windows-nt/Source/XPSP1/NT/multimedia/directx/dxg/ref8/inc/refrast.hpp

637 lines
22 KiB
C++
Raw Normal View History

2020-09-26 03:20:57 -05:00
///////////////////////////////////////////////////////////////////////////////
// Copyright (C) Microsoft Corporation, 2000.
//
// refrast.hpp
//
// Direct3D Reference Device - Rasterizer Core
//
///////////////////////////////////////////////////////////////////////////////
#ifndef _REFRAST_HPP
#define _REFRAST_HPP
#include "pshader.h"
inline INT32 FloatToNdot4( FLOAT f )
{
// alternate form if FPU is set up to do double precision
// return AS_INT32( (DOUBLE)f + DOUBLE_4_SNAP );
INT32 i = AS_INT32( f + FLOAT_4_SNAP );
i <<= 10; i >>= 10; // sign extend
return i;
}
inline INT32 FloatToNdot5( FLOAT f )
{
// alternate form if FPU is set up to do double precision
// return AS_INT32( (DOUBLE)f + DOUBLE_5_SNAP );
INT32 i = AS_INT32( f + FLOAT_5_SNAP );
i <<= 10; i >>= 10; // sign extend
return i;
}
//-----------------------------------------------------------------------------
//
// Constants
//
//-----------------------------------------------------------------------------
const DWORD RD_MAX_MULTISAMPLES = 9;
const UINT RDPRIM_MAX_EDGES = 4; // 4 edges for a point sprite
const UINT RDATTR_MAX_DIMENSIONALITY = 4; // up to 4 scalars per attribute
// attribute array assignments
#define RDATTR_DEPTH 0
#define RDATTR_FOG 1
#define RDATTR_COLOR 2
#define RDATTR_SPECULAR 3
#define RDATTR_TEXTURE0 4
#define RDATTR_TEXTURE1 5
#define RDATTR_TEXTURE2 6
#define RDATTR_TEXTURE3 7
#define RDATTR_TEXTURE4 8
#define RDATTR_TEXTURE5 9
#define RDATTR_TEXTURE6 10
#define RDATTR_TEXTURE7 11
const UINT RDPRIM_MAX_ATTRIBUTES = 12;
///////////////////////////////////////////////////////////////////////////////
// //
// Pixel Component Classes //
// //
///////////////////////////////////////////////////////////////////////////////
//-----------------------------------------------------------------------------
//
// Color Value Class - Holds an array of floats.
//
//-----------------------------------------------------------------------------
class RDColor
{
public:
FLOAT R,G,B,A;
inline RDColor( void ) { R = G = B = 0.0f; A = 1.0f; }
// assignment constructors
inline RDColor( UINT32 uVal )
{
R = (FLOAT)RGBA_GETRED( uVal )*(1.f/255.f);
G = (FLOAT)RGBA_GETGREEN( uVal )*(1.f/255.f);
B = (FLOAT)RGBA_GETBLUE( uVal )*(1.f/255.f);
A = (FLOAT)RGBA_GETALPHA( uVal )*(1.f/255.f);
}
inline RDColor( FLOAT fR, FLOAT fG, FLOAT fB, FLOAT fA )
{
R = fR; G = fG; B = fB; A = fA;
}
inline RDColor( FLOAT* pC )
{
R = *(pC+0); G = *(pC+1); B= *(pC+2); A = *(pC+3);
}
// UINT32 copy operator
inline void operator=(const UINT32 uVal)
{
R = (FLOAT)RGBA_GETRED( uVal )*(1.f/255.f);
G = (FLOAT)RGBA_GETGREEN( uVal )*(1.f/255.f);
B = (FLOAT)RGBA_GETBLUE( uVal )*(1.f/255.f);
A = (FLOAT)RGBA_GETALPHA( uVal )*(1.f/255.f);
}
// FLOAT array copy operator
inline void operator=(const FLOAT* pFVal)
{
R = *(pFVal+0);
G = *(pFVal+1);
B = *(pFVal+2);
A = *(pFVal+3);
}
// casting operator
inline operator UINT32() const
{
return D3DRGBA( R, G, B, A );
}
