferMm16;
else
ppdev->pfnImageTransfer = vIoImageTransferIo16;
}
#if DBG
{
ACQUIRE_CRTC_CRITICAL_SECTION(ppdev);
OUTP(pjIoBase, CRTC_INDEX, 0x30);
DISPDBG((0, "Chip: %lx Bank: %lx Width: %li Height: %li Stride: %li Flags: %08lx",
(ULONG) INP(pjIoBase, CRTC_DATA), ppdev->cjBank, ppdev->cxMemory, ppdev->cyMemory,
ppdev->lDelta, ppdev->flCaps));
RELEASE_CRTC_CRITICAL_SECTION(ppdev);
}
#endif
DISPDBG((5, "Passed bEnableHardware"));
return(TRUE);
ReturnFalse:
DISPDBG((0, "Failed bEnableHardware"));
return(FALSE);
}
/******************************Public*Routine******************************\
* VOID vDisableHardware
*
* Undoes anything done in bEnableHardware.
*
* Note: In an error case, we may call this before bEnableHardware is
* completely done.
*
\**************************************************************************/
VOID vDisableHardware(
PDEV* ppdev)
{
DWORD ReturnedDataLength;
VIDEO_MEMORY VideoMemory[2];
VideoMemory[0].RequestedVirtualAddress = ppdev->pjScreen;
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_UNMAP_VIDEO_MEMORY,
VideoMemory,
sizeof(VIDEO_MEMORY),
NULL,
0,
&ReturnedDataLength))
{
DISPDBG((0, "vDisableHardware failed IOCTL_VIDEO_UNMAP_VIDEO"));
}
VideoMemory[0].RequestedVirtualAddress = ppdev->pjIoBase;
VideoMemory[1].RequestedVirtualAddress = ppdev->pjMmBase;
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_FREE_PUBLIC_ACCESS_RANGES,
VideoMemory,
sizeof(VideoMemory),
NULL,
0,
&ReturnedDataLength))
{
DISPDBG((0, "vDisableHardware failed IOCTL_VIDEO_FREE_PUBLIC_ACCESS"));
}
EngDeleteSemaphore(ppdev->csCrtc);
}
/******************************Public*Routine******************************\
* BOOL bInitializeModeFields
*
* Initializes a bunch of fields in the pdev, devcaps (aka gdiinfo), and
* devinfo based on the requested mode.
*
\**************************************************************************/
BOOL bInitializeModeFields(
PDEV* ppdev,
GDIINFO* pgdi,
DEVINFO* pdi,
DEVMODEW* pdm)
{
ULONG cModes;
PVIDEO_MODE_INFORMATION pVideoBuffer;
PVIDEO_MODE_INFORMATION pVideoModeSelected;
PVIDEO_MODE_INFORMATION pVideoTemp;
BOOL bSelectDefault;
VIDEO_MODE_INFORMATION VideoModeInformation;
ULONG cbModeSize;
// Call the miniport to get mode information
cModes = getAvailableModes(ppdev->hDriver, &pVideoBuffer, &cbModeSize);
if (cModes == 0)
goto ReturnFalse;
// Now see if the requested mode has a match in that table.
pVideoModeSelected = NULL;
pVideoTemp = pVideoBuffer;
if ((pdm->dmPelsWidth == 0) &&
(pdm->dmPelsHeight == 0) &&
(pdm->dmBitsPerPel == 0) &&
(pdm->dmDisplayFrequency == 0))
{
DISPDBG((1, "Default mode requested"));
bSelectDefault = TRUE;
}
else
{
DISPDBG((1, "Requested mode..."));
DISPDBG((1, " Screen width -- %li", pdm->dmPelsWidth));
DISPDBG((1, " Screen height -- %li", pdm->dmPelsHeight));
DISPDBG((1, " Bits per pel -- %li", pdm->dmBitsPerPel));
DISPDBG((1, " Frequency -- %li", pdm->dmDisplayFrequency));
bSelectDefault = FALSE;
}
while (cModes--)
{
if (pVideoTemp->Length != 0)
{
DISPDBG((8, " Checking against miniport mode:"));
DISPDBG((8, " Screen width -- %li", pVideoTemp->VisScreenWidth));
DISPDBG((8, " Screen height -- %li", pVideoTemp->VisScreenHeight));
DISPDBG((8, " Bits per pel -- %li", pVideoTemp->BitsPerPlane *
pVideoTemp->NumberOfPlanes));
DISPDBG((8, " Frequency -- %li", pVideoTemp->Frequency));
if (bSelectDefault ||
((pVideoTemp->VisScreenWidth == pdm->dmPelsWidth) &&
(pVideoTemp->VisScreenHeight == pdm->dmPelsHeight) &&
(pVideoTemp->BitsPerPlane *
pVideoTemp->NumberOfPlanes == pdm->dmBitsPerPel) &&
(pVideoTemp->Frequency == pdm->dmDisplayFrequency)))
{
pVideoModeSelected = pVideoTemp;
DISPDBG((1, "...Found a mode match!"));
break;
}
}
pVideoTemp = (PVIDEO_MODE_INFORMATION)
(((PUCHAR)pVideoTemp) + cbModeSize);
}
// If no mode has been found, return an error
if (pVideoModeSelected == NULL)
{
DISPDBG((1, "...Couldn't find a mode match!"));
EngFreeMem(pVideoBuffer);
goto ReturnFalse;
}
// We have chosen the one we want. Save it in a stack buffer and
// get rid of allocated memory before we forget to free it.
