251 lines
7.8 KiB
C
251 lines
7.8 KiB
C
|
/*
|
||
|
** Copyright 1994, Silicon Graphics, Inc.
|
||
|
** All Rights Reserved.
|
||
|
**
|
||
|
** This is UNPUBLISHED PROPRIETARY SOURCE CODE of Silicon Graphics, Inc.;
|
||
|
** the contents of this file may not be disclosed to third parties, copied or
|
||
|
** duplicated in any form, in whole or in part, without the prior written
|
||
|
** permission of Silicon Graphics, Inc.
|
||
|
**
|
||
|
** RESTRICTED RIGHTS LEGEND:
|
||
|
** Use, duplication or disclosure by the Government is subject to restrictions
|
||
|
** as set forth in subdivision (c)(1)(ii) of the Rights in Technical Data
|
||
|
** and Computer Software clause at DFARS 252.227-7013, and/or in similar or
|
||
|
** successor clauses in the FAR, DOD or NASA FAR Supplement. Unpublished -
|
||
|
** rights reserved under the Copyright Laws of the United States.
|
||
|
**
|
||
|
** Author: Eric Veach, July 1994.
|
||
|
*/
|
||
|
|
||
|
#include <assert.h>
|
||
|
#include "mesh.h"
|
||
|
#include "geom.h"
|
||
|
|
||
|
int __gl_vertLeq( GLUvertex *u, GLUvertex *v )
|
||
|
{
|
||
|
/* Returns TRUE if u is lexicographically <= v. */
|
||
|
|
||
|
return VertLeq( u, v );
|
||
|
}
|
||
|
|
||
|
GLdouble __gl_edgeEval( GLUvertex *u, GLUvertex *v, GLUvertex *w )
|
||
|
{
|
||
|
/* Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w),
|
||
|
* evaluates the t-coord of the edge uw at the s-coord of the vertex v.
|
||
|
* Returns v->t - (uw)(v->s), ie. the signed distance from uw to v.
|
||
|
* If uw is vertical (and thus passes thru v), the result is zero.
|
||
|
*
|
||
|
* The calculation is extremely accurate and stable, even when v
|
||
|
* is very close to u or w. In particular if we set v->t = 0 and
|
||
|
* let r be the negated result (this evaluates (uw)(v->s)), then
|
||
|
* r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t).
|
||
|
*/
|
||
|
GLdouble gapL, gapR;
|
||
|
|
||
|
assert( VertLeq( u, v ) && VertLeq( v, w ));
|
||
|
|
||
|
gapL = v->s - u->s;
|
||
|
gapR = w->s - v->s;
|
||
|
|
||
|
if( gapL + gapR > 0 ) {
|
||
|
if( gapL < gapR ) {
|
||
|
return (v->t - u->t) + (u->t - w->t) * (gapL / (gapL + gapR));
|
||
|
} else {
|
||
|
return (v->t - w->t) + (w->t - u->t) * (gapR / (gapL + gapR));
|
||
|
}
|
||
|
}
|
||
|
/* vertical line */
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
GLdouble __gl_edgeSign( GLUvertex *u, GLUvertex *v, GLUvertex *w )
|
||
|
{
|
||
|
/* Returns a number whose sign matches EdgeEval(u,v,w) but which
|
||
|
* is cheaper to evaluate. Returns > 0, == 0 , or < 0
|
||
|
* as v is above, on, or below the edge uw.
|
||
|
*/
|
||
|
GLdouble gapL, gapR;
|
||
|
|
||
|
assert( VertLeq( u, v ) && VertLeq( v, w ));
|
||
|
|
||
|
gapL = v->s - u->s;
|
||
|
gapR = w->s - v->s;
|
||
|
|
||
|
if( gapL + gapR > 0 ) {
|
||
|
return (v->t - w->t) * gapL + (v->t - u->t) * gapR;
|
||
|
}
|
||
|
/* vertical line */
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/***********************************************************************
|
||
|
* Define versions of EdgeSign, EdgeEval with s and t transposed.
|
||
|
*/
|
||
|
|
||
|
GLdouble __gl_transEval( GLUvertex *u, GLUvertex *v, GLUvertex *w )
|
||
|
{
|
||
|
/* Given three vertices u,v,w such that TransLeq(u,v) && TransLeq(v,w),
|
||
|
* evaluates the t-coord of the edge uw at the s-coord of the vertex v.
