windows-nt/Source/XPSP1/NT/net/tcpip/driver/ipv4/iprcv.c

3285 lines
120 KiB
C
Raw Normal View History

2020-09-26 03:20:57 -05:00
/*++
Copyright (c) 1990-2000 Microsoft Corporation
Module Name:
iprcv.c - IP receive routines.
Abstract:
This module contains all receive related IP routines.
Author:
[Environment:]
kernel mode only
[Notes:]
optional-notes
Revision History:
--*/
#include "precomp.h"
#include "info.h"
#include "iproute.h"
#include "arpdef.h"
#include "iprtdef.h"
#include "igmp.h"
#if IPMCAST
void IPMForwardAfterTD(NetTableEntry *pPrimarySrcNte, PNDIS_PACKET pnpPacket,
UINT uiBytesCopied);
#endif
// Following is to prevent ip fragment attack
uint MaxRH = 100; // maximum number of reassembly headers allowed
uint NumRH = 0; // Count of RH in use
uint MaxOverlap = 5; // maximum number overlaps allowed for one
// reassembled datagram
uint FragmentAttackDrops = 0;
extern IP_STATUS SendICMPErr(IPAddr, IPHeader UNALIGNED *, uchar, uchar, ulong);
extern uint IPSecStatus;
extern IPSecRcvFWPacketRtn IPSecRcvFWPacketPtr;
extern uchar RATimeout;
extern NDIS_HANDLE BufferPool;
extern ProtInfo IPProtInfo[]; // Protocol information table.
extern ProtInfo *LastPI; // Last protinfo structure looked at.
extern int NextPI; // Next PI field to be used.
extern ProtInfo *RawPI; // Raw IP protinfo
extern NetTableEntry **NewNetTableList; // hash table for NTEs
extern uint NET_TABLE_SIZE;
extern NetTableEntry *LoopNTE;
extern uint DisableIPSourceRouting;
uchar CheckLocalOptions(NetTableEntry *SrcNTE, IPHeader UNALIGNED *Header,
IPOptInfo *OptInfo, uchar DestType, uchar* Data,
uint DataSize, BOOLEAN FilterOnDrop);
#define PROT_RSVP 46 // Protocol number for RSVP
//* FindUserRcv - Find the receive handler to be called for a particular
// protocol.
//
// This functions takes as input a protocol value, and returns a pointer to
// the receive routine for that protocol.
//
// Input: NTE - Pointer to NetTableEntry to be searched
// Protocol - Protocol to be searched for.
// UContext - Place to returns UL Context value.
//
// Returns: Pointer to the receive routine.
//
ULRcvProc
FindUserRcv(uchar Protocol)
{
ULRcvProc RcvProc;
int i;
ProtInfo *TempPI;
if ((TempPI = LastPI)->pi_protocol == Protocol) {
RcvProc = TempPI->pi_rcv;
return RcvProc;
}
RcvProc = (ULRcvProc) NULL;
for (i = 0; i < NextPI; i++) {
if (IPProtInfo[i].pi_protocol == Protocol) {
if (IPProtInfo[i].pi_valid == PI_ENTRY_VALID) {
InterlockedExchangePointer(&LastPI, &IPProtInfo[i]);
RcvProc = IPProtInfo[i].pi_rcv;
return RcvProc;
} else {
// Deregisterd entry. Treat this case as if
// there is no matching protocol.
break;
}
}
}
//
// Didn't find a match. Use the raw protocol if it is registered.
//
if ((TempPI = RawPI) != NULL) {
RcvProc = TempPI->pi_rcv;
}
return RcvProc;
}
//* IPRcvComplete - Handle a receive complete.
//
// Called by the lower layer when receives are temporarily done.
//
// Entry: Nothing.
//
// Returns: Nothing.
//
void
__stdcall
IPRcvComplete(void)
{
void (*ULRcvCmpltProc) (void);
int i;
for (i = 0; i < NextPI; i++) {
if (((ULRcvCmpltProc = IPProtInfo[i].pi_rcvcmplt) != NULL) &&
(IPProtInfo[i].pi_valid == PI_ENTRY_VALID)) {
(*ULRcvCmpltProc) ();
}
}
}
//* UpdateIPSecRcvBuf - update an IPRcvBuf after IPSec receive-processing.
//
// Called to perform IPSec-related changes (e.g. setting checksum-verified)
// for an IPRcvBuf.
//
// Input: RcvBuf - Pointer to IPRcvBuf.
// IPSecFlags - Flags for required changes.
//
void
UpdateIPSecRcvBuf(IPRcvBuf* RcvBuf, ulong IPSecFlags)
{
if (IPSecFlags & (IPSEC_FLAG_TCP_CHECKSUM_VALID |
IPSEC_FLAG_UDP_CHECKSUM_VALID) &&
RcvBuf->ipr_pClientCnt) {
PNDIS_PACKET Packet;
PNDIS_PACKET_EXTENSION PktExt;
PNDIS_TCP_IP_CHECKSUM_PACKET_INFO ChksumPktInfo;
if (RcvBuf->ipr_pMdl) {
Packet = NDIS_GET_ORIGINAL_PACKET((PNDIS_PACKET)
RcvBuf->ipr_RcvContext);
if (Packet == NULL) {
Packet = (PNDIS_PACKET)RcvBuf->ipr_RcvContext;
}
} else {
Packet = (PNDIS_PACKET)RcvBuf->ipr_pClientCnt;
}
PktExt = NDIS_PACKET_EXTENSION_FROM_PACKET(Packet);
ChksumPktInfo =
(PNDIS_TCP_IP_CHECKSUM_PACKET_INFO)
&PktExt->NdisPacketInfo[TcpIpChecksumPacketInfo];
if (IPSecFlags & IPSEC_FLAG_TCP_CHECKSUM_VALID) {
ChksumPktInfo->Receive.NdisPacketTcpChecksumSucceeded = TRUE;
ChksumPktInfo->Receive.NdisPacketTcpChecksumFailed = FALSE;
}
if (IPSecFlags & IPSEC_FLAG_UDP_CHECKSUM_VALID) {
ChksumPktInfo->Receive.NdisPacketUdpChecksumSucceeded = TRUE;
ChksumPktInfo->Receive.NdisPacketUdpChecksumFailed = FALSE;
}
}
}
//* FindRH - Look up a reassembly header on an NTE.
//
// A utility function to look up a reassembly header. We assume the lock
// on the NTE is taken when we are called. If we find a matching RH
// we'll take the lock on it. We also return the predecessor of the RH,
// for use in insertion or deletion.
//
// Input: PrevRH - Place to return pointer to previous RH
// NTE - NTE to be searched.
// Dest - Destination IP address
// Src - Src IP address
// ID - ID of RH
// Protocol - Protocol of RH
//
// Returns: Pointer to RH, or NULL if none.
//
ReassemblyHeader *
FindRH(ReassemblyHeader ** PrevRH, NetTableEntry * NTE, IPAddr Dest, IPAddr Src, ushort Id,
uchar Protocol)
{
ReassemblyHeader *TempPrev, *Current;
TempPrev = STRUCT_OF(ReassemblyHeader, &NTE->nte_ralist, rh_next);
Current = NTE->nte_ralist;
while (Current != (ReassemblyHeader *) NULL) {
if (Current->rh_dest == Dest && Current->rh_src == Src && Current->rh_id == Id &&
Current->rh_protocol == Protocol)
break;
TempPrev = Current;
Current = Current->rh_next;
}
*PrevRH = TempPrev;
return Current;
}
//* ParseRcvdOptions - Validate incoming options.
//
// Called during reception handling to validate incoming options. We make
// sure that everything is OK as best we can, and find indices for any
// source route option.
//
// Input: OptInfo - Pointer to option info. structure.
// Index - Pointer to optindex struct to be filled in.
//
//
// Returns: Index of error if any, MAX_OPT_SIZE if no errors.
//
uchar
ParseRcvdOptions(IPOptInfo * OptInfo, OptIndex * Index)
{
uint i = 0; // Index variable.
uchar *Options = OptInfo->ioi_options;
uint OptLength = (uint) OptInfo->ioi_optlength;
uchar Length; // Length of option.
uchar Pointer; // Pointer field, for options that use it.
if (OptLength < 3) {
// Options should be at least 3 bytes, in the loop below we scan
// first 3 bytes of the packet for finding code, len and ptr value
return (uchar) IP_OPT_LENGTH;
}
while (i < OptLength && *Options != IP_OPT_EOL) {
if (*Options == IP_OPT_NOP) {
i++;
Options++;
continue;
}
if (((Length = Options[IP_OPT_LENGTH]) + i) > OptLength) {
return (uchar) i + (uchar) IP_OPT_LENGTH; // Length exceeds
//options length.
}
Pointer = Options[IP_OPT_DATA] - 1;
if (*Options == IP_OPT_TS) {
if (Length < (MIN_TS_PTR - 1))
return (uchar) i + (uchar) IP_OPT_LENGTH;
if ((Pointer > Length) || (Pointer + 1 < MIN_TS_PTR) || (Pointer % ROUTER_ALERT_SIZE))
return (uchar) i + (uchar) IP_OPT_LENGTH;
Index->oi_tsindex = (uchar) i;
} else {
if (Length < (MIN_RT_PTR - 1))
return (uchar) i + (uchar) IP_OPT_LENGTH;
if (*Options == IP_OPT_LSRR || *Options == IP_OPT_SSRR) {
OptInfo->ioi_flags |= IP_FLAG_SSRR;
if ((Pointer > Length) || (Pointer + 1 < MIN_RT_PTR) || ((Pointer + 1) % ROUTER_ALERT_SIZE))
return (uchar) i + (uchar) IP_OPT_LENGTH;
// A source route option
if (Pointer < Length) { // Route not complete
if ((Length - Pointer) < sizeof(IPAddr))
return (uchar) i + (uchar) IP_OPT_LENGTH;
Index->oi_srtype = *Options;
Index->oi_srindex = (uchar) i;
}
} else {
if (*Options == IP_OPT_RR) {
if ((Pointer > Length) || (Pointer + 1 < MIN_RT_PTR) || ((Pointer + 1) % ROUTER_ALERT_SIZE))
return (uchar) i + (uchar) IP_OPT_LENGTH;
Index->oi_rrindex = (uchar) i;
} else if (*Options == IP_OPT_ROUTER_ALERT) {
Index->oi_rtrindex = (uchar) i;
}
}
}
i += Length;
Options += Length;
}
return MAX_OPT_SIZE;
}
//* IsRtrAlertPacket - Finds whether an IP packet contains rtr alert option.
// Input: Header - Pointer to incoming header.
// Returns: TRUE if packet contains rtr alert option
//
BOOLEAN
IsRtrAlertPacket(IPHeader UNALIGNED * Header)
{
uint HeaderLength;
IPOptInfo OptInfo;
OptIndex Index;
uint i = 0; // Index variable.
HeaderLength = (Header->iph_verlen & (uchar) ~ IP_VER_FLAG) << 2;
if (HeaderLength <= sizeof(IPHeader)) {
return FALSE;
}
OptInfo.ioi_options = (uchar *) (Header + 1);
OptInfo.ioi_optlength = (uchar) (HeaderLength - sizeof(IPHeader));
Index.oi_rtrindex = MAX_OPT_SIZE;
ParseRcvdOptions(&OptInfo, &Index);
if (Index.oi_rtrindex == MAX_OPT_SIZE) {
return FALSE;
}
return TRUE;
}
BOOLEAN
IsBCastAllowed(IPAddr DestAddr, IPAddr SrcAddr, uchar Protocol,
NetTableEntry *NTE)
{
uchar DestType;
DestType = IsBCastOnNTE(DestAddr, NTE);
// Note that IGMP Queries must be immune to the source
// filter or else we cannot over
if (DestType == DEST_MCAST) {
uint PromiscuousMode = 0;
if (NTE->nte_flags & NTE_VALID) {
PromiscuousMode = NTE->nte_if->if_promiscuousmode;
}
if (!PromiscuousMode) {
DestType = IsMCastSourceAllowed(DestAddr, SrcAddr, Protocol, NTE);
}
}
return IS_BCAST_DEST(DestType);
}
//* BCastRcv - Receive a broadcast or multicast packet.
//
// Called when we have to receive a broadcast packet. We loop through the
// NTE table, calling the upper layer receive protocol for each net which
// matches the receive I/F and for which the destination address is a
// broadcast.