// set all channels
inline void SetAllChannels( FLOAT fVal )
{
R = fVal; G = fVal; B = fVal; A = fVal;
}
// clamp to unity
inline void Saturate( void )
{
R = MIN( 1.f, R );
G = MIN( 1.f, G );
B = MIN( 1.f, B );
A = MIN( 1.f, A );
}
inline void Clamp( void )
{
R = MAX( 0.f, MIN( 1.f, R ) );
G = MAX( 0.f, MIN( 1.f, G ) );
B = MAX( 0.f, MIN( 1.f, B ) );
A = MAX( 0.f, MIN( 1.f, A ) );
}
// copy to array of FLOATs
inline void CopyTo( FLOAT* pF )
{
*(pF+0) = R;
*(pF+1) = G;
*(pF+2) = B;
*(pF+3) = A;
}
//
// conversions between surface format and RDColor - these define the
// correct way to map between resolutions
//
// convert from surface type format to RDColor
void ConvertFrom( RDSurfaceFormat Type, const char* pSurfaceBits );
// Convert surface type format to RDColor
void ConvertTo( RDSurfaceFormat Type, float fRoundOffset, char* pSurfaceBits ) const;
};
//-----------------------------------------------------------------------------
//
// RDDepth - Class for storing and manipulating pixel depth values. Underlying
// storage is a double precision floating point, which has sufficient precision
// and range to support 16 and 32 bit fixed point and 32 bit floating point.
//
// The UINT32 methods receive a 24 or 32 bit value, and the UINT16
// methods receive a 15 or 16 bit value.
//
//-----------------------------------------------------------------------------
class RDDepth
{
DOUBLE m_dVal;
RDSurfaceFormat m_DepthSType;
DOUBLE dGetValClamped(void) const { return min(1.,max(0.,m_dVal)); }
DOUBLE dGetCnvScale(void) const
{
switch(m_DepthSType)
{
case RD_SF_Z16S0:
return DOUBLE((1<<16)-1);
case RD_SF_Z24S8:
case RD_SF_Z24X8:
case RD_SF_S8Z24:
case RD_SF_X8Z24:
case RD_SF_Z24X4S4:
case RD_SF_X4S4Z24:
return DOUBLE((1<<24)-1);
case RD_SF_Z15S1:
case RD_SF_S1Z15:
return DOUBLE((1<<15)-1);
case RD_SF_Z32S0:
return DOUBLE(0xffffffff); // too big to be generated as above without INT64's
default:
DPFRR(0, "RDDepth not initialized correctly");
return DOUBLE(0.0);
}
}
DOUBLE dGetCnvInvScale(void) const
{
switch(m_DepthSType)
{
case RD_SF_Z16S0:
return DOUBLE( 1./(DOUBLE)((1<<16)-1) );
case RD_SF_Z24S8:
case RD_SF_Z24X8:
case RD_SF_S8Z24:
case RD_SF_X8Z24:
case RD_SF_Z24X4S4:
case RD_SF_X4S4Z24:
return DOUBLE( 1./(DOUBLE)((1<<24)-1) );
case RD_SF_Z15S1:
case RD_SF_S1Z15:
return DOUBLE( 1./(DOUBLE)((1<<15)-1) );
case RD_SF_Z32S0:
return DOUBLE( 1./(DOUBLE)(0xffffffff) ); // too big to be generated as above without INT64's
default:
DPFRR(0, "RDDepth not initialized correctly");
return DOUBLE(0.0);
}
}
public:
RDDepth() {;}
// assignment constructors
RDDepth(RDSurfaceFormat SType) : m_dVal(0.F), m_DepthSType(SType) {;}
RDDepth(UINT16 uVal, RDSurfaceFormat SType): m_DepthSType(SType), m_dVal((DOUBLE)uVal*dGetCnvInvScale()) {;}
RDDepth(UINT32 uVal, RDSurfaceFormat SType): m_DepthSType(SType), m_dVal((DOUBLE)uVal*dGetCnvInvScale()) {;}
// copy and assignment operators
RDDepth& operator=(const RDDepth& A) { m_dVal = A.m_dVal; m_DepthSType = A.m_DepthSType; return *this; }
RDDepth& operator=(UINT16 uVal) { m_dVal = (DOUBLE)uVal*dGetCnvInvScale(); return *this; }