|
||
|
* Returns v->s - (uw)(v->t), ie. the signed distance from uw to v.
|
||
|
* If uw is vertical (and thus passes thru v), the result is zero.
|
||
|
*
|
||
|
* The calculation is extremely accurate and stable, even when v
|
||
|
* is very close to u or w. In particular if we set v->s = 0 and
|
||
|
* let r be the negated result (this evaluates (uw)(v->t)), then
|
||
|
* r is guaranteed to satisfy MIN(u->s,w->s) <= r <= MAX(u->s,w->s).
|
||
|
*/
|
||
|
GLdouble gapL, gapR;
|
||
|
|
||
|
assert( TransLeq( u, v ) && TransLeq( v, w ));
|
||
|
|
||
|
gapL = v->t - u->t;
|
||
|
gapR = w->t - v->t;
|
||
|
|
||
|
if( gapL + gapR > 0 ) {
|
||
|
if( gapL < gapR ) {
|
||
|
return (v->s - u->s) + (u->s - w->s) * (gapL / (gapL + gapR));
|
||
|
} else {
|
||
|
return (v->s - w->s) + (w->s - u->s) * (gapR / (gapL + gapR));
|
||
|
}
|
||
|
}
|
||
|
/* vertical line */
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
GLdouble __gl_transSign( GLUvertex *u, GLUvertex *v, GLUvertex *w )
|
||
|
{
|
||
|
/* Returns a number whose sign matches TransEval(u,v,w) but which
|
||
|
* is cheaper to evaluate. Returns > 0, == 0 , or < 0
|
||
|
* as v is above, on, or below the edge uw.
|
||
|
*/
|
||
|
GLdouble gapL, gapR;
|
||
|
|
||
|
assert( TransLeq( u, v ) && TransLeq( v, w ));
|
||
|
|
||
|
gapL = v->t - u->t;
|
||
|
gapR = w->t - v->t;
|
||
|
|
||
|
if( gapL + gapR > 0 ) {
|
||
|
return (v->s - w->s) * gapL + (v->s - u->s) * gapR;
|
||
|
}
|
||
|
/* vertical line */
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
int __gl_vertCCW( GLUvertex *u, GLUvertex *v, GLUvertex *w )
|
||
|
{
|
||
|
/* For almost-degenerate situations, the results are not reliable.
|
||
|
* Unless the floating-point arithmetic can be performed without
|
||
|
* rounding errors, *any* implementation will give incorrect results
|
||
|
* on some degenerate inputs, so the client must have some way to
|
||
|
* handle this situation.
|
||
|
*/
|
||
|
return (u->s*(v->t - w->t) + v->s*(w->t - u->t) + w->s*(u->t - v->t)) >= 0;
|
||
|
}
|
||
|
|
||
|
/* Given parameters a,x,b,y returns the value (b*x+a*y)/(a+b),
|
||
|
* or (x+y)/2 if a==b==0. It requires that a,b >= 0, and enforces
|
||
|
* this in the rare case that one argument is slightly negative.
|
||
|
* The implementation is extremely stable numerically.
|
||
|
* In particular it guarantees that the result r satisfies
|
||
|
* MIN(x,y) <= r <= MAX(x,y), and the results are very accurate
|
||
|
* even when a and b differ greatly in magnitude.
|
||
|
*/
|
||
|
#define RealInterpolate(a,x,b,y) \
|
||
|
(a = (a < 0) ? 0 : a, b = (b < 0) ? 0 : b, \
|
||
|
((a <= b) ? ((b == 0) ? ((x+y) / 2) \
|
||
|
: (x + (y-x) * (a/(a+b)))) \
|
||
|
: (y + (x-y) * (b/(a+b)))))
|
||
|
|
||
|
#ifndef DEBUG
|
||
|
#define Interpolate(a,x,b,y) RealInterpolate(a,x,b,y)
|
||
|
#else
|
||
|
|
||
|
/* Claim: the ONLY property the sweep algorithm relies on is that
|
||
|
* MIN(x,y) <= r <= MAX(x,y). This is a nasty way to test that.