//
// Input: RcvProc - The receive procedure to be called.
// SrcNTE - NTE on which the packet was originally received.
// DestAddr - Destination address.
// SrcAddr - Source address of packet.
// Data - Pointer to received data.
// DataLength - Size in bytes of data
// Protocol - Upper layer protocol being called.
// OptInfo - Pointer to received IP option info.
//
// Returns: Nothing.
//
void
BCastRcv(ULRcvProc RcvProc, NetTableEntry * SrcNTE, IPAddr DestAddr,
IPAddr SrcAddr, IPHeader UNALIGNED * Header, uint HeaderLength,
IPRcvBuf * Data, uint DataLength, uchar Protocol, IPOptInfo * OptInfo)
{
NetTableEntry *CurrentNTE;
const Interface *SrcIF = SrcNTE->nte_if;
ulong Delivered = 0;
uint i;
for (i = 0; i < NET_TABLE_SIZE; i++) {
NetTableEntry *NetTableList = NewNetTableList[i];
for (CurrentNTE = NetTableList;
CurrentNTE != NULL;
CurrentNTE = CurrentNTE->nte_next) {
if ((CurrentNTE->nte_flags & NTE_ACTIVE) &&
(CurrentNTE->nte_if == SrcIF) &&
(IsBCastAllowed(DestAddr, SrcAddr, Protocol, CurrentNTE)
|| (SrcNTE == LoopNTE))) {
uchar *saveddata = Data->ipr_buffer;
uint savedlen = Data->ipr_size;
Delivered = 1;
(*RcvProc) (CurrentNTE, DestAddr, SrcAddr, CurrentNTE->nte_addr,
SrcNTE->nte_addr, Header, HeaderLength, Data, DataLength,
TRUE, Protocol, OptInfo);
// restore the buffers;
Data->ipr_buffer = saveddata;
Data->ipr_size = savedlen;
}
}
}
if (Delivered) {
IPSIncrementInDeliverCount();
}
}
//* DeliverToUser - Deliver data to a user protocol.
//
// This procedure is called when we have determined that an incoming
// packet belongs here, and any options have been processed. We accept
// it for upper layer processing, which means looking up the receive
// procedure and calling it, or passing it to BCastRcv if neccessary.
//
// Input: SrcNTE - Pointer to NTE on which packet arrived.
// DestNTE - Pointer to NTE that is accepting packet.
// Header - Pointer to IP header of packet.
// HeaderLength - Length of Header in bytes.
// Data - Pointer to IPRcvBuf chain.
// DataLength - Length in bytes of upper layer data.
// OptInfo - Pointer to Option information for this receive.
// DestType - Type of destination - LOCAL, BCAST.
//
// Returns: Nothing.
void
DeliverToUser(NetTableEntry * SrcNTE, NetTableEntry * DestNTE,
IPHeader UNALIGNED * Header, uint HeaderLength, IPRcvBuf * Data,
uint DataLength, IPOptInfo * OptInfo, PNDIS_PACKET Packet, uchar DestType)
{
ULRcvProc rcv;
uint PromiscuousMode;
uint FirewallMode;
PromiscuousMode = SrcNTE->nte_if->if_promiscuousmode;
FirewallMode = ProcessFirewallQ();
//
// Call into IPSEC so he can decrypt the data. Call only for remote packets.
//
if (IPSecHandlerPtr) {
//
// See if IPSEC is enabled, see if it needs to do anything with this
// packet.
//
FORWARD_ACTION Action;
ULONG ipsecByteCount = 0;
ULONG ipsecMTU = 0;
ULONG ipsecFlags = IPSEC_FLAG_INCOMING;
PNDIS_BUFFER newBuf = NULL;
ulong csum;
IPHeader *IPH;
if (!((ForwardFilterEnabled) || (FirewallMode) || (PromiscuousMode))) {
// else ipsec is already called in DeliverToUserEx
if (SrcNTE == LoopNTE) {
ipsecFlags |= IPSEC_FLAG_LOOPBACK;
}
if (OptInfo->ioi_flags & IP_FLAG_SSRR) {
ipsecFlags |= IPSEC_FLAG_SSRR;
}
Action = (*IPSecHandlerPtr) (
(PUCHAR) Header,
(PVOID) Data,
SrcNTE->nte_if, // SrcIF
Packet,
&ipsecByteCount,
&ipsecMTU,
(PVOID *) & newBuf,
&ipsecFlags,
DestType);
if (Action != eFORWARD) {
IPSInfo.ipsi_indiscards++;
return;
} else {
//
// Update the data length if IPSEC changed it
// (like by removing the AH)
//
DataLength -= ipsecByteCount;
UpdateIPSecRcvBuf(Data, ipsecFlags);
}
}
}
Data->ipr_flags = 0;
// Process this request right now. Look up the protocol. If we
// find it, copy the data if we need to, and call the protocol's
// receive handler. If we don't find it, send an ICMP
// 'protocol unreachable' message.
rcv = FindUserRcv(Header->iph_protocol);
if (!PromiscuousMode) {
if (rcv != NULL) {
IP_STATUS Status;
if (DestType == DEST_LOCAL) {
Status = (*rcv) (SrcNTE, Header->iph_dest, Header->iph_src,
DestNTE->nte_addr, SrcNTE->nte_addr, Header,
HeaderLength, Data, DataLength, FALSE,
Header->iph_protocol, OptInfo);
if (Status == IP_SUCCESS) {
IPSIncrementInDeliverCount();
return;
}
if (Status == IP_DEST_PROT_UNREACHABLE) {
IPSInfo.ipsi_inunknownprotos++;
SendICMPErr(DestNTE->nte_addr, Header, ICMP_DEST_UNREACH,
PROT_UNREACH, 0);
} else {
IPSIncrementInDeliverCount();
SendICMPErr(DestNTE->nte_addr, Header, ICMP_DEST_UNREACH,
PORT_UNREACH, 0);
}
return; // Just return out of here now.
} else if (DestType < DEST_REMOTE) { // BCAST, SN_BCAST, MCAST
BCastRcv(rcv, SrcNTE, Header->iph_dest, Header->iph_src,
Header, HeaderLength, Data, DataLength,
Header->iph_protocol, OptInfo);
} else {
// DestType >= DEST_REMOTE
// Force Rcv protocol to be Raw
rcv = NULL;
if (RawPI != NULL) {
rcv = RawPI->pi_rcv;
}
if ((rcv != NULL) && (DestType != DEST_INVALID)) {
Data->ipr_flags |= IPR_FLAG_PROMISCUOUS;
Status = (*rcv) (SrcNTE,Header->iph_dest,Header->iph_src,
DestNTE->nte_addr, SrcNTE->nte_addr, Header,
HeaderLength, Data, DataLength, FALSE,
Header->iph_protocol, OptInfo);
}
return; // Just return out of here now.
}
} else {
IPSInfo.ipsi_inunknownprotos++;
// If we get here, we didn't find a matching protocol. Send an
// ICMP message.
SendICMPErr(DestNTE->nte_addr, Header,
ICMP_DEST_UNREACH, PROT_UNREACH, 0);
}
} else { // PromiscuousMode = 1
IP_STATUS Status;
if (DestType == DEST_LOCAL) {
if (rcv != NULL) {
uchar *saveddata = Data->ipr_buffer;
uint savedlen = Data->ipr_size;
Data->ipr_flags |= IPR_FLAG_PROMISCUOUS;
Status = (*rcv) (SrcNTE, Header->iph_dest, Header->iph_src,
DestNTE->nte_addr, SrcNTE->nte_addr, Header,
HeaderLength, Data, DataLength, FALSE,
Header->iph_protocol, OptInfo);
if (Status == IP_SUCCESS) {
IPSIncrementInDeliverCount();
// If succeed and promiscuous mode set
// also do a raw rcv if previous wasn't a RawRcv
if ((RawPI != NULL) && (RawPI->pi_rcv != NULL) && (RawPI->pi_rcv != rcv)) {
// we hv registered for RAW protocol
rcv = RawPI->pi_rcv;
// restore the buffers;
Data->ipr_buffer = saveddata;
Data->ipr_size = savedlen;
Status = (*rcv) (SrcNTE, Header->iph_dest, Header->iph_src,
DestNTE->nte_addr, SrcNTE->nte_addr, Header,
HeaderLength, Data, DataLength, FALSE,
Header->iph_protocol, OptInfo);
}
return;
}
if (Status == IP_DEST_PROT_UNREACHABLE) {
IPSInfo.ipsi_inunknownprotos++;
SendICMPErr(DestNTE->nte_addr, Header, ICMP_DEST_UNREACH,
PROT_UNREACH, 0);
} else {
IPSIncrementInDeliverCount();
SendICMPErr(DestNTE->nte_addr, Header, ICMP_DEST_UNREACH,
PORT_UNREACH, 0);
}
} else {
IPSInfo.ipsi_inunknownprotos++;
// If we get here, we didn't find a matching protocol. Send
// an ICMP message.
SendICMPErr(DestNTE->nte_addr, Header, ICMP_DEST_UNREACH, PROT_UNREACH, 0);
}
return; // Just return out of here now.
} else if (DestType < DEST_REMOTE) { // BCAST, SN_BCAST, MCAST
uchar *saveddata = Data->ipr_buffer;
uint savedlen = Data->ipr_size;
if (rcv != NULL) {
Data->ipr_flags |= IPR_FLAG_PROMISCUOUS;
BCastRcv(rcv, SrcNTE, Header->iph_dest, Header->iph_src,
Header, HeaderLength, Data, DataLength,
Header->iph_protocol, OptInfo);
// If succeed and promiscuous mode set
// also do a raw rcv if previous is not RawRcv
if ((RawPI != NULL) && (RawPI->pi_rcv != NULL) && (RawPI->pi_rcv != rcv)) {
// we hv registered for RAW protocol
rcv = RawPI->pi_rcv;
Data->ipr_buffer = saveddata;
Data->ipr_size = savedlen;
Status = (*rcv) (SrcNTE, Header->iph_dest, Header->iph_src,
DestNTE->nte_addr, SrcNTE->nte_addr, Header,
HeaderLength, Data, DataLength, FALSE,
Header->iph_protocol, OptInfo);
}
} else {
IPSInfo.ipsi_inunknownprotos++;
// If we get here, we didn't find a matching protocol. Send an ICMP message.
SendICMPErr(DestNTE->nte_addr, Header, ICMP_DEST_UNREACH, PROT_UNREACH, 0);
}
} else { // DestType >= DEST_REMOTE and promiscuous mode set
// Force Rcv protocol to be Raw
rcv = NULL;
if (RawPI != NULL) {
rcv = RawPI->pi_rcv;
}
if ((rcv != NULL) && (DestType != DEST_INVALID)) {
Data->ipr_flags |= IPR_FLAG_PROMISCUOUS;
Status = (*rcv) (SrcNTE, Header->iph_dest, Header->iph_src,
DestNTE->nte_addr, SrcNTE->nte_addr, Header,
HeaderLength, Data, DataLength, FALSE,
Header->iph_protocol, OptInfo);
return; // Just return out of here now.
} else {
if (rcv == NULL) {
KdPrint(("Rcv is NULL \n"));
} else {
KdPrint(("Dest invalid \n"));
}
}
} // DestType >= DEST_REMOTE
} // Promiscuous Mode
}
uchar *
ConvertIPRcvBufToFlatBuffer(IPRcvBuf * pRcvBuf, uint DataLength)
{
uchar *pBuff;
IPRcvBuf *tmpRcvBuf;
uint FrwlOffset;
// convert RcvBuf chain to a flat buffer
tmpRcvBuf = pRcvBuf;
FrwlOffset = 0;
pBuff = CTEAllocMemN(DataLength, 'aiCT');
if (pBuff) {
while (tmpRcvBuf != NULL) {
ASSERT(tmpRcvBuf->ipr_buffer != NULL);
RtlCopyMemory(pBuff + FrwlOffset, tmpRcvBuf->ipr_buffer, tmpRcvBuf->ipr_size);
FrwlOffset += tmpRcvBuf->ipr_size;
tmpRcvBuf = tmpRcvBuf->ipr_next;
}
}
return pBuff;
}
//* DeliverToUserEx - Called when (IPSEC & Filter)/Firewall/Promiscuous set
//
// Input: SrcNTE - Pointer to NTE on which packet arrived.