RDDepth& operator=(UINT32 uVal) { m_dVal = (DOUBLE)uVal*dGetCnvInvScale(); return *this; }
RDDepth& operator=(FLOAT fVal) { m_dVal = (DOUBLE)fVal; return *this; }
// round for integer get operations
operator UINT16() const { return (UINT16)( (dGetValClamped()*dGetCnvScale()) + .5); }
operator UINT32() const { return (UINT32)( (dGetValClamped()*dGetCnvScale()) + .5); }
operator DOUBLE() const { return dGetValClamped(); }
operator FLOAT() const { return (FLOAT)dGetValClamped(); }
void SetSType(RDSurfaceFormat SType) { m_DepthSType = SType; }
RDSurfaceFormat GetSType(void) const { return m_DepthSType; }
};
//-----------------------------------------------------------------------------
//
// Texture
//
//-----------------------------------------------------------------------------
#define RRTEX_LODFRAC 5
#define RRTEX_LODFRACMASK 0x1F
#define RRTEX_LODFRACF .03125f
#define RRTEX_MAPFRAC 5
#define RRTEX_MAPFRACMASK 0x1F
#define RRTEX_MAPFRACF .03125f
typedef struct _TextureSample
{
INT32 iLOD;
FLOAT fWgt;
INT32 iCrd[3];
} TextureSample;
typedef struct _TextureFilterControl
{
int cSamples;
TextureSample pSamples[16*4*2]; // handles 16:1 aniso in two LODs
D3DTEXTUREFILTERTYPE MinFilter;
D3DTEXTUREFILTERTYPE MagFilter;
D3DTEXTUREFILTERTYPE MipFilter;
D3DTEXTUREFILTERTYPE CvgFilter;
FLOAT fCrd[3]; // temporary: to run old filter/sample code
} TextureFilterControl;
typedef struct _TextureCoverage
{
FLOAT fLOD;
FLOAT fAnisoRatio;
FLOAT fAnisoLine[3];
INT16 iLOD; // n.RRTEX_LODFRAC fixed point LOD
BOOL bMagnify;
int cLOD; // 1 or 2, for accessing one or two LOD maps
INT32 iLODMap[2]; // map index for maps adjacent to sample point
FLOAT fLODFrc[2]; // (fractional) weighting for each adjacent map
FLOAT fGradients[3][2]; // need to store gradients for cube maps
} TextureCoverage;
//
// structure containing texture coordinate and gradient information
// for lookup and filtering
//
class RDTextureCoord
{
public:
union { FLOAT C0; FLOAT fNX; FLOAT fU; };
union { FLOAT C1; FLOAT fNY; FLOAT fV; };
union { FLOAT C2; FLOAT fNZ; FLOAT fW; };
union { FLOAT DC0DX; FLOAT fDNXDX; FLOAT fDUDX; };
union { FLOAT DC0DY; FLOAT fDNXDY; FLOAT fDUDY; };
union { FLOAT DC1DX; FLOAT fDNYDX; FLOAT fDVDX; };
union { FLOAT DC1DY; FLOAT fDNYDY; FLOAT fDVDY; };
union { FLOAT DC2DX; FLOAT fDNZDX; };
union { FLOAT DC2DY; FLOAT fDNZDY; };
};
void
ComputeMipCoverage(
const FLOAT (*fGradients)[2],
FLOAT& fLOD, int cDim );
void
ComputeAnisoCoverage(
const FLOAT (*fGradients)[2], FLOAT fMaxAniso,
FLOAT& fLOD, FLOAT& fRatio, FLOAT fDelta[] );
void
ComputeCubeCoverage(
const FLOAT (*fGradients)[2],
FLOAT& fLOD );
void
DoCubeRemap(
INT32 iCrd[], INT32 iCrdMax[],
D3DCUBEMAP_FACES& Face, UINT uOut0, UINT uOut1);
//-----------------------------------------------------------------------------
//
// Primitive edge function - Computes, stores, and evaluates linear function
// for edges. Basic function is stored in fixed point. Gradient sign terms
// are computed and stored separately to adhere to fill rules.
//
// This can evaluate edges to a 1/16th subpixel resolution grid.