|
||
|
*/
|
||
|
#include <stdlib.h>
|
||
|
extern int RandomInterpolate;
|
||
|
|
||
|
GLdouble Interpolate( GLdouble a, GLdouble x, GLdouble b, GLdouble y)
|
||
|
{
|
||
|
#ifndef NT
|
||
|
printf("*********************%d\n",RandomInterpolate);
|
||
|
#endif
|
||
|
if( RandomInterpolate ) {
|
||
|
a = 1.2 * drand48() - 0.1;
|
||
|
a = (a < 0) ? 0 : ((a > 1) ? 1 : a);
|
||
|
b = 1.0 - a;
|
||
|
}
|
||
|
return RealInterpolate(a,x,b,y);
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
#define Swap(a,b) if (1) { GLUvertex *t = a; a = b; b = t; } else
|
||
|
|
||
|
void __gl_edgeIntersect( GLUvertex *o1, GLUvertex *d1,
|
||
|
GLUvertex *o2, GLUvertex *d2,
|
||
|
GLUvertex *v )
|
||
|
/* Given edges (o1,d1) and (o2,d2), compute their point of intersection.
|
||
|
* The computed point is guaranteed to lie in the intersection of the
|
||
|
* bounding rectangles defined by each edge.
|
||
|
*/
|
||
|
{
|
||
|
GLdouble z1, z2;
|
||
|
|
||
|
/* This is certainly not the most efficient way to find the intersection
|
||
|
* of two line segments, but it is very numerically stable.
|
||
|
*
|
||
|
* Strategy: find the two middle vertices in the VertLeq ordering,
|
||
|
* and interpolate the intersection s-value from these. Then repeat
|
||
|
* using the TransLeq ordering to find the intersection t-value.
|
||
|
*/
|
||
|
|
||
|
if( ! VertLeq( o1, d1 )) { Swap( o1, d1 ); }
|
||
|
if( ! VertLeq( o2, d2 )) { Swap( o2, d2 ); }
|
||
|
if( ! VertLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
|
||
|
|
||
|
if( ! VertLeq( o2, d1 )) {
|
||
|
/* Technically, no intersection -- do our best */
|
||
|
v->s = (o2->s + d1->s) / 2;
|
||
|
} else if( VertLeq( d1, d2 )) {
|
||
|
/* Interpolate between o2 and d1 */
|
||
|
z1 = EdgeEval( o1, o2, d1 );
|
||
|
z2 = EdgeEval( o2, d1, d2 );
|
||
|
if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
|
||
|
v->s = Interpolate( z1, o2->s, z2, d1->s );
|
||
|
} else {
|
||
|
/* Interpolate between o2 and d2 */
|
||
|
z1 = EdgeSign( o1, o2, d1 );
|
||
|
z2 = -EdgeSign( o1, d2, d1 );
|
||
|
if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
|
||
|
v->s = Interpolate( z1, o2->s, z2, d2->s );
|
||
|
}
|
||
|
|
||
|
/* Now repeat the process for t */
|
||
|
|
||
|
if( ! TransLeq( o1, d1 )) { Swap( o1, d1 ); }
|
||
|
if( ! TransLeq( o2, d2 )) { Swap( o2, d2 ); }
|
||
|
if( ! TransLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
|
||
|
|
||
|
if( ! TransLeq( o2, d1 )) {
|
||
|
/* Technically, no intersection -- do our best */
|
||
|
v->t = (o2->t + d1->t) / 2;
|
||
|
} else if( TransLeq( d1, d2 )) {
|
||
|
/* Interpolate between o2 and d1 */
|
||
|
z1 = TransEval( o1, o2, d1 );
|
||
|
z2 = TransEval( o2, d1, d2 );
|
||
|
if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
|
||
|
v->t = Interpolate( z1, o2->t, z2, d1->t );
|
||
|
} else {
|
||
|
/* Interpolate between o2 and d2 */
|
||
|
z1 = TransSign( o1, o2, d1 );
|
||
|
z2 = -TransSign( o1, d2, d1 );
|
||
|
if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
|
||
|
v->t = Interpolate( z1, o2->t, z2, d2->t );
|
||
|
}
|
||
|
}
|