windows-nt/Source/XPSP1/NT/enduser/speech/tts/common/sigproc/bispectrum.cpp

579 lines
14 KiB
C++
Raw Normal View History

2020-09-26 03:20:57 -05:00
/******************************************************************************
* bispectrum.cpp *
*----------------*
* I/O library functions for extended speech files (vapi format)
*------------------------------------------------------------------------------
* Copyright (C) 1999 Entropic, Inc
* Copyright (C) 2000 Microsoft Corporation Date: 03/02/00
* All Rights Reserved
*
********************************************************************* PACOG ***/
#include "sigprocInt.h"
enum {WINDOW_OPTIMUM, WINDOW_PARZEN};
#define UNACCESS 1.0e08 // a big value used in unaccess initialization
class Double2D
{
public:
Double2D (int dim) {
m_iSize = dim;
m_ppdData = new double*[m_iSize];
m_ppdData[0] = new double[m_iSize * m_iSize];
for (int i = 1; i< m_iSize; i++)
{
m_ppdData[i] = m_ppdData[0]+ i * m_iSize;
}
}
~Double2D() {
delete[] m_ppdData[0];
delete[] m_ppdData;
}
Double2D& operator=(Double2D& orig)
{
if (m_ppdData) {
delete[] m_ppdData[0];
delete[] m_ppdData;
}
m_iSize = orig.m_iSize;
m_ppdData = new double* [m_iSize];
m_ppdData[0] = new double[m_iSize * m_iSize];
memcpy(m_ppdData, orig.m_ppdData, sizeof(double)* m_iSize * m_iSize);
for (int i = 1; i< m_iSize; i++)
{
m_ppdData[i] = m_ppdData[0]+ i * m_iSize;
}
return (*this);
}
double& Element(int a, int b)
{
return m_ppdData[a][b];
};
int Size(){
return m_iSize;
}
private:
double** m_ppdData;
int m_iSize;
};
static struct _complex**
GetBispectrumSeg(double *data, int nData, int nSeg, int L, int winType, double *workReal, double *workImag);
static struct _complex** Alloc2DimComplex(int dim);
static Double2D Get3rdMomentSeqLong (double *data, int N, int M, int L);
static double Get3rdMomentSeq (int i, int j, int inDataLen, double *data);
static Double2D Get2DimWin (int len, int winType);
static double* GetParzenWin (int length);
static double* GetOptimumWin (int length);
/*
*-----------------------------------------------------------------------------
*
* Optimum window (minimum bispectrm bias supremum) used for
* bispectrum estimation (indirect method)
* Note : the window length is 2 * len + 1, but output [0, 2 *length]
* because of [-len, len]
*
*-----------------------------------------------------------------------------
*/
double* GetOptimumWin (int length)
{
double* x;
int i;
x = new double[2 * length + 1];
if (x)
{
for (i=-length; i<=length; i++)
{
x[i + length] = 1.0 / M_PI * fabs(sin(M_PI * (double)i / (double)length))
+ (1.0 - fabs((double)i)/length)*(cos(M_PI * (double)i / (double)length));
}
}
return x;
}
/*
*-----------------------------------------------------------------------------
*
* Parzen window used for bispectrum estimation (indirect method)
* Note : the window length is 2 * len + 1, the output size is [0, 2 *length]
* from [-len, len]
*
*-----------------------------------------------------------------------------
*/
double* GetParzenWin (int length)
{
double* x;
double d;
int i;
x = new double [2 * length + 1];
if (x)
{
for (i=-length; i<=length; i++)
{
if (abs(i) <= length/2)
{
d = fabs((double)i/(double)length);
x[i + length] = 1.0 - 6.0 * d * d + 6.0 * d * d * d;
}
else
{
x[i + length] = 2.0 * (1.0 - fabs((double)i * i * i) / length);
}
}
}
return x;
}
/*
*-----------------------------------------------------------------------------
*
* Get a 2-dim window used for
* bispectrum estimation (indirect method)
* Note : the output matrix is [2 * len + 1] x [2 * len + 1]
* corresponding to [-len, len] x [-len, len]
*
*-----------------------------------------------------------------------------
*/
Double2D Get2DimWin (int len, int winType)
{
double* winData = NULL;
int i;
int j;
int newLen;
assert(len > 0);
newLen = 2*len + 1;
Double2D x(newLen);
switch(winType)
{
case WINDOW_OPTIMUM:
winData = GetOptimumWin(len);
break;
case WINDOW_PARZEN:
winData = GetParzenWin(len);
break;
default:
break;
}
if (winData)
{
for (i=0; i<newLen; i++)
{
for (j=0; j<newLen; j++)
{
if(i >= j)
{
x.Element(i,j) = winData[i] * winData[j] * winData[i - j];
}
else
{
x.Element(i,j) = winData[i] * winData[j] * winData[j - i];
}
}
}
}
delete[] winData;
return x;
}
/*
*-----------------------------------------------------------------------------
*
* Get a 3rd moment sequence for a single segment
*
*-----------------------------------------------------------------------------
*/
static double
Get3rdMomentSeq (int i, int j, int inDataLen, double *data)
{
double d;
int m;
int s1;
int s2;
s1 = __max(0, -i);
s1 = __max(s1, -j);
s2 = __min(inDataLen-1, inDataLen-1-i);
s2 = __min(s2, inDataLen-1-j);
d = (double)0.0;
for(m = s1; m <= s2; m++) {
d += data[m] * data[m+i] * data[m+j];
}
d /= (double)inDataLen;
return d;
}
/*
*-----------------------------------------------------------------------------
*
* Get a 3rd moment sequence for a long segment
* Note : - the output matrix is [2 * len + 1] x [2 * len + 1]
* corresponding to [-len, len] x [-len, len]
* - N is divided into N = K * M; each segemnt has M records
* - L < M - 1;
*
*-----------------------------------------------------------------------------
*/
Double2D Get3rdMomentSeqLong (double *data, int N, int M, int L)
{
int K;
int i;
int m;
int n;
assert(N > 0);
assert(M > 0);
assert(data);
RemoveDc (data, N);
if (N % M != 0 || L > M-2)
{
fprintf(stderr, "%s\n", "Error in data segmentation.");
return 0;
}
K = N / M;
Double2D x(2*L + 1);
for (m = -L; m <=L; m++)
{
for (n = -L; n <=L; n++)
{
x.Element(m+L, n+L) = UNACCESS;
}
}
for (m = -L; m <=L; m++)
{
for (n = -L; n <=L; n++)
{
/*
* judge if I could use symmetric properties
*/
if (x.Element(n+L, m+L) != UNACCESS)
{
x.Element(m+L, n+L) = x.Element(n+L, m+L);
continue;
}
if (m-n>=-L && m-n <=L && x.Element(-n+L, m-n+L) != UNACCESS)
{
x.Element(m+L, n+L) = x.Element(-n+L, m-n+L);
continue;
}
if (n-m>=-L && n-m <=L && x.Element(n-m+L, -m+L) != UNACCESS)
{
x.Element(m+L, n+L) = x.Element(n-m+L, -m+L);
continue;
}
if (m-n>=-L && m-n <=L && x.Element(m-n+L, -n+L) != UNACCESS)
{
x.Element(m+L, n+L) = x.Element(m-n+L, -n+L);
continue;
}
if (n-m>=-L && n-m <=L && x.Element(m+L, n-m+L) != UNACCESS)
{
x.Element(m+L, n+L) = x.Element(m+L, n-m+L);
continue;
}
/*
* otherwise compute the value
*/
x.Element(m+L, n+L) = 0.0;
for (i = 0; i < K; i++)
{
x.Element(m+L, n+L) += Get3rdMomentSeq (m, n, M, &data[i*M]);
}
x.Element(m+L, n+L) /= (double)K;
}
}
return x;
}
/*
*-----------------------------------------------------------------------------
*
* alloc memory for 2-D _complex
*
*-----------------------------------------------------------------------------
*/
static struct _complex**
Alloc2DimComplex(int dim)
{
struct _complex **r = NULL;
int i;
r = (struct _complex **)malloc(sizeof(struct _complex*) * dim);
if(!r) {
fprintf(stderr, "%s\n", "Error in memory allocation.");
return NULL;
}
r[0] = (struct _complex*) malloc (sizeof(struct _complex) * dim * dim);
if(!r[0]) {
fprintf(stderr, "%s\n", "Error in memory allocation.");
return NULL;
}
for (i = 1; i < dim; i++) {
r[i] = r[0] + i*dim;
}
return(r);
}
/*
*-----------------------------------------------------------------------------
*
* Get bispectrum estimation for one segment
* Note : - the output matrix is [2 * len + 1] x [2 * len + 1]
* corresponding to [-len, len] x [-len, len]
* - N is divided into N = K * nSeg; each segemnt has nSeg records
* - L < nSeg - 1, L = nSeg - 2;
* - bispectrum length is 2*L+1
*
*-----------------------------------------------------------------------------
*/
struct _complex**
GetBispectrumSeg(double *data, int nData, int nSeg, int L, int winType, double *workReal, double *workImag)
{
struct _complex** x = NULL;
register i;
register j;
int temp;