VideoModeInformation = *pVideoModeSelected;
EngFreeMem(pVideoBuffer);
#if DEBUG_HEAP
VideoModeInformation.VisScreenWidth = 640;
VideoModeInformation.VisScreenHeight = 480;
pdm->dmPelsWidth = 640;
pdm->dmPelsHeight = 480;
#endif
// Set up screen information from the mini-port:
ppdev->ulMode = VideoModeInformation.ModeIndex;
ppdev->cxScreen = VideoModeInformation.VisScreenWidth;
ppdev->cyScreen = VideoModeInformation.VisScreenHeight;
ppdev->cBitsPerPel = VideoModeInformation.BitsPerPlane;
DISPDBG((1, "ScreenStride: %lx", VideoModeInformation.ScreenStride));
// We handle HOOK_SYNCHRONIZE separately at surface creation time:
ppdev->flHooks = (HOOK_BITBLT |
HOOK_TEXTOUT |
HOOK_FILLPATH |
HOOK_COPYBITS |
HOOK_STROKEPATH |
HOOK_LINETO |
HOOK_STRETCHBLT |
HOOK_TRANSPARENTBLT);
// Fill in the GDIINFO data structure with the default 8bpp values:
*pgdi = ggdiDefault;
// Now overwrite the defaults with the relevant information returned
// from the kernel driver:
pgdi->ulHorzSize = VideoModeInformation.XMillimeter;
pgdi->ulVertSize = VideoModeInformation.YMillimeter;
pgdi->ulHorzRes = VideoModeInformation.VisScreenWidth;
pgdi->ulVertRes = VideoModeInformation.VisScreenHeight;
pgdi->ulPanningHorzRes = VideoModeInformation.VisScreenWidth;
pgdi->ulPanningVertRes = VideoModeInformation.VisScreenHeight;
pgdi->cBitsPixel = VideoModeInformation.BitsPerPlane;
pgdi->cPlanes = VideoModeInformation.NumberOfPlanes;
pgdi->ulVRefresh = VideoModeInformation.Frequency;
pgdi->ulDACRed = VideoModeInformation.NumberRedBits;
pgdi->ulDACGreen = VideoModeInformation.NumberGreenBits;
pgdi->ulDACBlue = VideoModeInformation.NumberBlueBits;
pgdi->ulLogPixelsX = pdm->dmLogPixels;
pgdi->ulLogPixelsY = pdm->dmLogPixels;
// Fill in the devinfo structure with the default 8bpp values:
*pdi = gdevinfoDefault;
if (VideoModeInformation.BitsPerPlane == 8)
{
ppdev->cjPelSize = 1;
ppdev->iBitmapFormat = BMF_8BPP;
// Assuming palette is orthogonal - all colors are same size.
ppdev->cPaletteShift = 8 - pgdi->ulDACRed;
DISPDBG((3, "palette shift = %d\n", ppdev->cPaletteShift));
}
else if ((VideoModeInformation.BitsPerPlane == 16) ||
(VideoModeInformation.BitsPerPlane == 15))
{
ppdev->cjPelSize = 2;
ppdev->iBitmapFormat = BMF_16BPP;
ppdev->flRed = VideoModeInformation.RedMask;
ppdev->flGreen = VideoModeInformation.GreenMask;
ppdev->flBlue = VideoModeInformation.BlueMask;
pgdi->ulNumColors = (ULONG) -1;
pgdi->ulNumPalReg = 0;
pgdi->ulHTOutputFormat = HT_FORMAT_16BPP;
pdi->iDitherFormat = BMF_16BPP;
pdi->flGraphicsCaps &= ~(GCAPS_PALMANAGED | GCAPS_COLOR_DITHER);
}
else if (VideoModeInformation.BitsPerPlane == 24)
{
ppdev->cjPelSize = 3;
ppdev->iBitmapFormat = BMF_24BPP;
ppdev->flRed = VideoModeInformation.RedMask;
ppdev->flGreen = VideoModeInformation.GreenMask;
ppdev->flBlue = VideoModeInformation.BlueMask;
pgdi->ulNumColors = (ULONG) -1;
pgdi->ulNumPalReg = 0;
pgdi->ulHTOutputFormat = HT_FORMAT_24BPP;
pdi->iDitherFormat = BMF_24BPP;
pdi->flGraphicsCaps &= ~(GCAPS_PALMANAGED | GCAPS_COLOR_DITHER);
}
else
{
ASSERTDD(VideoModeInformation.BitsPerPlane == 32,
"This driver supports only 8, 16, 24 and 32bpp");
ppdev->cjPelSize = 4;
ppdev->iBitmapFormat = BMF_32BPP;
ppdev->flRed = VideoModeInformation.RedMask;
ppdev->flGreen = VideoModeInformation.GreenMask;
ppdev->flBlue = VideoModeInformation.BlueMask;
pgdi->ulNumColors = (ULONG) -1;
pgdi->ulNumPalReg = 0;
pgdi->ulHTOutputFormat = HT_FORMAT_32BPP;
pdi->iDitherFormat = BMF_32BPP;
pdi->flGraphicsCaps &= ~(GCAPS_PALMANAGED | GCAPS_COLOR_DITHER);
}
DISPDBG((5, "Passed bInitializeModeFields"));
return(TRUE);
ReturnFalse:
DISPDBG((0, "Failed bInitializeModeFields"));
return(FALSE);
}
/******************************Public*Routine******************************\
* DWORD getAvailableModes
*
* Calls the miniport to get the list of modes supported by the kernel driver,
* and returns the list of modes supported by the diplay driver among those
*
* returns the number of entries in the videomode buffer.
