windows-nt/Source/XPSP1/NT/multimedia/opengl/pmesh/glmesh.cxx

361 lines
8.5 KiB
C++
Raw Normal View History

2020-09-26 03:20:57 -05:00
/**
** File : glmesh.cxx
** Description: Implementations of CGlMesh class
**/
#include "precomp.h"
#pragma hdrstop
#include "glmesh.h"
#include "pmerrors.h"
/**************************************************************************/
/*
* CGlMesh: Constructor
*/
CGlMesh::CGlMesh()
{
//Dynamically allocated arrays
m_matArray = NULL;
m_varray = NULL;
m_narray = NULL;
m_tarray = NULL;
m_wedgelist = NULL;
m_fnei = NULL;
m_facemap = NULL;
m_numFaces =
m_numWedges =
m_numVerts =
m_numMaterials =
m_numTextures = 0;
}
/*
* CGlMesh: Destructor
*/
CGlMesh::~CGlMesh()
{
delete [] m_matArray;
delete [] m_varray;
delete [] m_narray;
delete [] m_tarray;
delete [] m_wedgelist;
delete [] m_fnei;
delete [] m_facemap;
}
/*
* CGlMesh: Print
*/
STDMETHODIMP CGlMesh::Print(ostream& os)
{
os << "\n\nMaterials:";
for (int i=0; i<m_numMaterials; ++i)
{
LPGLmaterial lpglm = &m_matArray[i];
os << "\n\nMaterial [" << i << "] :";
os << "\nShininess : " << lpglm->shininess;
os << "\nDiffuse : (" << lpglm->diffuse.r << ", "
<< lpglm->diffuse.g << ", "
<< lpglm->diffuse.b << ", "
<< lpglm->diffuse.a << ")";
os << "\nSpecular : (" << lpglm->specular.r << ", "
<< lpglm->specular.g << ", "
<< lpglm->specular.b << ", "
<< lpglm->specular.a << ")";
os << "\nEmissive : (" << lpglm->emissive.r << ", "
<< lpglm->emissive.g << ", "
<< lpglm->emissive.b << ", "
<< lpglm->emissive.a << ")";
os << "\nNumber of faces: " << m_matcnt[i];
for (int j=0; j< m_matcnt[i]; j++)
{
#ifdef __MATPOS_IS_A_PTR
os << "\n(" << m_matpos[i][j].w[0] << ","
<< (m_matpos[i][j]).w[1] << ","
<< (m_matpos[i][j]).w[2] << ")";
#else
os << "\n(" << (m_farray[m_matpos[i] + j]).w[0] << ","
<< (m_farray[m_matpos[i] + j]).w[0] << ","
<< (m_farray[m_matpos[i] + j]).w[0] << ")";
#endif
}
}
os << "\n\nWedge connectivity:";
for (i=0; i<m_numWedges; ++i)
{
os << "\n" << m_wedgelist[i];
}
os << "\n\nWedge data:";
for (i=0; i<m_numWedges; ++i)
{
os << "\n(" << m_varray[i].x << ", "
<< m_varray[i].y << ", "
<< m_varray[i].z << ") "
<< " (" << m_narray[i].x << ", "
<< m_narray[i].y << ", "
<< m_narray[i].z << ") "
<< " (" << m_tarray[i].s << ", "
<< m_tarray[i].t << ") ";
}
return S_OK;
}
/*
* CGlMesh: Render
*/
STDMETHODIMP CGlMesh::Render(RenderType rt)
{
if (rt == GLPM_SOLID)
{
glVertexPointer(3, GL_FLOAT, 0, (void *)&(m_varray[0].x));
glNormalPointer (GL_FLOAT, 0, (void *)&(m_narray[0].x));
glTexCoordPointer (2, GL_FLOAT, 0, (void *)&(m_tarray[0].s));
glEnableClientState (GL_VERTEX_ARRAY);
glEnableClientState (GL_NORMAL_ARRAY);
for (int i=0; i<m_numMaterials; i++)
{
LPGLmaterial lpglm = &(m_matArray[i]);
if (m_matcnt[i] == (WORD) 0) continue;
glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, lpglm->shininess);
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR,
(GLfloat *) &(lpglm->specular));
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE,
(GLfloat *) &(lpglm->diffuse));
glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION,
(GLfloat *) &(lpglm->emissive));
glDrawElements (GL_TRIANGLES, (GLuint) m_matcnt[i]*3,
GL_UNSIGNED_SHORT,
#ifdef __MATPOS_IS_A_PTR
(void *) m_matpos[i]);
#else
(void *) &(m_farray[m_matpos[i]]));
#endif
}
return S_OK;
}
else
{
return E_NOTIMPL;
}
}
PHASHENTRY* hashtable;
PHASHENTRY hashentries;
int freeptr, maxptr;
void CGlMesh::HashAdd(WORD va, WORD vb, WORD f)
{
#ifdef _DEBUG