// DestNTE - Pointer to NTE that is accepting packet.
// Header - Pointer to IP header of packet.
// HeaderLength - Length of Header in bytes.
// Data - Pointer to IPRcvBuf chain.
// DataLength - Length in bytes of upper layer data +
// HeaderLength.
// OptInfo - Pointer to Option information for this receive.
// DestType - Type of destination - LOCAL, BCAST.
//
// It is assumed that if firewall is present Data contains IPHeader also.
// Also, DataLength includes HeaderLength in this case
//
// Returns: Nothing.
void
DeliverToUserEx(NetTableEntry * SrcNTE, NetTableEntry * DestNTE,
IPHeader UNALIGNED * Header, uint HeaderLength, IPRcvBuf * Data,
uint DataLength, IPOptInfo * OptInfo, PNDIS_PACKET Packet, uchar DestType, LinkEntry * LinkCtxt)
{
uint PromiscuousMode;
uint FirewallMode;
uint FirewallRef;
Queue* FirewallQ;
uint FastPath;
IPRcvBuf *tmpRcvBuf;
uint FrwlOffset;
uchar *pBuff;
BOOLEAN OneChunk;
PromiscuousMode = SrcNTE->nte_if->if_promiscuousmode;
FirewallMode = ProcessFirewallQ();
if (DestType == DEST_PROMIS) {
// We don't call any hook for this packet
// if firewall is there take the header off
// and then delivertouser
if (FirewallMode) {
if (Data->ipr_size > HeaderLength) { //1st buff contains data also
uchar *saveddata = Data->ipr_buffer;
Data->ipr_buffer += HeaderLength;
Data->ipr_size -= HeaderLength;
DataLength -= HeaderLength;
DeliverToUser(SrcNTE, DestNTE, Header, HeaderLength, Data, DataLength, OptInfo, NULL, DestType);
// restore the buffers;
Data->ipr_buffer = saveddata;
Data->ipr_size += HeaderLength;
IPFreeBuff(Data);
} else { // First buffer just contains Header
uchar *saveddata;
if (Data->ipr_next == NULL) {
// we received the data s.t. datasize == headersize
IPSInfo.ipsi_indiscards++;
IPFreeBuff(Data);
return;
}
saveddata = Data->ipr_next->ipr_buffer;
DataLength -= HeaderLength;
DeliverToUser(SrcNTE, DestNTE, Header, HeaderLength, Data->ipr_next, DataLength, OptInfo, NULL, DestType);
// restore the buffers;
Data->ipr_next->ipr_buffer = saveddata;
IPFreeBuff(Data);
}
} else { // FirewallMode is 0
DeliverToUser(SrcNTE, DestNTE, Header, HeaderLength,
Data, DataLength, OptInfo, NULL, DestType);
}
return;
}
if (DestType >= DEST_REMOTE) {
// Packet would have gone to the forward path, normally
// Call the filter/firewall hook if its there
if (FirewallMode) {
FORWARD_ACTION Action = FORWARD;
FIREWALL_CONTEXT_T FrCtx;
IPAddr DAddr = Header->iph_dest;
IPRcvBuf *pRcvBuf = Data;
IPRcvBuf *pOutRcvBuf = NULL;
NetTableEntry *DstNTE;
Queue *CurrQ;
FIREWALL_HOOK *CurrHook;
uint DestIFIndex = INVALID_IF_INDEX;
uchar DestinationType = DestType;
uint BufferChanged = 0;
KIRQL OldIrql;
FrCtx.Direction = IP_RECEIVE;
FrCtx.NTE = SrcNTE; //NTE the dg arrived on
FrCtx.LinkCtxt = LinkCtxt;
if (pRcvBuf->ipr_size > HeaderLength) { //1st buffer contains data also
FastPath = 1;
} else {
FastPath = 0;
if (pRcvBuf->ipr_next == NULL) {
// we received the data s.t. datasize == headersize
IPSInfo.ipsi_indiscards++;
IPFreeBuff(pRcvBuf);
return;
}
}
// Call the filter hook if installed
if (ForwardFilterEnabled) {
FORWARD_ACTION Action = FORWARD;
if (FastPath) {
// first buffer contains data also
Interface *IF = SrcNTE->nte_if;
IPAddr LinkNextHop;
if ((IF->if_flags & IF_FLAGS_P2MP) && LinkCtxt) {
LinkNextHop = LinkCtxt->link_NextHop;
} else {
LinkNextHop = NULL_IP_ADDR;
}
CTEInterlockedIncrementLong(&ForwardFilterRefCount);
Action = (*ForwardFilterPtr) (
Header,
pRcvBuf->ipr_buffer + HeaderLength,
pRcvBuf->ipr_size - HeaderLength,
IF->if_index,
INVALID_IF_INDEX,
LinkNextHop,
NULL_IP_ADDR);
DerefFilterPtr();
} else { // Fast Path = 0
// first buffer contains IPHeader only
Interface *IF = SrcNTE->nte_if;
IPAddr LinkNextHop;
if ((IF->if_flags & IF_FLAGS_P2MP) && LinkCtxt) {
LinkNextHop = LinkCtxt->link_NextHop;
} else {
LinkNextHop = NULL_IP_ADDR;
}
CTEInterlockedIncrementLong(&ForwardFilterRefCount);
Action = (*ForwardFilterPtr) (
Header,
pRcvBuf->ipr_next->ipr_buffer,
pRcvBuf->ipr_next->ipr_size,
IF->if_index,
INVALID_IF_INDEX,
LinkNextHop,
NULL_IP_ADDR);
DerefFilterPtr();
}
if (Action != FORWARD) {
IPSInfo.ipsi_indiscards++;
IPFreeBuff(pRcvBuf);
return;
}
}
// call the firewallhook from front;
// in xmit path we call it from rear
#if MILLEN
KeRaiseIrql(DISPATCH_LEVEL, &OldIrql);
#else // MILLEN
ASSERT(KeGetCurrentIrql() >= DISPATCH_LEVEL);
#endif // MILLEN
FirewallRef = RefFirewallQ(&FirewallQ);
CurrQ = QHEAD(FirewallQ);
while (CurrQ != QEND(FirewallQ)) {
CurrHook = QSTRUCT(FIREWALL_HOOK, CurrQ, hook_q);
pOutRcvBuf = NULL;
// pOutRcvBuf is assumed to be NULL before firewall hook is
//called
Action = (*CurrHook->hook_Ptr) (&pRcvBuf,
SrcNTE->nte_if->if_index,
&DestIFIndex,
&DestinationType,
&FrCtx,
sizeof(FrCtx),
&pOutRcvBuf);
if (Action == DROP) {
DerefFirewallQ(FirewallRef);
#if MILLEN
KeLowerIrql(OldIrql);
#endif // MILLEN
IPSInfo.ipsi_indiscards++;
if (pRcvBuf != NULL) {
IPFreeBuff(pRcvBuf);
}
if (pOutRcvBuf != NULL) {
IPFreeBuff(pOutRcvBuf);
}
IPSInfo.ipsi_indiscards++;
return;
} else {
ASSERT(Action == FORWARD);
if (pOutRcvBuf != NULL) {
// free the old buffer
if (pRcvBuf != NULL) {
IPFreeBuff(pRcvBuf);
}
pRcvBuf = pOutRcvBuf;
BufferChanged = 1;
}
}
CurrQ = QNEXT(CurrQ);
}
DerefFirewallQ(FirewallRef);
#if MILLEN
KeLowerIrql(OldIrql);
#endif // MILLEN
ASSERT(Action == FORWARD);
if (BufferChanged) {
// if packet touched compute the new length: DataSize
DataLength = 0;
tmpRcvBuf = pRcvBuf;
while (tmpRcvBuf != NULL) {
ASSERT(tmpRcvBuf->ipr_buffer != NULL);
DataLength += tmpRcvBuf->ipr_size;
tmpRcvBuf = tmpRcvBuf->ipr_next;
}
// also make Header point to new buffer
Header = (IPHeader *) pRcvBuf->ipr_buffer;
HeaderLength = (Header->iph_verlen & 0xf) << 2;
}
DataLength -= HeaderLength; // decrement the header length
if (DestinationType == DEST_INVALID) { // Dest Addr changed by hook
DAddr = Header->iph_dest;
DstNTE = SrcNTE;
DestType = GetLocalNTE(DAddr, &DstNTE);
DestNTE = DstNTE;
}
if (DestType < DEST_REMOTE) {
// Check to see options
if (HeaderLength != sizeof(IPHeader)) {
// We have options
uchar NewDType;
NewDType = CheckLocalOptions(
SrcNTE,
(IPHeader UNALIGNED *) Header,
OptInfo,
DestType,
NULL,
0,
FALSE);
if (NewDType != DEST_LOCAL) {
if (NewDType == DEST_REMOTE) {
if (PromiscuousMode) {
if (FastPath) {
uchar *saveddata = pRcvBuf->ipr_buffer;
pRcvBuf->ipr_buffer += HeaderLength;
pRcvBuf->ipr_size -= HeaderLength;
DeliverToUser(
SrcNTE,
DestNTE,
(IPHeader UNALIGNED *) Header,
HeaderLength,
pRcvBuf,
DataLength,
OptInfo,
NULL,
DestType);
// restore the buffer
pRcvBuf->ipr_buffer = saveddata;
pRcvBuf->ipr_size += HeaderLength;
} else {
uchar *saveddata = pRcvBuf->ipr_next->ipr_buffer;
DeliverToUser(
SrcNTE,
DestNTE,
(IPHeader UNALIGNED *)Header,
HeaderLength,
pRcvBuf->ipr_next,
DataLength,
OptInfo,
NULL,
DestType);
// restore the buffers;
pRcvBuf->ipr_next->ipr_buffer = saveddata;
}
}
goto forward_remote;
} else {
IPSInfo.ipsi_inhdrerrors++;
IPFreeBuff(pRcvBuf);
//CTEFreeMem(pBuff);
return; // Bad Options
}
} // NewDtype != LOCAL
} // Options present
} // DestType < DEST_REMOTE
else { // DestType >=DEST_REMOTE
if (PromiscuousMode) {
if (FastPath) {
uchar *savedata = pRcvBuf->ipr_buffer;
pRcvBuf->ipr_buffer += HeaderLength;
pRcvBuf->ipr_size -= HeaderLength;
DeliverToUser(SrcNTE,
DestNTE, (IPHeader UNALIGNED *) Header,
HeaderLength,pRcvBuf, DataLength,
OptInfo, NULL, DestType);
// restore the buffer
pRcvBuf->ipr_buffer = savedata;
pRcvBuf->ipr_size += HeaderLength;
} else {
uchar *saveddata = pRcvBuf->ipr_next->ipr_buffer;
DeliverToUser(SrcNTE, DestNTE,
(IPHeader UNALIGNED *)Header,HeaderLength,
pRcvBuf->ipr_next, DataLength, OptInfo,
NULL, DestType);
// restore the buffers;
pRcvBuf->ipr_next->ipr_buffer = saveddata;
}
}
goto forward_remote;
}
// DestType <= DEST_REMOTE
if (FastPath) {
uchar *saveddata = pRcvBuf->ipr_buffer;
pRcvBuf->ipr_buffer += HeaderLength;
pRcvBuf->ipr_size -= HeaderLength;
DeliverToUser(SrcNTE, DestNTE, (IPHeader UNALIGNED *) Header,
HeaderLength,pRcvBuf, DataLength, OptInfo, NULL,
DestType);
// restore the buffer
pRcvBuf->ipr_buffer = saveddata;
pRcvBuf->ipr_size += HeaderLength;
} else {
uchar *saveddata = pRcvBuf->ipr_next->ipr_buffer;
DeliverToUser(SrcNTE, DestNTE, (IPHeader UNALIGNED *) Header,
HeaderLength, pRcvBuf->ipr_next, DataLength,
OptInfo, NULL, DestType);
// restore the buffers;
pRcvBuf->ipr_next->ipr_buffer = saveddata;
}
if (IS_BCAST_DEST(DestType)) {
OneChunk = FALSE;
if (pRcvBuf->ipr_next == NULL) {
OneChunk = TRUE;
pBuff = pRcvBuf->ipr_buffer;
} else {
pBuff = ConvertIPRcvBufToFlatBuffer(pRcvBuf,
DataLength + HeaderLength);
if (!pBuff) {
IPSInfo.ipsi_indiscards++;
IPFreeBuff(pRcvBuf);
return;
}
}
IPForwardPkt(SrcNTE, (IPHeader UNALIGNED *) pBuff,
HeaderLength, pBuff + HeaderLength, DataLength,
NULL, 0, DestType, 0, NULL, NULL, LinkCtxt);
if (!OneChunk) {
CTEFreeMem(pBuff); // free the flat buffer
}
}
IPFreeBuff(pRcvBuf);
return;
forward_remote:
OneChunk = FALSE;
if (pRcvBuf->ipr_next == NULL) {
OneChunk = TRUE;
pBuff = pRcvBuf->ipr_buffer;
} else {
pBuff = ConvertIPRcvBufToFlatBuffer(pRcvBuf,
DataLength + HeaderLength);
if (!pBuff) {
IPSInfo.ipsi_indiscards++;
IPFreeBuff(pRcvBuf);
return;
}
}
IPForwardPkt(SrcNTE, (IPHeader UNALIGNED *) pBuff, HeaderLength,
pBuff + HeaderLength, DataLength, NULL, 0,
DestType, 0, NULL, NULL, LinkCtxt);
IPFreeBuff(pRcvBuf);
if (!OneChunk) {
CTEFreeMem(pBuff); // free the flat buffer
}
return;
} else { // No Firewall
if (PromiscuousMode) {
DeliverToUser(SrcNTE, DestNTE, (IPHeader UNALIGNED *) Header,
HeaderLength, Data, DataLength, OptInfo, NULL,
DestType);
}
// Convert IPRcvBuf chain to a flat buffer
OneChunk = FALSE;
if (Data != NULL && !Data->ipr_next) {
OneChunk = TRUE;
pBuff = Data->ipr_buffer;
} else {
pBuff = ConvertIPRcvBufToFlatBuffer(
Data, DataLength + HeaderLength);
if (!pBuff) {
IPSInfo.ipsi_indiscards++;
return;
}
}
IPForwardPkt(SrcNTE, (IPHeader UNALIGNED *) Header, HeaderLength,
pBuff, DataLength, NULL, 0, DestType, 0, NULL, NULL,
LinkCtxt);
if (!OneChunk) CTEFreeMem(pBuff);
}
return;
} // DestType >= DEST_REMOTE
ASSERT(DestType <= DEST_REMOTE);
// Call IPSEC -> Filter -> Firewall
// These are local packets only.