* 0 means no modes are supported by the miniport or that an error occured.
*
* NOTE: the buffer must be freed up by the caller.
*
\**************************************************************************/
DWORD getAvailableModes(
HANDLE hDriver,
PVIDEO_MODE_INFORMATION* modeInformation, // Must be freed by caller
DWORD* cbModeSize)
{
ULONG ulTemp;
VIDEO_NUM_MODES modes;
PVIDEO_MODE_INFORMATION pVideoTemp;
//
// Get the number of modes supported by the mini-port
//
if (EngDeviceIoControl(hDriver,
IOCTL_VIDEO_QUERY_NUM_AVAIL_MODES,
NULL,
0,
&modes,
sizeof(VIDEO_NUM_MODES),
&ulTemp))
{
DISPDBG((0, "getAvailableModes - Failed VIDEO_QUERY_NUM_AVAIL_MODES"));
return(0);
}
*cbModeSize = modes.ModeInformationLength;
//
// Allocate the buffer for the mini-port to write the modes in.
//
*modeInformation = EngAllocMem(FL_ZERO_MEMORY,
modes.NumModes * modes.ModeInformationLength,
ALLOC_TAG);
if (*modeInformation == (PVIDEO_MODE_INFORMATION) NULL)
{
DISPDBG((0, "getAvailableModes - Failed EngAllocMem"));
return 0;
}
//
// Ask the mini-port to fill in the available modes.
//
if (EngDeviceIoControl(hDriver,
IOCTL_VIDEO_QUERY_AVAIL_MODES,
NULL,
0,
*modeInformation,
modes.NumModes * modes.ModeInformationLength,
&ulTemp))
{
DISPDBG((0, "getAvailableModes - Failed VIDEO_QUERY_AVAIL_MODES"));
EngFreeMem(*modeInformation);
*modeInformation = (PVIDEO_MODE_INFORMATION) NULL;
return(0);
}
//
// Now see which of these modes are supported by the display driver.
// As an internal mechanism, set the length to 0 for the modes we
// DO NOT support.
//
ulTemp = modes.NumModes;
pVideoTemp = *modeInformation;
//
// Mode is rejected if it is not one plane, or not graphics, or is not
// one of 8, 15, 16, 24 or 32 bits per pel.
//
while (ulTemp--)
{
if ((pVideoTemp->NumberOfPlanes != 1 ) ||
!(pVideoTemp->AttributeFlags & VIDEO_MODE_GRAPHICS) ||
((pVideoTemp->BitsPerPlane != 8) &&
(pVideoTemp->BitsPerPlane != 15) &&
(pVideoTemp->BitsPerPlane != 16) &&
(pVideoTemp->BitsPerPlane != 24) &&
(pVideoTemp->BitsPerPlane != 32)))
{
DISPDBG((2, "Rejecting miniport mode:"));
DISPDBG((2, " Screen width -- %li", pVideoTemp->VisScreenWidth));
DISPDBG((2, " Screen height -- %li", pVideoTemp->VisScreenHeight));
DISPDBG((2, " Bits per pel -- %li", pVideoTemp->BitsPerPlane *
pVideoTemp->NumberOfPlanes));
DISPDBG((2, " Frequency -- %li", pVideoTemp->Frequency));
pVideoTemp->Length = 0;
}
pVideoTemp = (PVIDEO_MODE_INFORMATION)
(((PUCHAR)pVideoTemp) + modes.ModeInformationLength);
}
return(modes.NumModes);
}