//
//-----------------------------------------------------------------------------
class RDEdge
{
public:
INT32 m_iA; // n.4 fixed point
INT32 m_iB; // n.4 fixed point
INT64 m_iC; // n.8 fixed point
BOOL m_bAPos; // carefully computed signs of A,B
BOOL m_bBPos;
void Set(
BOOL bDetSign,
INT32 iX0, INT32 iY0,
INT32 iX1, INT32 iY1);
BOOL Test(INT32 iX, INT32 iY );
};
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
class RDAttribute
{
public:
friend class RefRast;
// pointer back to containing refrast object
RefRast* m_pRR;
BOOL m_bPerspective;
BOOL m_bClamp; // clamp to 0..1 if TRUE
UINT m_cDimensionality;
UINT m_cProjection; // project by c'th element (0 == disable)
DWORD m_dwWrapFlags; // wrap flags for each dimension (from LSB)
BOOL m_bFlatShade;
// per-dimension attribute functions
FLOAT m_fA[RDATTR_MAX_DIMENSIONALITY];
FLOAT m_fB[RDATTR_MAX_DIMENSIONALITY];
FLOAT m_fC[RDATTR_MAX_DIMENSIONALITY];
// things generally only set once
void Init(
RefRast* pPrimitive, // RefRast with which this attrib is used
UINT cDimensionality,
BOOL bPerspective,
BOOL bClamp );
// things generally set as RS or TSS changes
void SetFlatShade( BOOL bFlatShade ) { m_bFlatShade = bFlatShade; }
void SetWrapFlags( DWORD dwWrapFlags ) { m_dwWrapFlags = dwWrapFlags; }
void SetProjection( UINT cProjection ) { m_cProjection = cProjection; }
void SetPerspective( BOOL bPerspective) { m_bPerspective = bPerspective; }
void Setup(
const FLOAT* pVtx0, const FLOAT* pVtx1, const FLOAT* pVtx2);
void LineSetup(
const FLOAT* pVtx0, const FLOAT* pVtx1, const FLOAT* pVtxFlat = NULL );
void Setup(
DWORD dwVtx0, DWORD dwVtx1, DWORD dwVtx2);
// fully general sample function
void Sample( FLOAT* pSampleData, FLOAT fX, FLOAT fY,
BOOL bNoProjectionOverride = TRUE, BOOL bClampOverride = FALSE );
// sample scalar attribute at given location; assumes no perspective or projection
// (used for Depth)
FLOAT Sample( FLOAT fX, FLOAT fY );
};
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
class RefRast
{
public:
friend class RDAttribute;
friend class RDEdge;
RefDev* m_pRD;
~RefRast();
void Init( RefDev* pRD );
// used for all primitives
BOOL m_bIsLine; // TRUE if rendering a line
UINT m_iFlatVtx; // 0..2 range; which vertex to use for flat shading color
RDAttribute m_Attr[RDPRIM_MAX_ATTRIBUTES];
FLOAT m_fX0, m_fY0; // first vertex, snapped (for initial evaluation)
FLOAT m_fRHW0, m_fRHW1, m_fRHW2; // 1/W data for perspective correction
FLOAT m_fRHWA, m_fRHWB, m_fRHWC; // linear function for 1/W for perspective correction
FLOAT SampleAndInvertRHW( FLOAT fX, FLOAT fY ); // sample 1/W at current given location, invert, and return
// triangle and point rendering
RDEdge m_Edge[RDPRIM_MAX_EDGES];
INT32 m_iEdgeCount;
// integer x,y coords snapped to n.4 grid
INT32 m_iX0, m_iY0, m_iX1, m_iY1, m_iX2, m_iY2;
INT64 m_iDet; // n.8 determinant
FLOAT m_fDelX10, m_fDelX02; // float x,y deltas
FLOAT m_fDelY01, m_fDelY20; //
FLOAT m_fTriOODet; // 1/determinant for triangle function normalization
// integer x,y scan area, intersected with viewport and guardband
INT32 m_iXMin, m_iXMax, m_iYMin, m_iYMax;
BOOL PerTriangleSetup(
FLOAT* pVtx0, FLOAT* pVtx1, FLOAT* pVtx2,
DWORD CullMode,
RECT* pClip);
BOOL EvalPixelPosition( int iPix );
// line rendering
INT64 m_iLineEdgeFunc[3]; // line function: Pminor = ([0]*Pmajor + [1])/[2]
BOOL m_bLineXMajor; // TRUE if X major for line function
INT32 m_iLineMin, m_iLineMax; // min and max pixel extent in major direction
INT32 m_iLineStep; // +1 or -1 depending on line major direction
FLOAT m_fLineMajorLength; // major length for line function
INT32 m_cLineSteps; // number of steps to take in line iteration
BOOL PerLineSetup(
FLOAT* pVtx0, FLOAT* pVtx1,
BOOL bLastPixel,
RECT* pClip);
void StepLine( void );
INT32 m_iMajorCoord;
// per-pixel data
int m_iPix; // which of 4 pixels are currently being worked on
// per-pixel values
BOOL m_bPixelIn[4];
INT32 m_iX[4], m_iY[4]; // current position
FLOAT m_fW[4];
FLOAT m_FogIntensity[4];
RDDepth m_Depth[4]; // TODO - get rid of this...