if (FirewallMode) { // Header is part of the Data
FORWARD_ACTION Action = FORWARD;
ACTION_E SecondAction;
FIREWALL_CONTEXT_T FrCtx;
IPAddr DAddr = Header->iph_dest;
IPRcvBuf *pRcvBuf = Data;
IPRcvBuf *pOutRcvBuf = NULL;
NetTableEntry *DstNTE;
Queue *CurrQ;
FIREWALL_HOOK *CurrHook;
uint DestIFIndex = LOCAL_IF_INDEX;
uchar DestinationType = DestType;
uint BufferChanged = 0;
KIRQL OldIrql;
ULONG ipsecFlags = IPSEC_FLAG_INCOMING;
if (pRcvBuf->ipr_size > HeaderLength) { //1st buffer contains data also
FastPath = 1;
} else {
FastPath = 0;
if (pRcvBuf->ipr_next == NULL) {
// we received the data s.t. datasize == headersize
IPSInfo.ipsi_indiscards++;
IPFreeBuff(pRcvBuf);
return;
}
}
//
// Call into IPSEC so he can decrypt the data
//
// In case of firewall make sure we pass the data only but we don't actually strip the header
if (IPSecHandlerPtr) {
//
// See if IPSEC is enabled, see if it needs to do anything with this
// packet.
//
FORWARD_ACTION Action;
ULONG ipsecByteCount = 0;
ULONG ipsecMTU = 0;
PNDIS_BUFFER newBuf = NULL;
if (SrcNTE == LoopNTE) {
ipsecFlags |= IPSEC_FLAG_LOOPBACK;
}
if (OptInfo->ioi_flags & IP_FLAG_SSRR) {
ipsecFlags |= IPSEC_FLAG_SSRR;
}
if (FastPath) {
// first buffer contains IPHeader also
pRcvBuf->ipr_buffer += HeaderLength;
pRcvBuf->ipr_size -= HeaderLength;
// this tells IPSEC to move IPHeader after decryption
ipsecFlags |= IPSEC_FLAG_FASTRCV;
Action = (*IPSecHandlerPtr) (
(PUCHAR) Header,
(PVOID) pRcvBuf,
SrcNTE->nte_if, // SrcIF
Packet,
&ipsecByteCount,
&ipsecMTU,
(PVOID *) & newBuf,
&ipsecFlags,
DestType);
// restore the buffer
pRcvBuf->ipr_buffer -= HeaderLength;
pRcvBuf->ipr_size += HeaderLength;
Header = (IPHeader UNALIGNED *)pRcvBuf->ipr_buffer;
} else { // FastPath = 0
Action = (*IPSecHandlerPtr) (
(PUCHAR) Header,
(PVOID) (pRcvBuf->ipr_next),
SrcNTE->nte_if, // SrcIF
Packet,
&ipsecByteCount,
&ipsecMTU,
(PVOID *) & newBuf,
&ipsecFlags,
DestType);
}
if (Action != eFORWARD) {
IPSInfo.ipsi_indiscards++;
IPFreeBuff(pRcvBuf);
return;
} else {
//
// Update the data length if IPSEC changed it (like by removing the AH)
//
DataLength -= ipsecByteCount;
UpdateIPSecRcvBuf(pRcvBuf, ipsecFlags);
}
}
// If ipsec acted on this, mark ipr_flags for
// filter driver.
if (ipsecFlags & IPSEC_FLAG_TRANSFORMED) {
pRcvBuf->ipr_flags |= IPR_FLAG_IPSEC_TRANSFORMED;
}
// Call the filter hook if installed
if (ForwardFilterEnabled) {
FORWARD_ACTION Action = FORWARD;
if (FastPath) {
Interface *IF = SrcNTE->nte_if;
IPAddr LinkNextHop;
if ((IF->if_flags & IF_FLAGS_P2MP) && LinkCtxt) {
LinkNextHop = LinkCtxt->link_NextHop;
} else {
LinkNextHop = NULL_IP_ADDR;
}
CTEInterlockedIncrementLong(&ForwardFilterRefCount);
Action = (*ForwardFilterPtr) (
Header,
pRcvBuf->ipr_buffer + HeaderLength,
pRcvBuf->ipr_size - HeaderLength,
IF->if_index,
INVALID_IF_INDEX,
LinkNextHop,
NULL_IP_ADDR);
DerefFilterPtr();
} else { // Fast Path = 0
Interface *IF = SrcNTE->nte_if;
IPAddr LinkNextHop;
if ((IF->if_flags & IF_FLAGS_P2MP) && LinkCtxt) {
LinkNextHop = LinkCtxt->link_NextHop;
} else {
LinkNextHop = NULL_IP_ADDR;
}
CTEInterlockedIncrementLong(&ForwardFilterRefCount);
Action = (*ForwardFilterPtr) (Header,
pRcvBuf->ipr_next->ipr_buffer,
pRcvBuf->ipr_next->ipr_size,
IF->if_index,
INVALID_IF_INDEX,
LinkNextHop,
NULL_IP_ADDR);
DerefFilterPtr();
}
if (Action != FORWARD) {
IPSInfo.ipsi_indiscards++;
IPFreeBuff(pRcvBuf);
return;
}
}
// Call the firewall hook
FrCtx.Direction = IP_RECEIVE;
FrCtx.NTE = SrcNTE; //NTE the dg arrived on
FrCtx.LinkCtxt = LinkCtxt;
// call the firewall hooks from front of the Queue
#if MILLEN
KeRaiseIrql(DISPATCH_LEVEL, &OldIrql);
#else // MILLEN
ASSERT(KeGetCurrentIrql() >= DISPATCH_LEVEL);
#endif // MILLEN
FirewallRef = RefFirewallQ(&FirewallQ);
CurrQ = QHEAD(FirewallQ);
while (CurrQ != QEND(FirewallQ)) {
CurrHook = QSTRUCT(FIREWALL_HOOK, CurrQ, hook_q);
pOutRcvBuf = NULL;
Action = (*CurrHook->hook_Ptr) (&pRcvBuf,
SrcNTE->nte_if->if_index,
&DestIFIndex,
&DestinationType,
&FrCtx,
sizeof(FrCtx),
&pOutRcvBuf);
if (Action == DROP) {
DerefFirewallQ(FirewallRef);
#if MILLEN
KeLowerIrql(OldIrql);
#endif // MILLEN
IPSInfo.ipsi_indiscards++;
if (pRcvBuf != NULL) {
IPFreeBuff(pRcvBuf);
}
if (pOutRcvBuf != NULL) {
IPFreeBuff(pOutRcvBuf);
}
return;
} else {
ASSERT(Action == FORWARD);
if (pOutRcvBuf != NULL) {
// free the old buffer
if (pRcvBuf != NULL) {
IPFreeBuff(pRcvBuf);
}
pRcvBuf = pOutRcvBuf;
BufferChanged = 1;
}
}
CurrQ = QNEXT(CurrQ);
}
DerefFirewallQ(FirewallRef);
#if MILLEN
KeLowerIrql(OldIrql);
#endif // MILLEN
ASSERT(Action == FORWARD);
if (BufferChanged) {
// if packet touched compute the new length: DataSize
DataLength = 0;
tmpRcvBuf = pRcvBuf;
while (tmpRcvBuf != NULL) {
ASSERT(tmpRcvBuf->ipr_buffer != NULL);
DataLength += tmpRcvBuf->ipr_size;
tmpRcvBuf = tmpRcvBuf->ipr_next;
}
// also make Header point to new buffer
Header = (IPHeader *) pRcvBuf->ipr_buffer;
HeaderLength = (Header->iph_verlen & 0xf) << 2;
}
DataLength -= HeaderLength; // decrement the header length
if (DestinationType == DEST_INVALID) { // Dest Addr changed by hook
// Can IPSEC changed iph_dest ???
