windows-nt/Source/XPSP1/NT/multimedia/directx/dxg/ref8/rast/scancnv.cpp

337 lines
12 KiB
C++
Raw Normal View History

2020-09-26 03:20:57 -05:00
///////////////////////////////////////////////////////////////////////////////
// Copyright (C) Microsoft Corporation, 2000.
//
// scancnv.cpp
//
// Direct3D Reference Device - Primitive Scan Conversion
//
///////////////////////////////////////////////////////////////////////////////
#include "pch.cpp"
#pragma hdrstop
///////////////////////////////////////////////////////////////////////////////
// //
// Scan Conversion Utilities //
// //
///////////////////////////////////////////////////////////////////////////////
//-----------------------------------------------------------------------------
//
// ComputeFogIntensity - Computes scalar fog intensity value and writes it to
// the RDPixel.FogIntensity value.
//
//-----------------------------------------------------------------------------
FLOAT
RefRast::ComputeFogIntensity( FLOAT fX, FLOAT fY )
{
if ( !m_pRD->GetRS()[D3DRS_FOGENABLE] )
{
// fog blending not enabled, so don't need to compute fog intensity
return 0.;
}
// compute fog intensity
// select between vertex and table fog - vertex fog is selected if
// fog is enabled but the renderstate fog table mode is disabled
if ( D3DFOG_NONE == m_pRD->GetRS()[D3DRS_FOGTABLEMODE] )
{
// table fog disabled, so use interpolated vertex fog value for fog intensity
FLOAT tmpFloat[4];
m_Attr[RDATTR_FOG].Sample( tmpFloat, fX, fY );
return tmpFloat[0];
}
// here for table fog, so compute fog from Z or W
FLOAT fFogDensity, fPow;
FLOAT fFogStart, fFogEnd;
// select fog index - this is either Z or W depending on the W range
//
// use Z if projection matrix is set to an affine projection, else use W
// (both for perspective projection and an unset projection matrix - the
// latter is preferred for legacy content which uses TLVERTEX)
//
FLOAT fFogIndex =
( ( 1.f == m_pRD->m_pRenderTarget->m_fWRange[0] ) &&
( 1.f == m_pRD->m_pRenderTarget->m_fWRange[1] ) )
? ( m_Attr[RDATTR_DEPTH].Sample( fX, fY ) )
: ( SampleAndInvertRHW( fX, fY ) ); // use W for non-affine projection
FLOAT fFogIntensity;
switch ( m_pRD->GetRS()[D3DRS_FOGTABLEMODE] )
{
case D3DFOG_LINEAR:
fFogStart = m_pRD->GetRSf()[D3DRS_FOGSTART];
fFogEnd = m_pRD->GetRSf()[D3DRS_FOGEND];
if (fFogIndex >= fFogEnd)
{
fFogIntensity = 0.0f;
}
else if (fFogIndex <= fFogStart)
{
fFogIntensity = 1.0f;
}
else
{
fFogIntensity = ( fFogEnd - fFogIndex ) / ( fFogEnd - fFogStart );
}
break;
case D3DFOG_EXP:
fFogDensity = m_pRD->GetRSf()[D3DRS_FOGDENSITY];
fPow = fFogDensity * fFogIndex;
// note that exp(-x) returns a result in the range (0.0, 1.0]
// for x >= 0
fFogIntensity = (float)exp( -fPow );
break;
case D3DFOG_EXP2:
fFogDensity = m_pRD->GetRSf()[D3DRS_FOGDENSITY];
fPow = fFogDensity * fFogIndex;
fFogIntensity = (float)exp( -(fPow*fPow) );
break;
}
return fFogIntensity;
}
//-----------------------------------------------------------------------------
//
// SnapDepth - Snap off extra depth bits by converting to/from buffer format
// - necessary to make depth buffer equality tests function correctly
//
//-----------------------------------------------------------------------------
void RefRast::SnapDepth()
{
if (m_pRD->m_pRenderTarget->m_pDepth)
{
switch ( m_pRD->m_pRenderTarget->m_pDepth->GetSurfaceFormat() )
{
case RD_SF_Z16S0: m_Depth[m_iPix] = UINT16( m_Depth[m_iPix] ); break;
case RD_SF_Z24X4S4:
case RD_SF_Z24X8:
case RD_SF_Z24S8: m_Depth[m_iPix] = UINT32( m_Depth[m_iPix] ); break;
case RD_SF_Z15S1: m_Depth[m_iPix] = UINT16( m_Depth[m_iPix] ); break;
case RD_SF_Z32S0: m_Depth[m_iPix] = UINT32( m_Depth[m_iPix] ); break;
case RD_SF_S1Z15: m_Depth[m_iPix] = UINT16( m_Depth[m_iPix] ); break;
case RD_SF_X4S4Z24:
case RD_SF_X8Z24:
case RD_SF_S8Z24: m_Depth[m_iPix] = UINT32( m_Depth[m_iPix] ); break;
}
}
}
//-----------------------------------------------------------------------------
//
// DoScanCnvGenPixel - This is called for each 2x2 grid of pixels, and extracts and
// processes attributes from the interpolator state, and passes the pixels on to
// the pixel processing module.