register m;
register n;
int K;
assert(data);
temp = 2*L*L;
Double2D winData = Get2DimWin (L, winType);
if (nData % nSeg != 0)
{
fprintf(stderr, "%s\n", "Error in data segmentation.");
return x;
}
K = nData / nSeg;
Double2D& r = Get3rdMomentSeqLong (data, nData, nSeg, L);
for (m = -L; m <= L; m++)
{
for(n = -L; n <= L; n++)
{
r.Element(m+L, n+L) *= winData.Element(m+L, n+L);
}
}
x = Alloc2DimComplex(2*L + 1);
for(i = -L; i <= L; i++) {
for(j = -L; j <= L; j++) {
x[i+L][j+L].x = UNACCESS;
}
}
for(i = -L; i <= L; i++) {
for(j = -L; j <= L; j++) {
/*
* judge if I could use symetric properties
*/
if(x[j+L][i+L].x != UNACCESS) {
x[i+L][j+L] = x[j+L][i+L];
continue;
}
if(x[-j+L][-i+L].x != UNACCESS) {
x[i+L][j+L] = x[-j+L][-i+L];
continue;
}
if(-i-j>=-L && -i-j <=L && x[-i-j+L][j+L].x != UNACCESS) {
x[i+L][j+L] = x[-i-j+L][j+L];
continue;
}
if(-i-j>=-L && -i-j <=L && x[i+L][-i-j+L].x != UNACCESS) {
x[i+L][j+L] = x[i+L][-i-j+L];
continue;
}
if(-i-j>=-L && -i-j <=L && x[-i-j+L][i+L].x != UNACCESS) {
x[i+L][j+L] = x[-i-j+L][i+L];
continue;
}
if(-i-j>=-L && -i-j <=L && x[j+L][-i-j+L].x != UNACCESS) {
x[i+L][j+L] = x[j+L][-i-j+L];
continue;
}
/*
* otherwise, compute the value
*/
x[i+L][j+L].x = 0.0;
x[i+L][j+L].y = 0.0;
for(m = -L; m <= L; m++) {
for(n = -L; n <= L; n++) {
x[i+L][j+L].x += r.Element(m+L, n+L) * workReal[i*m + j*n + temp];
x[i+L][j+L].y += r.Element(m+L, n+L) * workImag[i*m + j*n + temp];
}
}
// printf("\15bispectrum processing ... %.2f%% %.2f%% -> ", (double)(i+L) / (double)(2*L +1) * 100.0,
// (double)(j+L) / (double)(2*L +1) * 100.0);
}
printf("\15bispectrum processing ... %.2f%% ->", (double)(i+L) / (double)(2*L +1) * 100.0);
}
return x;
}
/*
*-----------------------------------------------------------------------------
*
* Get bispectrum estimation for speech data
* Note :
* - nLenMs is length of speech in ms
* - nSpec is the length of bispectrum
* - num is number of output bispectrum
*
*-----------------------------------------------------------------------------
*/
struct _complex***
GetBispectrum(double *data, int nLenMs, int frameMs, int segMs,
int specOrder, double sf, int *num, int *nSpec)
{
struct _complex*** x = NULL;
double *extData = NULL;
double *workReal = NULL;
double *workImag = NULL;
double d;
int newDataLen;
int i;
int nData;
int nWin;
int nSeg;
int L;
assert(data);
nData = (int)(nLenMs * sf / 1000.0);
nWin = (int)(frameMs * sf / 1000.0);
nSeg = (int)(segMs * sf / 1000.0);
*num = nData / nWin;
if(nData % nWin != 0) {
*num += 1;
}
newDataLen = nWin * (*num);
L = specOrder;
*nSpec = 2*L + 1;
/*
* Add zero up to reqired length
*/
extData = (double *)malloc(sizeof(*extData) * newDataLen);
if(!extData) {
fprintf(stderr, "%s\n", "Error in memory allocation.");
return NULL;
}
for(i=0; i<newDataLen; i++){
if(i < nData) {
extData[i] = data[i];
} else {
extData[i] = 0.0;
}
}
/*
* work variables used for speed up
*/
workReal = (double *)malloc(sizeof(*workReal) * (4 * L * L +1));
if(!workReal) {
fprintf(stderr, "%s\n", "Error in memory allocation.");
return NULL;
}
workImag = (double *)malloc(sizeof(*workImag) * (4 * L * L +1));
if(!workImag) {
fprintf(stderr, "%s\n", "Error in memory allocation.");
return NULL;
}
for(i=-2* L * L; i<=2* L * L; i++) {
d = M_PI * ((double)i / (double)L);
workReal[i+2* L * L] = cos(d);
workImag[i+2* L * L] = -sin(d);
}
/*
* get bispectrum
*/
x = (struct _complex ***)malloc(sizeof(struct _complex**) * (*num));
if(!x) {
fprintf(stderr, "%s\n", "Error in memory allocation.");
return NULL;
}
for (i=0; i<*num; i++) {
printf("\15bispectrum processing ... %.2f%%", (double)i / (double)(*num) * 100.0);
x[i] = GetBispectrumSeg(&extData[i*nWin], nWin, nSeg, L, WINDOW_OPTIMUM,
workReal, workImag);
}
printf("\15bispectrum processing ... %.2f%%\n", 100.0);
if(extData) {
free(extData);
}
if(workReal) {
free(workReal);
}
if(workImag) {
free(workImag);
}
return x;
}