DAddr = Header->iph_dest;
DstNTE = SrcNTE;
DestType = GetLocalNTE(DAddr, &DstNTE);
DestNTE = DstNTE;
}
if (DestType < DEST_REMOTE) {
// Check to see options
if (HeaderLength != sizeof(IPHeader)) {
// We have options
uchar NewDType;
NewDType = CheckLocalOptions(SrcNTE,
(IPHeader UNALIGNED *) Header,
OptInfo,
DestType,
NULL,
0,
FALSE);
if (NewDType != DEST_LOCAL) {
if (NewDType == DEST_REMOTE) {
if (PromiscuousMode) {
if (FastPath) {
uchar *saveddata = pRcvBuf->ipr_buffer;
pRcvBuf->ipr_buffer += HeaderLength;
pRcvBuf->ipr_size -= HeaderLength;
DeliverToUser(SrcNTE, DestNTE,
(IPHeader UNALIGNED *) Header,
HeaderLength, pRcvBuf,
DataLength, OptInfo, NULL,
DestType);
// restore the buffer
pRcvBuf->ipr_buffer = saveddata;
pRcvBuf->ipr_size += HeaderLength;
} else {
uchar *saveddata = pRcvBuf->ipr_next->ipr_buffer;
DeliverToUser(SrcNTE, DestNTE,
(IPHeader UNALIGNED *) Header,
HeaderLength, pRcvBuf->ipr_next,
DataLength, OptInfo, NULL,
DestType);
// restore the buffers;
pRcvBuf->ipr_next->ipr_buffer = saveddata;
}
}
goto forward_local;
} else {
IPSInfo.ipsi_inhdrerrors++;
IPFreeBuff(pRcvBuf);
//CTEFreeMem(pBuff);
return; // Bad Options
}
} // NewDtype != LOCAL
} // Options present
} // DestType < DEST_REMOTE
else { // DestType >=DEST_REMOTE
if (PromiscuousMode) {
if (FastPath) {
uchar *saveddata = pRcvBuf->ipr_buffer;
pRcvBuf->ipr_buffer += HeaderLength;
pRcvBuf->ipr_size -= HeaderLength;
DeliverToUser(SrcNTE, DestNTE,
(IPHeader UNALIGNED *) Header, HeaderLength,
pRcvBuf, DataLength, OptInfo, NULL, DestType);
// restore the buffer
pRcvBuf->ipr_buffer = saveddata;
pRcvBuf->ipr_size += HeaderLength;
} else {
uchar *saveddata = pRcvBuf->ipr_next->ipr_buffer;
DeliverToUser(SrcNTE, DestNTE,
(IPHeader UNALIGNED *) Header, HeaderLength,
pRcvBuf->ipr_next, DataLength, OptInfo,
NULL, DestType);
// restore the buffers;
pRcvBuf->ipr_next->ipr_buffer = saveddata;
}
}
goto forward_local;
}
if (FastPath) {
uchar *saveddata = pRcvBuf->ipr_buffer;
pRcvBuf->ipr_buffer += HeaderLength;
pRcvBuf->ipr_size -= HeaderLength;
DeliverToUser(SrcNTE, DestNTE, (IPHeader UNALIGNED *) Header, HeaderLength,
pRcvBuf, DataLength, OptInfo, NULL, DestType);
// restore the buffer
pRcvBuf->ipr_buffer = saveddata;
pRcvBuf->ipr_size += HeaderLength;
} else {
uchar *saveddata = pRcvBuf->ipr_next->ipr_buffer;
DeliverToUser(
SrcNTE, DestNTE, (IPHeader UNALIGNED *) Header,
HeaderLength, pRcvBuf->ipr_next, DataLength,
OptInfo, NULL, DestType);
// restore the buffers;
pRcvBuf->ipr_next->ipr_buffer = saveddata;
}
if (IS_BCAST_DEST(DestType)) {
pBuff = ConvertIPRcvBufToFlatBuffer(
pRcvBuf, DataLength + HeaderLength);
if (!pBuff) {
IPSInfo.ipsi_indiscards++;
IPFreeBuff(pRcvBuf);
return;
}
IPForwardPkt(SrcNTE, (IPHeader UNALIGNED *) pBuff,
HeaderLength, pBuff + HeaderLength,
DataLength, NULL, 0, DestType, 0, NULL,
NULL, LinkCtxt);
CTEFreeMem(pBuff); // free the flat buffer
}
IPFreeBuff(pRcvBuf);
//CTEFreeMem(pBuff); // free the flat buffer
return;
forward_local:
pBuff = ConvertIPRcvBufToFlatBuffer(pRcvBuf, DataLength + HeaderLength);
if (!pBuff) {
IPSInfo.ipsi_indiscards++;
IPFreeBuff(pRcvBuf);
return;
}
IPForwardPkt(SrcNTE, (IPHeader UNALIGNED *) pBuff, HeaderLength,
pBuff + HeaderLength, DataLength, NULL, 0, DestType,
0, NULL, NULL, LinkCtxt);
IPFreeBuff(pRcvBuf);
CTEFreeMem(pBuff); // free the flat buffer
return;
} else { // No Firewall
//
// Call into IPSEC so he can decrypt the data
//
if (IPSecHandlerPtr) {
//
// See if IPSEC is enabled, see if it needs to do anything with this
// packet.
//
FORWARD_ACTION Action;
ULONG ipsecByteCount = 0;
ULONG ipsecMTU = 0;
ULONG ipsecFlags = IPSEC_FLAG_INCOMING;
PNDIS_BUFFER newBuf = NULL;
ulong csum;
IPHeader *IPH;
if (SrcNTE == LoopNTE) {
ipsecFlags |= IPSEC_FLAG_LOOPBACK;
}
if (OptInfo->ioi_flags & IP_FLAG_SSRR) {
ipsecFlags |= IPSEC_FLAG_SSRR;
}
Action = (*IPSecHandlerPtr) (
(PUCHAR) Header,
(PVOID) Data,
SrcNTE->nte_if, // SrcIF
Packet,
&ipsecByteCount,
&ipsecMTU,
(PVOID *) &newBuf,
&ipsecFlags,
DestType);
if (Action != eFORWARD) {
IPSInfo.ipsi_indiscards++;
return;
} else {
//
// Update the data length if IPSEC changed it
// (like by removing the AH)
//
DataLength -= ipsecByteCount;
UpdateIPSecRcvBuf(Data, ipsecFlags);
}
}
// Call the filter hook if installed
if (ForwardFilterEnabled) {
Interface *IF = SrcNTE->nte_if;
IPAddr LinkNextHop;
FORWARD_ACTION Action;
if ((IF->if_flags & IF_FLAGS_P2MP) && LinkCtxt) {
LinkNextHop = LinkCtxt->link_NextHop;
} else {
LinkNextHop = NULL_IP_ADDR;
}
CTEInterlockedIncrementLong(&ForwardFilterRefCount);
Action = (*ForwardFilterPtr) (Header,
Data->ipr_buffer,
Data->ipr_size,
IF->if_index,
INVALID_IF_INDEX,
LinkNextHop,
NULL_IP_ADDR);
DerefFilterPtr();
if (Action != FORWARD) {
IPSInfo.ipsi_indiscards++;
return;
}
}
// Packet was local only: so even if promiscuous mode set just call
// delivertouser
DeliverToUser(SrcNTE, DestNTE, (IPHeader UNALIGNED *) Header,
HeaderLength, Data, DataLength, OptInfo, NULL, DestType);
if (IS_BCAST_DEST(DestType)) {
uchar *pBuff;
pBuff = ConvertIPRcvBufToFlatBuffer(Data, DataLength);
if (!pBuff) {
return;
}
IPForwardPkt(SrcNTE, (IPHeader UNALIGNED *) Header, HeaderLength,
pBuff, DataLength, NULL, 0, DestType, 0, NULL, NULL,
LinkCtxt);
CTEFreeMem(pBuff);
}
}
}
//* FreeRH - Free a reassembly header.
//
// Called when we need to free a reassembly header, either because of a
// timeout or because we're done with it.
//
// Input: RH - RH to be freed.
//
// Returns: Nothing.
//
void
FreeRH(ReassemblyHeader *RH)
{
RABufDesc *RBD, *TempRBD;
RBD = RH->rh_rbd;
if (IPSecHandlerPtr) {
IPFreeBuff((IPRcvBuf *) RBD);
} else {
while (RBD != NULL) {
TempRBD = RBD;
RBD = (RABufDesc *) RBD->rbd_buf.ipr_next;
CTEFreeMem(TempRBD);
}
}
CTEFreeMem(RH);
// decrement NumRH
CTEInterlockedDecrementLong(&NumRH);
}
//* ReassembleFragment - Put a fragment into the reassembly list.
//
// This routine is called once we've put a fragment into the proper buffer.
// We look for a reassembly header for the fragment. If we don't find one,
// we create one. Otherwise we search the reassembly list, and insert the
// datagram in it's proper place.
//
// Input: NTE - NTE to reassemble on.
// SrcNTE - NTE datagram arrived on.
// NewRBD - New RBD to be inserted.
// IPH - Pointer to header of datagram.
// HeaderSize - Size in bytes of header.
// DestType - Type of destination address.
//
// Returns: Nothing.
//
void
ReassembleFragment(NetTableEntry * NTE, NetTableEntry * SrcNTE, RABufDesc * NewRBD,
IPHeader UNALIGNED * IPH, uint HeaderSize, uchar DestType, LinkEntry * LinkCtxt)
{
CTELockHandle NTEHandle; // Lock handle used for NTE
ReassemblyHeader *RH, *PrevRH; // Current and previous reassembly headers.
RABufDesc *PrevRBD; // Previous RBD in reassembly header list.
RABufDesc *CurrentRBD;
ushort DataLength = (ushort) NewRBD->rbd_buf.ipr_size, DataOffset;
ushort Offset; // Offset of this fragment.
ushort NewOffset; // Offset we'll copy from after checking RBD list.
ushort NewEnd; // End offset of fragment, after trimming (if any).
// used by the firewall code
char *pBuff;
IPRcvBuf *pOutRcvBuf;
NetTableEntry *DestNTE;
IPRcvBuf *pRcvBuf;
uint FirewallMode;
uint PromiscuousMode;
PromiscuousMode = SrcNTE->nte_if->if_promiscuousmode;
FirewallMode = ProcessFirewallQ();
// If this is a broadcast, go ahead and forward it now.
// if second condition is false then delivertouserex() will take care of
// this
if (IS_BCAST_DEST(DestType) &&
!(((IPSecHandlerPtr) && (ForwardFilterEnabled)) ||
(FirewallMode) || (PromiscuousMode))) {
IPForwardPkt(SrcNTE, IPH, HeaderSize, NewRBD->rbd_buf.ipr_buffer,
NewRBD->rbd_buf.ipr_size, NULL, 0, DestType, 0, NULL,
NULL, LinkCtxt);
}
if (NumRH > MaxRH) {
IPSInfo.ipsi_reasmfails++;
FragmentAttackDrops++;
CTEFreeMem(NewRBD);
return;
}
Offset = IPH->iph_offset & IP_OFFSET_MASK;
Offset = net_short(Offset) * 8;
if ((NumRH == MaxRH) && !Offset) {
IPSInfo.ipsi_reasmfails++;
CTEFreeMem(NewRBD);
return;
}
if ((ulong) (Offset + DataLength) > MAX_DATA_LENGTH) {
IPSInfo.ipsi_reasmfails++;
CTEFreeMem(NewRBD);
return;
}
// We've got the buffer we need. Now get the reassembly header, if there is one. If
// there isn't, create one.
CTEGetLockAtDPC(&NTE->nte_lock, &NTEHandle);
RH = FindRH(&PrevRH, NTE, IPH->iph_dest, IPH->iph_src, IPH->iph_id,
IPH->iph_protocol);
if (RH == (ReassemblyHeader *) NULL) { // Didn't find one, so create one.
ReassemblyHeader *NewRH;
CTEFreeLockFromDPC(&NTE->nte_lock, NTEHandle);
RH = CTEAllocMemN(sizeof(ReassemblyHeader), 'diCT');
if (RH == (ReassemblyHeader *) NULL) { // Couldn't get a buffer.
IPSInfo.ipsi_reasmfails++;
CTEFreeMem(NewRBD);
return;
}
CTEInterlockedIncrementLong(&NumRH);
CTEGetLockAtDPC(&NTE->nte_lock, &NTEHandle);
// Need to look it up again - it could have changed during above call.
NewRH = FindRH(&PrevRH, NTE, IPH->iph_dest, IPH->iph_src, IPH->iph_id, IPH->iph_protocol);
if (NewRH != (ReassemblyHeader *) NULL) {
CTEFreeMem(RH);
RH = NewRH;
CTEInterlockedDecrementLong(&NumRH);
} else {
RH->rh_next = PrevRH->rh_next;
PrevRH->rh_next = RH;
// Initialize our new reassembly header.
RH->rh_dest = IPH->iph_dest;
RH->rh_src = IPH->iph_src;
RH->rh_id = IPH->iph_id;
RH->rh_protocol = IPH->iph_protocol;
//RH->rh_ttl = RATimeout;
RH->rh_ttl = MAX(RATimeout, MIN(120, IPH->iph_ttl) + 1);
RH->rh_numoverlaps = 0;
RH->rh_datasize = MAX_TOTAL_LENGTH; // Default datasize to maximum.
RH->rh_rbd = (RABufDesc *) NULL; // And nothing on chain.
RH->rh_datarcvd = 0; // Haven't received any data yet.
RH->rh_headersize = 0;
}
}
// When we reach here RH points to the reassembly header we want to use.
// and we hold locks on the NTE and the RH. If this is the first fragment
// we'll save the options and header information here.
if (Offset == 0) { // First fragment.
RH->rh_headersize = (ushort)HeaderSize;
RtlCopyMemory(RH->rh_header, IPH, HeaderSize + 8);
}
// If this is the last fragment, update the amount of data we expect to
// receive.
if (!(IPH->iph_offset & IP_MF_FLAG)) {
RH->rh_datasize = Offset + DataLength;
}
if (RH->rh_datasize < RH->rh_datarcvd ||
(RH->rh_datasize != MAX_TOTAL_LENGTH &&
(RH->rh_datasize + RH->rh_headersize) > MAX_TOTAL_LENGTH)) {
// random packets. drop!