//
//-----------------------------------------------------------------------------
void
RefRast::DoScanCnvGenPixels( void )
{
for ( m_iPix = 0; m_iPix < 4; m_iPix++ )
{
FLOAT fPixX = (FLOAT)m_iX[m_iPix];
FLOAT fPixY = (FLOAT)m_iY[m_iPix];
m_fW[m_iPix] = SampleAndInvertRHW( fPixX, fPixY );
// RHW needed for non-in pixels, but nothing else so bail
if ( !m_bPixelIn[m_iPix] ) continue;
// get depth from clamp interpolator and clamp
if ( m_pRD->GetRS()[D3DRS_ZENABLE] ||
m_pRD->GetRS()[D3DRS_FOGENABLE])
{
if (m_pRD->m_pRenderTarget->m_pDepth)
m_Depth[m_iPix].SetSType(m_pRD->m_pRenderTarget->m_pDepth->GetSurfaceFormat());
// evaluate depth at all sample locations
do
{
// compute sample location
FLOAT fSampX = GetCurrentSamplefX(m_iPix);
FLOAT fSampY = GetCurrentSamplefY(m_iPix);
if ( D3DZB_USEW == m_pRD->GetRS()[D3DRS_ZENABLE] )
{
// depth buffering with W value
FLOAT fW = SampleAndInvertRHW( fSampX, fSampY );
// apply normalization to get to 0. to 1. range
fW = (fW - m_pRD->m_fWBufferNorm[0]) * m_pRD->m_fWBufferNorm[1];
m_Depth[m_iPix] = fW;
}
else
{
// depth buffering with Z value
m_Depth[m_iPix] =
m_Attr[RDATTR_DEPTH].Sample( fSampX, fSampY );
}
// snap off extra bits by converting to/from buffer format - necessary
// to make depth buffer equality tests function correctly
SnapDepth();
m_SampleDepth[m_CurrentSample][m_iPix] = m_Depth[m_iPix];
} while (NextSample());
}
// set pixel diffuse and specular color from clamped interpolator values
m_Attr[RDATTR_COLOR].Sample( m_InputReg[0][m_iPix], fPixX, fPixY );
m_Attr[RDATTR_SPECULAR].Sample( m_InputReg[1][m_iPix], fPixX, fPixY );
// compute fog intensity
m_FogIntensity[m_iPix] = ComputeFogIntensity( fPixX, fPixY );
}
DoPixels();
}
///////////////////////////////////////////////////////////////////////////////
// //
// Triangle Scan Conversion //
// //
///////////////////////////////////////////////////////////////////////////////
//-----------------------------------------------------------------------------
//
// DoScanCnvTri - Scans the bounding box of the triangle and generates pixels.
//
// Does 4 pixels at a time in a 2x2 grid.