// per-(pixel&sample) values
BOOL m_bSampleCovered[RD_MAX_MULTISAMPLES][4];
RDDepth m_SampleDepth[RD_MAX_MULTISAMPLES][4];
// pixel shader stuff
BOOL m_bLegacyPixelShade;
RDPShader* m_pCurrentPixelShader;
UINT m_CurrentPSInst;
BOOL m_bPixelDiscard[4];
// register files
FLOAT m_InputReg[RDPS_MAX_NUMINPUTREG][4][4];
FLOAT m_TempReg[RDPS_MAX_NUMTEMPREG][4][4];
FLOAT m_ConstReg[RDPS_MAX_NUMCONSTREG][4][4];
FLOAT m_TextReg[RDPS_MAX_NUMTEXTUREREG][4][4];
// additional ref-specific registers for holding temporary values in pixel shader
FLOAT m_PostModSrcReg[RDPS_MAX_NUMPOSTMODSRCREG][4][4]; // temporary values holding src mod results for 3 source parameters
FLOAT m_ScratchReg[RDPS_MAX_NUMSCRATCHREG][4][4]; // just a general scratchpad register (example use: storing eye/reflection vector)
FLOAT m_ZeroReg[4][4]; // register containing 0.0f.
FLOAT m_OneReg[4][4]; // register containing 1.0f.
FLOAT m_TwoReg[4][4]; // register containing 2.0f.
FLOAT m_QueuedWriteReg[RDPS_MAX_NUMQUEUEDWRITEREG][4][4]; // staging registers for queued writes
PSQueuedWriteDst m_QueuedWriteDst[RDPS_MAX_NUMQUEUEDWRITEREG]; // destination register on flush for queued write
FLOAT m_Gradients[3][2]; // gradients for texture sampling
void ExecShader( void );
void DoRegToRegOp( PixelShaderInstruction* pInst );
#if DBG
BOOL m_bDebugPrintTranslatedPixelShaderTokens;
#endif
RDPShader* m_pLegacyPixelShader;
void UpdateLegacyPixelShader( void );
// multi-sample stuff
UINT m_SampleCount; // count and deltas for current MS buffer type
INT32 m_SampleDelta[RD_MAX_MULTISAMPLES][2];
DWORD m_SampleMask; // copy of renderstate
UINT m_CurrentSample; // current sample number for 'NextSample' stepper
inline void SetSampleMask( DWORD SampleMask ) { m_SampleMask = SampleMask; }
inline BOOL GetCurrentSampleMask( void )
{
if ( m_SampleCount <= 1 ) return TRUE; // not effective when not MS buffer
return ( (1<<m_CurrentSample) & m_SampleMask ) ? TRUE : FALSE;
}
inline UINT GetCurrentSample( void ) { return m_CurrentSample; }
// returns TRUE until samples exhausted and then resets itself on FALSE return
inline BOOL NextSample( void )
{
if (++m_CurrentSample == m_SampleCount)
{
// done iterating thru samples, so reset and return FALSE
m_CurrentSample = 0;
return FALSE;
}
return TRUE;
}
// returns x,y deltas (n.4 fixed point) of current sample
inline INT32 GetCurrentSampleX( int iPix )
{ return (m_iX[iPix]<<4) + m_SampleDelta[m_CurrentSample][0]; }
inline INT32 GetCurrentSampleY( int iPix )
{ return (m_iY[iPix]<<4) + m_SampleDelta[m_CurrentSample][1]; }
inline FLOAT GetCurrentSamplefX( int iPix )
{ return (FLOAT)GetCurrentSampleX(iPix) * (1./16.); }
inline FLOAT GetCurrentSamplefY( int iPix )
{ return (FLOAT)GetCurrentSampleY(iPix) * (1./16.); }