CTEFreeMem(NewRBD);
PrevRH->rh_next = RH->rh_next;
FreeRH(RH);
CTEFreeLockFromDPC(&NTE->nte_lock, NTEHandle);
return;
}
// Update the TTL value with the maximum of the current TTL and the
// incoming TTL (+1, to deal with rounding errors).
// Following is commented out to protect against fragmentation attack
// Default TTL now used is 120 seconds now, used only for the first header
// RH->rh_ttl = MAX(RH->rh_ttl, MIN(254, IPH->iph_ttl) + 1);
// Now we need to see where in the RBD list to put this.
//
// The idea is to go through the list of RBDs one at a time. The RBD
// currently being examined is CurrentRBD. If the start offset of the new
// fragment is less than (i.e. in front of) the offset of CurrentRBD, we
// need to insert the NewRBD in front of the CurrentRBD. If this is the
// case we need to check and see if the
// end of the new fragment overlaps some or all of the fragment described by
// CurrentRBD, and possibly subsequent fragment. If it overlaps part of a
// fragment we'll adjust our end down to be in front of the existing
// fragment. If it overlaps all of the fragment we'll free the old fragment.
//
// If the new fragment does not start in front of the current fragment
// we'll check to see if it starts somewhere in the middle of the current
// fragment. If this isn't the case, we move on the the next fragment. If
// this is the case, we check to see if the current fragment completely // covers the new fragment. If not we
// move our start up and continue with the next fragment.
//
NewOffset = Offset;
NewEnd = Offset + DataLength - 1;
PrevRBD = STRUCT_OF(RABufDesc, STRUCT_OF(IPRcvBuf, &RH->rh_rbd, ipr_next), rbd_buf);
CurrentRBD = RH->rh_rbd;
for (; CurrentRBD != NULL; PrevRBD = CurrentRBD, CurrentRBD = (RABufDesc *) CurrentRBD->rbd_buf.ipr_next) {
// See if it starts in front of this fragment.
if (NewOffset < CurrentRBD->rbd_start) {
// It does start in front. Check to see if there's any overlap.
if (NewEnd < CurrentRBD->rbd_start)
break; // No overlap, so get out.
else {
//
// It does overlap. While we have overlap, walk down the list
// looking for RBDs we overlap completely. If we find one,
// put it on our deletion list. If we have overlap but not
// complete overlap, move our end down if front of the
// fragment we overlap.
//
do {
RH->rh_numoverlaps++;
if (RH->rh_numoverlaps >= MaxOverlap) {
//Looks like we are being attacked.
//Just drop this whole datagram.
NewRBD->rbd_buf.ipr_next = (IPRcvBuf *) CurrentRBD;
PrevRBD->rbd_buf.ipr_next = &NewRBD->rbd_buf;
PrevRH->rh_next = RH->rh_next;
FreeRH(RH);
FragmentAttackDrops++;
CTEFreeLockFromDPC(&NTE->nte_lock, NTEHandle);
return;
}
if (NewEnd > CurrentRBD->rbd_end) { //overlaps completely.
RABufDesc *TempRBD;
RH->rh_datarcvd -= (ushort)CurrentRBD->rbd_buf.ipr_size;
TempRBD = CurrentRBD;
CurrentRBD = (RABufDesc *) CurrentRBD->rbd_buf.ipr_next;
CTEFreeMem(TempRBD);
} else { //partial ovelap.
if (NewOffset < CurrentRBD->rbd_start) {
NewEnd = CurrentRBD->rbd_start - 1;
} else {
// Looks like we are being attacked.
// Just drop this whole datagram.
NewRBD->rbd_buf.ipr_next = (IPRcvBuf *) CurrentRBD;
PrevRBD->rbd_buf.ipr_next = &NewRBD->rbd_buf;
PrevRH->rh_next = RH->rh_next;
FreeRH(RH);
CTEFreeLockFromDPC(&NTE->nte_lock, NTEHandle);
return;
}
}
// Update of NewEnd will force us out of loop.
} while (CurrentRBD != NULL && NewEnd >= CurrentRBD->rbd_start);
break;
}
} else {
// This fragment doesn't go in front of the current RBD. See if it
// is entirely beyond the end of the current fragment. If it is,
// just continue. Otherwise see if the current fragment
// completely subsumes us. If it does, get out, otherwise update
// our start offset and continue.
if (NewOffset > CurrentRBD->rbd_end)
continue; // No overlap at all.
else {
RH->rh_numoverlaps++;
if (RH->rh_numoverlaps >= MaxOverlap) {
//Looks like we are being attacked.
//Just drop this whole datagram.
NewRBD->rbd_buf.ipr_next = (IPRcvBuf *) CurrentRBD;
PrevRBD->rbd_buf.ipr_next = &NewRBD->rbd_buf;
PrevRH->rh_next = RH->rh_next;
FreeRH(RH);
FragmentAttackDrops++;
CTEFreeLockFromDPC(&NTE->nte_lock, NTEHandle);
return;
}
if (NewEnd <= CurrentRBD->rbd_end) {
//
// The current fragment overlaps the new fragment
// totally. Set our offsets so that we'll skip the copy
// below.
NewEnd = NewOffset - 1;
break;
} else // Only partial overlap.
NewOffset = CurrentRBD->rbd_end + 1;
}
}
} // End of for loop.
// Adjust the length and offset fields in the new RBD.
// If we've trimmed all the data away, ignore this fragment.
DataLength = NewEnd - NewOffset + 1;
DataOffset = NewOffset - Offset;
if (!DataLength) {
CTEFreeMem(NewRBD);
CTEFreeLockFromDPC(&NTE->nte_lock, NTEHandle);
return;
}
// Link him in chain.
NewRBD->rbd_buf.ipr_size = (uint) DataLength;
NewRBD->rbd_end = NewEnd;
NewRBD->rbd_start = NewOffset;
RH->rh_datarcvd += DataLength;
NewRBD->rbd_buf.ipr_buffer += DataOffset;
NewRBD->rbd_buf.ipr_next = (IPRcvBuf *) CurrentRBD;
NewRBD->rbd_buf.ipr_owner = IPR_OWNER_IP;
PrevRBD->rbd_buf.ipr_next = &NewRBD->rbd_buf;
// If we've received all the data, deliver it to the user.
// Only if header size is valid deliver to the user
// BUG #NTQFE 65742
if (RH->rh_datarcvd == RH->rh_datasize && RH->rh_headersize) { // We have it all.
IPOptInfo OptInfo;
IPHeader *Header;
IPRcvBuf *FirstBuf;
ulong Checksum;
PrevRH->rh_next = RH->rh_next;
CTEFreeLockFromDPC(&NTE->nte_lock, NTEHandle);
Header = (IPHeader *) RH->rh_header;
OptInfo.ioi_ttl = Header->iph_ttl;
OptInfo.ioi_tos = Header->iph_tos;
OptInfo.ioi_flags = 0; // Flags must be 0 - DF can't be set,
// this was reassembled.
if (RH->rh_headersize != sizeof(IPHeader)) { // We had options.
OptInfo.ioi_options = (uchar *) (Header + 1);
OptInfo.ioi_optlength = (uchar) (RH->rh_headersize - sizeof(IPHeader));
} else {
OptInfo.ioi_options = (uchar *) NULL;
OptInfo.ioi_optlength = 0;
}
//
// update the indicated header len to the total len; earlier we passed in
// just the first fragment's length.
// also update the 'MF' bit in the flags field.
//
// in the process update the header-checksum,
// by first adding the negation of the original length and flags,
// and then adding the new length and flags.
//
// extract the original checksum
Checksum = (ushort) ~ Header->iph_xsum;
// update the header length
Checksum += (ushort) ~ Header->iph_length;
Header->iph_length = net_short(RH->rh_datasize + RH->rh_headersize);
Checksum += (ushort) Header->iph_length;
// update the 'MF' flag if set
if (Header->iph_offset & IP_MF_FLAG) {
Checksum += (ushort) ~ IP_MF_FLAG;
Header->iph_offset &= ~IP_MF_FLAG;
}
// insert the new checksum
Checksum = (ushort) Checksum + (ushort) (Checksum >> 16);
Checksum += Checksum >> 16;
Header->iph_xsum = (ushort) ~ Checksum;
// Make sure that the first buffer contains enough data.
FirstBuf = (IPRcvBuf *) RH->rh_rbd;
// Make sure that this can hold MIN_FIRST_SIZE
// Else treat it as attack
if (RH->rh_rbd->rbd_AllocSize < MIN_FIRST_SIZE) {
//Attack???
FreeRH(RH);
return;
}
while (FirstBuf->ipr_size < MIN_FIRST_SIZE) {
IPRcvBuf *NextBuf = FirstBuf->ipr_next;
uint CopyLength;
if (NextBuf == NULL)
break;
CopyLength = MIN(MIN_FIRST_SIZE - FirstBuf->ipr_size,
NextBuf->ipr_size);
RtlCopyMemory(FirstBuf->ipr_buffer + FirstBuf->ipr_size,
NextBuf->ipr_buffer, CopyLength);
FirstBuf->ipr_size += CopyLength;
NextBuf->ipr_buffer += CopyLength;
NextBuf->ipr_size -= CopyLength;
if (NextBuf->ipr_size == 0) {
FirstBuf->ipr_next = NextBuf->ipr_next;
CTEFreeMem(NextBuf);
}
}
IPSInfo.ipsi_reasmoks++;
if (((IPSecHandlerPtr) && (ForwardFilterEnabled)) ||
(FirewallMode) || (PromiscuousMode) ) {
uint DataSize;
DataSize = RH->rh_datasize;
if (FirewallMode) {
// Attach header to pass to Firewall hook
pRcvBuf = (IPRcvBuf *) CTEAllocMemN(sizeof(IPRcvBuf), 'eiCT');
if (!pRcvBuf) {
FreeRH(RH);
return;
}
pRcvBuf->ipr_buffer = (uchar *) RH->rh_header;
pRcvBuf->ipr_size = RH->rh_headersize;
pRcvBuf->ipr_owner = IPR_OWNER_IP;
pRcvBuf->ipr_next = FirstBuf;
DataSize += RH->rh_headersize;
} else {
pRcvBuf = FirstBuf;
}
DeliverToUserEx(SrcNTE, NTE, Header, RH->rh_headersize, pRcvBuf,
DataSize, &OptInfo, NULL, DestType, LinkCtxt);
if (FirewallMode) {
// RH chain is already freed.
CTEFreeMem(RH);
CTEInterlockedDecrementLong(&NumRH);
} else {
FreeRH(RH);
}
} else { // Normal Path
DeliverToUser(SrcNTE, NTE, Header, RH->rh_headersize, FirstBuf,
RH->rh_datasize, &OptInfo, NULL, DestType);
FreeRH(RH);
}
} else
CTEFreeLockFromDPC(&NTE->nte_lock, NTEHandle);
}
//* RATDComplete - Completion routing for a reassembly transfer data.
//
// This is the completion handle for TDs invoked because we are reassembling
// a fragment.
//
// Input: NetContext - Ptr to the net table entry on which we received
// this.
// Packet - Packet we received into.
// Status - Final status of copy.
// DataSize - Size in bytes of data transferred.
//
// Returns: Nothing
//
void
RATDComplete(void *NetContext, PNDIS_PACKET Packet, NDIS_STATUS Status, uint DataSize)
{
NetTableEntry *NTE = (NetTableEntry *) NetContext;
Interface *SrcIF;
TDContext *Context = (TDContext *) Packet->ProtocolReserved;
CTELockHandle Handle;
PNDIS_BUFFER Buffer;
if (Status == NDIS_STATUS_SUCCESS) {
Context->tdc_rbd->rbd_buf.ipr_size = DataSize;
ReassembleFragment(Context->tdc_nte, NTE, Context->tdc_rbd,
(IPHeader *) Context->tdc_header, Context->tdc_hlength, Context->tdc_dtype, NULL);
}
NdisUnchainBufferAtFront(Packet, &Buffer);
NdisFreeBuffer(Buffer);
Context->tdc_common.pc_flags &= ~PACKET_FLAG_RA;
SrcIF = NTE->nte_if;
CTEGetLockAtDPC(&SrcIF->if_lock, &Handle);
Context->tdc_common.pc_link = SrcIF->if_tdpacket;
SrcIF->if_tdpacket = Packet;
CTEFreeLockFromDPC(&SrcIF->if_lock, Handle);
return;
}
//* IPReassemble - Reassemble an incoming datagram.