//
//-----------------------------------------------------------------------------
void
RefRast::DoScanCnvTri( int iEdgeCount )
{
m_iEdgeCount = iEdgeCount;
//
// do simple scan of surface-intersected triangle bounding box
//
for ( m_iY[0] = m_iYMin;
m_iY[0] <= m_iYMax;
m_iY[0] += 2 )
{
m_iY[1] = m_iY[0]+0;
m_iY[2] = m_iY[0]+1;
m_iY[3] = m_iY[0]+1;
BOOL bPartialY = (m_iY[3] > m_iYMax);
for ( m_iX[0] = m_iXMin;
m_iX[0] <= m_iXMax;
m_iX[0] += 2 )
{
m_iX[1] = m_iX[0]+1;
m_iX[2] = m_iX[0]+0;
m_iX[3] = m_iX[0]+1;
BOOL bPartialX = (m_iX[3] > m_iXMax);
m_bPixelIn[0] = EvalPixelPosition(0);
m_bPixelIn[1] = ( bPartialX ) ? ( FALSE ) : EvalPixelPosition(1);
m_bPixelIn[2] = ( bPartialY ) ? ( FALSE ) : EvalPixelPosition(2);
m_bPixelIn[3] = ( bPartialX || bPartialY ) ? ( FALSE ) : EvalPixelPosition(3);
if ( m_bPixelIn[0] ||
m_bPixelIn[1] ||
m_bPixelIn[2] ||
m_bPixelIn[3] )
{
// at least one pixel in
DoScanCnvGenPixels();
}
}
}
}
///////////////////////////////////////////////////////////////////////////////
// //
// Line Scan Conversion //
// //
///////////////////////////////////////////////////////////////////////////////
//----------------------------------------------------------------------------
//
// LinePatternStateMachine
//
// Runs the line pattern state machine and returns TRUE if the pixel is to be
// drawn, false otherwise. Always returns true if wRepeatFactor is 0, which
// means pattern is disabled.
//
//----------------------------------------------------------------------------
// NOTE: The implementation of LinePattern in RefDev is incorrect. Please refer
// to the DDK documentation for the right implementation.
static BOOL
LinePatternStateMachine(DWORD dwLinePattern, WORD& wRepeati, WORD& wPatterni)
{
union
{
D3DLINEPATTERN LPat;
DWORD dwLPat;
} LinePat;
LinePat.dwLPat = dwLinePattern;
if (LinePat.LPat.wRepeatFactor)
{
WORD wBit = (LinePat.LPat.wLinePattern >> wPatterni) & 1;
if (++wRepeati >= LinePat.LPat.wRepeatFactor)
{
wRepeati = 0;
wPatterni = (wPatterni+1) & 0xf;
}
return (BOOL)wBit;
}
else
{
return TRUE;
}
}
//-----------------------------------------------------------------------------
//
// DoScanCnvLine - Walks the line major axis, computes the appropriate minor
// axis coordinate, and generates pixels.
//
//-----------------------------------------------------------------------------
void
RefRast::DoScanCnvLine( void )
{
// state for line pattern state machine
WORD wRepeati = 0;
WORD wPatterni = 0;
m_bPixelIn[0] = TRUE;
m_bPixelIn[1] =
m_bPixelIn[2] =
m_bPixelIn[3] = FALSE;
for ( int cStep = 0; cStep <= m_cLineSteps; cStep++ )
{
// compute next x,y location in line
StepLine();
// if (m_pDbgMon->ScreenMask(m_iX[0], m_iY[0]))
// continue;
// check if the point is inside the viewport
if ( ( m_iX[0] >= m_pRD->m_pRenderTarget->m_Clip.left ) &&
( m_iX[0] <= m_pRD->m_pRenderTarget->m_Clip.right ) &&
( m_iY[0] >= m_pRD->m_pRenderTarget->m_Clip.top ) &&
( m_iY[0] <= m_pRD->m_pRenderTarget->m_Clip.bottom ) )
{
// The line pattern should have been walked in from its origin, which may have been
// offscreen, to be completely correct.
if (LinePatternStateMachine(m_pRD->GetRS()[D3DRS_LINEPATTERN], wRepeati, wPatterni))
{
DoScanCnvGenPixels();
}
}
}
}
///////////////////////////////////////////////////////////////////////////////
// end