if (va > m_numWedges || va < 0)
throw CHashOvrflw();
#endif
for (PHASHENTRY* t = &(hashtable[va]); *t; t = &((*t)->next));
PHASHENTRY p = &(hashentries[freeptr++]);
p->f = f;
p->v2 = vb;
p->next = NULL;
*t=p;
}
WORD CGlMesh::HashFind(WORD va, WORD vb)
{
#ifdef _DEBUG
if (va > m_baseWedges || va < 0)
throw CHashOvrflw();
#endif
for (PHASHENTRY* t = &(hashtable[va]); *t; t = &((*t)->next))
{
if ((*t)->v2 == vb)
{
return (*t)->f;
}
}
return USHRT_MAX;
}
void CGlMesh::ComputeAdjacency(void)
{
freeptr = 0;
maxptr = m_numFaces*3;
hashtable = new PHASHENTRY[m_numWedges];
// An entry for each 3 edges of each face in base mesh
hashentries = new hashentry[maxptr];
if (!hashtable)
throw CExNewFailed();
memset(hashtable, 0, sizeof(PHASHENTRY)*m_numWedges);
/*
* For each group of faces
*/
for(int i=0; i<m_numMaterials; ++i)
{
/*
* For each face in the group
*/
#ifdef __MATPOS_IS_A_PTR
for (int k=0; k<m_matcnt[i]; ++k)
{
int v1 = FindVertexIndex((m_matpos[i][k]).w[0]);
int v2 = FindVertexIndex((m_matpos[i][k]).w[1]);
int v3 = FindVertexIndex((m_matpos[i][k]).w[2]);
int fi = GetFaceIndex(i,k);
HashAdd(v1,v2,fi);
HashAdd(v2,v3,fi);
HashAdd(v3,v1,fi);
}
#else
for (int k=m_matpos[i]; k<(m_matpos[i]+m_matcnt[i]); ++k)
{
int v1 = FindVertexIndex((m_farray[k]).w[0]);
int v2 = FindVertexIndex((m_farray[k]).w[1]);
int v3 = FindVertexIndex((m_farray[k]).w[2]);
HashAdd(v1,v2,k);
HashAdd(v2,v3,k);
HashAdd(v3,v1,k);
}
#endif
}
#ifdef _DEBUG
if (freeptr > maxptr)
throw CHashOvrflw();
#endif
/*
* For each group of faces
*/
for(i=0; i<m_numMaterials; ++i)
{
/*
* For each face in the group
*/
#ifdef __MATPOS_IS_A_PTR
for (int k=0; k<m_matcnt[i]; ++k)
{
int v1 = FindVertexIndex((m_matpos[i][k]).w[0]);
int v2 = FindVertexIndex((m_matpos[i][k]).w[1]);
int v3 = FindVertexIndex((m_matpos[i][k]).w[2]);
int fi = GetFaceIndex(i,k);
m_fnei[fi][0] = HashFind(v3,v2);
m_fnei[fi][1] = HashFind(v1,v3);
m_fnei[fi][2] = HashFind(v2,v1);
}
#else
for (int k=m_matpos[i]; k<(m_matpos[i]+m_matcnt[i]); ++k)
{
int v1 = FindVertexIndex((m_farray[k]).w[0]);
int v2 = FindVertexIndex((m_farray[k]).w[1]);
int v3 = FindVertexIndex((m_farray[k]).w[2]);
m_fnei[k][0] = HashFind(v3,v2);
m_fnei[k][1] = HashFind(v1,v3);
m_fnei[k][2] = HashFind(v2,v1);
}
#endif
}
delete [] hashtable;
delete [] hashentries;
}
#if 0
STDMETHODIMP AddWedge (WORD vertex_id, GLnormal& n,
GLtexCoord& t, DWORD* const wedge_id)
{
WORD w;
w = m_numWedges++;
m_wedgelist[w] = m_wedgelist[vertex_id];
m_wedgelist[vertex_id] = w;
m_varray[w] = m_varray[vertex_id];
m_narray[w] = n;
m_tarray[w] = t;
*wedge_id = w;
return S_OK;
}
STDMETHODIMP AddWedge (Glvertex &v, GLnormal& n, GLtexCoord& t,
DWORD* const wedge_id)
{
WORD w;
w = m_numWedges++;
m_wedgelist[w] = w;
m_varray[w] = v;
m_narray[w] = n;
m_tarray[w] = t;
*wedge_id = w;
return S_OK;
}
STDMETHODIMP AddWedge (Glvertex &v)
{
WORD w;
w = m_numWedges++;
m_wedgelist[w] = w;
m_varray[w] = v;
//m_narray[w] = n;
//m_tarray[w] = t;
*wedge_id = w;
return S_OK;
}
STDMETHODIMP AddWedge (WORD vertex_id, WORD old_wedge_id,
DWORD* const wedge_id)
{
WORD w;
w = m_numWedges++;
/*
* Add wnl to the list of wedges sharing vertex_id
*/
m_wedgelist[w] = m_wedgelist[vertex_id];
m_wedgelist[vertex_id] = w;
/*
* Copy wedge attributes
*/
m_varray[w] = m_varray[vertex_id];
m_narray[w] = m_narray[old_wedge_id];
m_tarray[w] = m_tarray[old_wedge_id];
*wedge_id = w;
return S_OK;
}
STDMETHODIMP AddFace (WORD matid, GLface& f)
{
return S_OK;
}
#endif