//
// Called when we receive an incoming fragment. The first thing we do is
// get a buffer to put the fragment in. If we can't we'll exit. Then we
// copy the data, either via transfer data or directly if it all fits.
//
// Input: SrcNTE - Pointer to NTE that received the datagram.
// NTE - Pointer to NTE on which to reassemble.
// IPH - Pointer to header of packet.
// HeaderSize - Size in bytes of header.
// Data - Pointer to data part of fragment.
// BufferLengt - Length in bytes of user data available in the
// buffer.
// DataLength - Length in bytes of the (upper-layer) data.
// DestType - Type of destination
// LContext1, LContext2 - Link layer context values.
//
// Returns: Nothing.
//
void
IPReassemble(NetTableEntry * SrcNTE, NetTableEntry * NTE, IPHeader UNALIGNED * IPH,
uint HeaderSize,
uchar * Data, uint BufferLength, uint DataLength, uchar DestType, NDIS_HANDLE LContext1,
uint LContext2, LinkEntry * LinkCtxt)
{
Interface *RcvIF;
PNDIS_PACKET TDPacket; // NDIS packet used for TD.
TDContext *TDC = (TDContext *) NULL; // Transfer data context.
NDIS_STATUS Status;
PNDIS_BUFFER Buffer;
RABufDesc *NewRBD; // Pointer to new RBD to hold
// arriving fragment.
CTELockHandle Handle;
uint AllocSize;
IPSInfo.ipsi_reasmreqds++;
//Drop zero length fragments
if (DataLength == 0) {
return;
}
//
// First, get a new RBD to hold the arriving fragment. If we can't,
// then just skip the rest. The RBD has the buffer implicitly at the end
// of it. The buffer for the first fragment must be at least
// MIN_FIRST_SIZE bytes.
//
if ((IPH->iph_offset & IP_OFFSET_MASK) == 0) {
AllocSize = MAX(MIN_FIRST_SIZE, DataLength);
} else
AllocSize = DataLength;
NewRBD = CTEAllocMemN(sizeof(RABufDesc) + AllocSize, 'fiCT');
if (NewRBD != (RABufDesc *) NULL) {
NewRBD->rbd_buf.ipr_buffer = (uchar *) (NewRBD + 1);
NewRBD->rbd_buf.ipr_size = DataLength;
NewRBD->rbd_buf.ipr_owner = IPR_OWNER_IP;
NewRBD->rbd_AllocSize = AllocSize;
NewRBD->rbd_buf.ipr_pMdl = NULL;
NewRBD->rbd_buf.ipr_pClientCnt = NULL;
//
// Copy the data into the buffer. If we need to call transfer data
// do so now.
//
if (DataLength > BufferLength) { // Need to call transfer data.
NdisAllocateBuffer(&Status, &Buffer, BufferPool, NewRBD + 1, DataLength);
if (Status != NDIS_STATUS_SUCCESS) {
IPSInfo.ipsi_reasmfails++;
CTEFreeMem(NewRBD);
return;
}
// Now get a packet for transferring the frame.
RcvIF = SrcNTE->nte_if;
CTEGetLockAtDPC(&RcvIF->if_lock, &Handle);
TDPacket = RcvIF->if_tdpacket;
if (TDPacket != (PNDIS_PACKET) NULL) {
TDC = (TDContext *) TDPacket->ProtocolReserved;
RcvIF->if_tdpacket = TDC->tdc_common.pc_link;
CTEFreeLockFromDPC(&RcvIF->if_lock, Handle);
TDC->tdc_common.pc_flags |= PACKET_FLAG_RA;
TDC->tdc_nte = NTE;
TDC->tdc_dtype = DestType;
TDC->tdc_hlength = (uchar) HeaderSize;
TDC->tdc_rbd = NewRBD;
RtlCopyMemory(TDC->tdc_header, IPH, HeaderSize + 8);
NdisChainBufferAtFront(TDPacket, Buffer);
Status = (*(RcvIF->if_transfer)) (RcvIF->if_lcontext,
LContext1, LContext2, HeaderSize,
DataLength, TDPacket, &DataLength);
if (Status != NDIS_STATUS_PENDING)
RATDComplete(SrcNTE, TDPacket, Status, DataLength);
else
return;
} else { // Couldn't get a TD packet.
CTEFreeLockFromDPC(&RcvIF->if_lock, Handle);
CTEFreeMem(NewRBD);
IPSInfo.ipsi_reasmfails++;
return;
}
} else { // It all fits, copy it.
RtlCopyMemory(NewRBD + 1, Data, DataLength);
ReassembleFragment(NTE, SrcNTE, NewRBD, IPH, HeaderSize, DestType, LinkCtxt);
}
} else {
IPSInfo.ipsi_reasmfails++;
}
}
//* CheckLocalOptions - Check the options received with a packet.
//
// A routine called when we've received a packet for this host and want to
// examine it for options. We process the options, and return TRUE or FALSE
// depending on whether or not it's for us.
//
// Input: SrcNTE - Pointer to NTE this came in on.
// Header - Pointer to incoming header.
// OptInfo - Place to put opt info.
// DestType - Type of incoming packet.
//
// Returns: DestType - Local or remote.
//
uchar
CheckLocalOptions(NetTableEntry * SrcNTE, IPHeader UNALIGNED * Header,
IPOptInfo * OptInfo, uchar DestType, uchar* Data,
uint DataSize, BOOLEAN FilterOnDrop)
{
uint HeaderLength; // Length in bytes of header.
OptIndex Index;
uchar ErrIndex;
HeaderLength = (Header->iph_verlen & (uchar) ~ IP_VER_FLAG) << 2;
ASSERT(HeaderLength > sizeof(IPHeader));
OptInfo->ioi_options = (uchar *) (Header + 1);
OptInfo->ioi_optlength = (uchar) (HeaderLength - sizeof(IPHeader));
// We have options of some sort. The packet may or may not be bound for us.
Index.oi_srindex = MAX_OPT_SIZE;
if ((ErrIndex = ParseRcvdOptions(OptInfo, &Index)) < MAX_OPT_SIZE) {
if (!FilterOnDrop || !ForwardFilterEnabled ||
NotifyFilterOfDiscard(SrcNTE, Header, Data, DataSize)) {
SendICMPErr(SrcNTE->nte_addr, Header, ICMP_PARAM_PROBLEM, PTR_VALID,
((ulong) ErrIndex + sizeof(IPHeader)));
}
return DEST_INVALID; // Parameter error.
}
//
// If there's no source route, or if the destination is a broadcast, we'll
// take it. If it is a broadcast DeliverToUser will forward it when it's
// done, and the forwarding code will reprocess the options.
//
if (Index.oi_srindex == MAX_OPT_SIZE || IS_BCAST_DEST(DestType))
return DEST_LOCAL;
else
return DEST_REMOTE;
}
//* TDUserRcv - Completion routing for a user transfer data.
//
// This is the completion handle for TDs invoked because we need to give
// data to a upper layer client. All we really do is call the upper layer
// handler with the data.
//
// Input: NetContext - Pointer to the net table entry on which we
// received this.
// Packet - Packet we received into.
// Status - Final status of copy.
// DataSize - Size in bytes of data transferred.
//
// Returns: Nothing
//
void
TDUserRcv(void *NetContext, PNDIS_PACKET Packet, NDIS_STATUS Status,
uint DataSize)
{
NetTableEntry *NTE = (NetTableEntry *) NetContext;
Interface *SrcIF;
TDContext *Context = (TDContext *) Packet->ProtocolReserved;
CTELockHandle Handle;
uchar DestType;
IPRcvBuf RcvBuf;
IPOptInfo OptInfo;
IPHeader *Header;
uint PromiscuousMode = 0;
uint FirewallMode = 0;
if (NTE->nte_flags & NTE_VALID) {
FirewallMode = ProcessFirewallQ();
PromiscuousMode = NTE->nte_if->if_promiscuousmode;
}
if (Status == NDIS_STATUS_SUCCESS) {
Header = (IPHeader *) Context->tdc_header;
OptInfo.ioi_ttl = Header->iph_ttl;
OptInfo.ioi_tos = Header->iph_tos;
OptInfo.ioi_flags = (net_short(Header->iph_offset) >> 13) & IP_FLAG_DF;
if (Context->tdc_hlength != sizeof(IPHeader)) {
OptInfo.ioi_options = (uchar *) (Header + 1);
OptInfo.ioi_optlength = Context->tdc_hlength - sizeof(IPHeader);
} else {
OptInfo.ioi_options = (uchar *) NULL;
OptInfo.ioi_optlength = 0;
}
DestType = Context->tdc_dtype;
RcvBuf.ipr_next = NULL;
RcvBuf.ipr_owner = IPR_OWNER_IP;
RcvBuf.ipr_buffer = (uchar *) Context->tdc_buffer;
RcvBuf.ipr_size = DataSize;
RcvBuf.ipr_pMdl = NULL;
RcvBuf.ipr_pClientCnt = NULL;
if (((IPSecHandlerPtr) && (ForwardFilterEnabled)) ||
(FirewallMode) || (PromiscuousMode)) {
if (FirewallMode) {
// attach the header and allocate pRcvBuf on a heap, we free it if firewall is present
IPRcvBuf *pRcvBuf;
// attach the header
pRcvBuf = (IPRcvBuf *) CTEAllocMemN(sizeof(IPRcvBuf), 'giCT');
if (!pRcvBuf) {
return;
}
pRcvBuf->ipr_owner = IPR_OWNER_IP;
pRcvBuf->ipr_buffer = (uchar *) Header;
pRcvBuf->ipr_size = Context->tdc_hlength;
pRcvBuf->ipr_pMdl = NULL;
pRcvBuf->ipr_pClientCnt = NULL;
pRcvBuf->ipr_flags = 0;
// attach the data
pRcvBuf->ipr_next = (IPRcvBuf *) CTEAllocMemN(sizeof(IPRcvBuf), 'hiCT');
if (!pRcvBuf->ipr_next) {
CTEFreeMem(pRcvBuf);
return;
}
pRcvBuf->ipr_next->ipr_owner = IPR_OWNER_IP;
pRcvBuf->ipr_next->ipr_buffer = (uchar *) Context->tdc_buffer;
pRcvBuf->ipr_next->ipr_size = DataSize;
pRcvBuf->ipr_next->ipr_pMdl = NULL;
pRcvBuf->ipr_next->ipr_pClientCnt = NULL;
pRcvBuf->ipr_next->ipr_next = NULL;
pRcvBuf->ipr_next->ipr_flags = 0;
DataSize += Context->tdc_hlength;
DeliverToUserEx(NTE, Context->tdc_nte, Header, Context->tdc_hlength,
pRcvBuf, DataSize, &OptInfo, Packet, DestType, NULL);
} else {
DeliverToUserEx(NTE, Context->tdc_nte, Header, Context->tdc_hlength,
&RcvBuf, DataSize, &OptInfo, Packet, DestType, NULL);
}
} else {
DeliverToUser(NTE, Context->tdc_nte, Header, Context->tdc_hlength,
&RcvBuf, DataSize, &OptInfo, Packet, DestType);
// If it's a broadcast packet forward it on.
if (IS_BCAST_DEST(DestType))
IPForwardPkt(NTE, Header, Context->tdc_hlength, RcvBuf.ipr_buffer, DataSize,
NULL, 0, DestType, 0, NULL, NULL, NULL);
}
}
SrcIF = NTE->nte_if;
CTEGetLockAtDPC(&SrcIF->if_lock, &Handle);
Context->tdc_common.pc_link = SrcIF->if_tdpacket;
SrcIF->if_tdpacket = Packet;
CTEFreeLockFromDPC(&SrcIF->if_lock, Handle);
}
void
IPInjectPkt(FORWARD_ACTION Action, void *SavedContext, uint SavedContextLength,
struct IPHeader UNALIGNED *IPH, struct IPRcvBuf *DataChain)
{
char *Data;
char *PreservedData;
uint DataSize;
PFIREWALL_CONTEXT_T pFirCtx = (PFIREWALL_CONTEXT_T) SavedContext;
NetTableEntry *NTE = pFirCtx->NTE; // Local NTE received on
LinkEntry *LinkCtxt = pFirCtx->LinkCtxt; // Local NTE received on
NetTableEntry *DestNTE; // NTE to receive on.