// sets internal sample number and per-sample deltas based on FSAA type
void SetSampleMode( UINT MultiSampleCount, BOOL bAntialias );
UINT GetCurrentNumberOfSamples( void )
{ return m_SampleCount; }
// setup.cpp
void SetAttributeFunctions(
const RDVertex& Vtx0,
const RDVertex& Vtx1,
const RDVertex& Vtx2 );
// scancnv.cpp
FLOAT ComputeFogIntensity( FLOAT fX, FLOAT fY );
void SnapDepth( void );
void DoScanCnvGenPixels( void );
void DoScanCnvTri( int iEdgeCount );
void DoScanCnvLine( void );
// texture filtering
TextureCoverage m_TexCvg[D3DHAL_TSS_MAXSTAGES];
TextureFilterControl m_TexFlt[D3DHAL_TSS_MAXSTAGES];
void UpdateTextureControls( void );
void ComputeTextureCoverage( int iStage, FLOAT (*fGradients)[2] );
void ComputePerLODControls( int iStage );
void ComputePointSampleCoords(
int iStage, INT32 iLOD, FLOAT fCrd[],
INT32 iCrd[] );
void ComputeLinearSampleCoords(
int iStage, INT32 iLOD, FLOAT fCrd[],
INT32 iCrdFlr[], INT32 iCrdClg[], FLOAT fCrdFrcF[], FLOAT fCrdFrcC[] );
void SetUp1DTextureSample(
int iStage, int Start,
INT32 iLODMap, FLOAT fLODScale,
INT32 iCrdF, INT32 iCrdC,
FLOAT fCrdFrcF, FLOAT fCrdFrcC );
void SetUp2DTextureSample(
int iStage, int Start,
INT32 iLODMap, FLOAT fLODScale,
INT32 iCrdF[], INT32 iCrdC[],
FLOAT fCrdFrcF[], FLOAT fCrdFrcC[] );
void SetUp3DTextureSample(
int iStage, int Start,
INT32 iLODMap, FLOAT fLODScale,
INT32 iCrdF[], INT32 iCrdC[],
FLOAT fCrdFrcF[], FLOAT fCrdFrcC[] );
void SetUpCubeMapLinearSample(
int iStage, D3DCUBEMAP_FACES Face,
INT32 iLODMap, FLOAT fLODScale,
INT32 (*iCrd)[2], FLOAT (*fFrc)[2] );
void ComputeTextureFilter( int iStage, FLOAT fCrd[] );
void ComputeCubeTextureFilter( int iStage, FLOAT fCrd[] );
void SampleTexture( INT32 iStage, FLOAT fCol[] );
// texstage.cpp
void ComputeTextureBlendArg(
DWORD dwArgCtl, BOOL bAlphaOnly,
const RDColor& DiffuseColor,
const RDColor& SpecularColor,
const RDColor& CurrentColor,
const RDColor& TextureColor,
const RDColor& TempColor,
RDColor& BlendArg);
void DoTextureBlendStage(
int iStage,
const RDColor& DiffuseColor,
const RDColor& SpecularColor,
const RDColor& CurrentColor,
const RDColor& TextureColor,
RDColor& TempColor,
RDColor& OutputColor);
// pixproc.cpp
void DoPixels( void );
BOOL DepthCloser( const RDDepth& DepthVal, const RDDepth& DepthBuf );
BOOL AlphaTest( FLOAT fAlpha );
BOOL DoStencil( UINT8 uStncBuf, BOOL bDepthTest, RDSurfaceFormat DepthSFormat, UINT8& uStncRet );
void DoAlphaBlend( const RDColor& SrcColor, const RDColor& DstColor, RDColor& ResColor );
// pixref.cpp
void WritePixel( INT32 iX, INT32 iY, UINT Sample, const RDColor& Color, const RDDepth& Depth);
};
///////////////////////////////////////////////////////////////////////////////
#endif // _REFRAST_HPP