IPAddr DAddr; // Dest. IP addr. of received packet.
uint HeaderLength; // Size in bytes of received header.
uint IPDataLength; // Length in bytes of IP (including UL) data in packet.
IPOptInfo OptInfo; // Incoming header information.
uchar DestType; // Type (LOCAL, REMOTE, SR) of Daddr.
IPRcvBuf RcvBuf;
IPRcvBuf *tmpRcvBuf;
ulong Offset;
KIRQL OldIrql;
//
// One can not inject a packet that was being transmitted earlier
//
ASSERT(pFirCtx->Direction == IP_RECEIVE);
if (Action == ICMP_ON_DROP) {
// send an ICMP message ?????
return;
}
ASSERT(Action == FORWARD);
DataSize = 0;
tmpRcvBuf = DataChain;
while (tmpRcvBuf != NULL) {
ASSERT(tmpRcvBuf->ipr_buffer != NULL);
DataSize += tmpRcvBuf->ipr_size;
tmpRcvBuf = tmpRcvBuf->ipr_next;
}
Data = (uchar *) CTEAllocMemN(DataSize, 'iiCT');
if (Data == NULL) {
return;
}
tmpRcvBuf = DataChain;
Offset = 0;
while (tmpRcvBuf != NULL) {
ASSERT(tmpRcvBuf->ipr_buffer != NULL);
#if DBG_VALIDITY_CHECK
if (Offset + tmpRcvBuf->ipr_size > DataSize) {
DbgPrint("Offset %d: tmpRcvBuf->ipr_size %d: DataSize %d ::::\n",
Offset, tmpRcvBuf->ipr_size, DataSize);
DbgBreakPoint();
}
#endif
RtlCopyMemory(Data + Offset, tmpRcvBuf->ipr_buffer, tmpRcvBuf->ipr_size);
Offset += tmpRcvBuf->ipr_size;
tmpRcvBuf = tmpRcvBuf->ipr_next;
}
PreservedData = Data;
// free the data chain
// IPFreeBuff(pContextInfo->DataChain);
IPH = (IPHeader UNALIGNED *) Data;
// Make sure we actually have data.
if (DataSize) {
// Check the header length, the xsum and the version. If any of these
// checks fail silently discard the packet.
HeaderLength = ((IPH->iph_verlen & (uchar) ~ IP_VER_FLAG) << 2);
if (HeaderLength >= sizeof(IPHeader) && HeaderLength <= DataSize) {
// Check the version, and sanity check the total length.
IPDataLength = (uint) net_short(IPH->iph_length);
if ((IPH->iph_verlen & IP_VER_FLAG) == IP_VERSION &&
IPDataLength > sizeof(IPHeader)) {
IPDataLength -= HeaderLength;
Data = (uchar *) Data + HeaderLength;
DataSize -= HeaderLength;
// IPDataLength should be equal to DataSize
ASSERT(IPDataLength == DataSize);
DAddr = IPH->iph_dest;
DestNTE = NTE;
// Find local NTE, if any.
DestType = GetLocalNTE(DAddr, &DestNTE);
OptInfo.ioi_ttl = IPH->iph_ttl;
OptInfo.ioi_tos = IPH->iph_tos;
OptInfo.ioi_flags = (net_short(IPH->iph_offset) >> 13) &
IP_FLAG_DF;
OptInfo.ioi_options = (uchar *) NULL;
OptInfo.ioi_optlength = 0;
if ((DestType < DEST_REMOTE)) {
// It's either local or some sort of broadcast.
// The data probably belongs at this station. If there
// aren't any options, it definetly belongs here, and we'll
// dispatch it either to our reasssmbly code or to the
// deliver to user code. If there are options, we'll check
// them and then either handle the packet locally or pass it
// to our forwarding code.
if (HeaderLength != sizeof(IPHeader)) {
// We have options.
uchar NewDType;
NewDType = CheckLocalOptions(NTE, IPH, &OptInfo,
DestType, NULL, 0, FALSE);
if (NewDType != DEST_LOCAL) {
if (NewDType == DEST_REMOTE)
goto forward;
else {
IPSInfo.ipsi_inhdrerrors++;
CTEFreeMem(PreservedData);
return; // Bad Options.
}
}
}
RcvBuf.ipr_next = NULL;
RcvBuf.ipr_owner = IPR_OWNER_IP;
RcvBuf.ipr_buffer = (uchar *) Data;
RcvBuf.ipr_size = IPDataLength;
RcvBuf.ipr_pMdl = NULL;
RcvBuf.ipr_pClientCnt = NULL;
// When we get here, we have the whole packet. Deliver
// it.
KeRaiseIrql(DISPATCH_LEVEL, &OldIrql);
DeliverToUser(NTE, DestNTE, IPH, HeaderLength, &RcvBuf,
IPDataLength, &OptInfo, NULL, DestType);
// When we're here, we're through with the packet
// locally. If it's a broadcast packet forward it on.
if (IS_BCAST_DEST(DestType)) {
IPForwardPkt(NTE, IPH, HeaderLength, Data, IPDataLength, NULL, 0, DestType, 0, NULL, NULL, LinkCtxt);
}
KeLowerIrql(OldIrql);
// free the data, work item and various fields within them.
CTEFreeMem(PreservedData);
return;
}
// Not for us, may need to be forwarded. It might be an outgoing
// broadcast that came in through a source route, so we need to
// check that.
forward:
if (DestType != DEST_INVALID) {
KeRaiseIrql(DISPATCH_LEVEL, &OldIrql);
IPForwardPkt(NTE, IPH, HeaderLength, Data, DataSize,
NULL, 0, DestType, 0, NULL, NULL, LinkCtxt);
KeLowerIrql(OldIrql);
} else
IPSInfo.ipsi_inaddrerrors++;
// free the data, work item and various fields within them.
CTEFreeMem(PreservedData);
return;
} // Bad Version
} // Bad checksum
} // No data
IPSInfo.ipsi_inhdrerrors++;
// free the data, work item and various fields within them.
CTEFreeMem(PreservedData);
}
//* IPRcvPacket - Receive an incoming IP datagram along with the ndis packet
//
// This is the routine called by the link layer module when an incoming IP
// datagram is to be processed. We validate the datagram (including doing
// the xsum), copy and process incoming options, and decide what to do
// with it.
//
// Entry: MyContext - The context valued we gave to the link layer.
// Data - Pointer to the data buffer.
// DataSize - Size in bytes of the data buffer.
// TotalSize - Total size in bytes available.
// LContext1 - 1st link context.
// LContext2 - 2nd link context.
// BCast - Indicates whether or not packet was received
// on bcast address.
// HeaderSize - size of the mac header
// pMdl - NDIS Packet from the MAC driver
// pClientCnt - Variable to indicate how many upper layer
// clients were given this packet
// for TCP it will be only 1.
//
// Returns: Nothing.
//
void
__stdcall
IPRcvPacket(void *MyContext, void *Data, uint DataSize, uint TotalSize,
NDIS_HANDLE LContext1, uint LContext2, uint BCast,
uint MacHeaderSize, PNDIS_BUFFER pNdisBuffer, uint *pClientCnt,
LinkEntry *LinkCtxt)
{
IPHeader UNALIGNED *IPH = (IPHeader UNALIGNED *) Data;
NetTableEntry *NTE = (NetTableEntry *) MyContext; // Local NTE received on
NetTableEntry *DestNTE; // NTE to receive on.
Interface *RcvIF; // Interface corresponding to NTE.
CTELockHandle Handle;
PNDIS_PACKET TDPacket; // NDIS packet used for TD.
TDContext *TDC = (TDContext *) NULL; // Transfer data context.
NDIS_STATUS Status;
IPAddr DAddr; // Dest. IP addr. of received packet.
uint HeaderLength; // Size in bytes of received header.
uint IPDataLength; // Length in bytes of IP (including UL)
// data in packet.
IPOptInfo OptInfo; // Incoming header information.
uchar DestType; // Type (LOCAL, REMOTE, SR) of Daddr.
IPRcvBuf RcvBuf;
BOOLEAN ChkSumOk = FALSE;
// used by firewall
uchar NewDType;
IPRcvBuf *pRcvBuf;
uint MoreData = 0;
uchar *PreservedData;
uchar *HdrBuf;
uint DataLength;
uint FirewallMode = 0;
uint PromiscuousMode = 0;
uint AbsorbFwdPkt = 0;
PNDIS_PACKET OffLoadPkt = NULL;
IPSIncrementInReceiveCount();
// Make sure we actually have data.
if (0 == DataSize) {
goto HeaderError;
}
// Check the header length, the xsum and the version. If any of these
// checks fail silently discard the packet.
HeaderLength = ((IPH->iph_verlen & (uchar)~IP_VER_FLAG) << 2);
if ((HeaderLength < sizeof(IPHeader)) || (HeaderLength > DataSize)) {
goto HeaderError;
}
//Check if hardware did the checksum or not by inspecting Lcontext1
if (pClientCnt) {
PNDIS_PACKET_EXTENSION PktExt;
NDIS_TCP_IP_CHECKSUM_PACKET_INFO ChksumPktInfo;
if (pNdisBuffer) {
OffLoadPkt = NDIS_GET_ORIGINAL_PACKET((PNDIS_PACKET) (LContext1));
if (!OffLoadPkt) {
OffLoadPkt = (PNDIS_PACKET) (LContext1);
}
} else {
OffLoadPkt = (PNDIS_PACKET) pClientCnt;
}
PktExt = NDIS_PACKET_EXTENSION_FROM_PACKET(OffLoadPkt);
ChksumPktInfo.Value = (USHORT) PktExt->NdisPacketInfo[TcpIpChecksumPacketInfo];
if (ChksumPktInfo.Value) {
if (ChksumPktInfo.Receive.NdisPacketIpChecksumSucceeded) {
ChkSumOk = TRUE;
}
}
}
// Unless the hardware says the checksum was correct, checksum the
// header ourselves and bail out if it is incorrect.
if (!ChkSumOk && (xsum(Data, HeaderLength) != (ushort) 0xffff)) {
goto HeaderError;
}
// Check the version, and sanity check the total length.
IPDataLength = (uint) net_short(IPH->iph_length);
if (((IPH->iph_verlen & IP_VER_FLAG) != IP_VERSION) ||
(IPDataLength < HeaderLength) || (IPDataLength > TotalSize)) {
goto HeaderError;
}
IPDataLength -= HeaderLength;
// In case of firewall, we need to pass the whole data including header
PreservedData = (uchar *) Data;
Data = (uchar *) Data + HeaderLength;
DataSize -= HeaderLength;
DAddr = IPH->iph_dest;
DestNTE = NTE;
// Find local NTE, if any.
if (BCast == AI_PROMIS_INDEX) {
DestType = DEST_PROMIS;
} else {
DestType = GetLocalNTE(DAddr, &DestNTE);
}
AbsorbFwdPkt = (DestType >= DEST_REMOTE) &&
(NTE->nte_if->if_absorbfwdpkts) &&
(IPH->iph_protocol == NTE->nte_if->if_absorbfwdpkts) &&
IsRtrAlertPacket(IPH);
PromiscuousMode = NTE->nte_if->if_promiscuousmode;
FirewallMode = ProcessFirewallQ();
// Check to see if this is a non-broadcast IP address that
// came in as a link layer broadcast. If it is, throw it out.
// This is an important check for DHCP, since if we're
// DHCPing an interface all otherwise unknown addresses will
// come in as DEST_LOCAL. This check here will throw them out
// if they didn't come in as unicast.
if ((BCast == AI_NONUCAST_INDEX) && !IS_BCAST_DEST(DestType)) {
IPSInfo.ipsi_inaddrerrors++;
return; // Non bcast packet on bcast address.
}
if (CLASSD_ADDR(DAddr)) {
NTE->nte_if->if_InMcastPkts++;
NTE->nte_if->if_InMcastOctets += IPDataLength;
}
OptInfo.ioi_ttl = IPH->iph_ttl;
OptInfo.ioi_tos = IPH->iph_tos;
OptInfo.ioi_flags = (net_short(IPH->iph_offset) >> 13) & IP_FLAG_DF;
OptInfo.ioi_options = (uchar *) NULL;
OptInfo.ioi_optlength = 0;
if ((DestType < DEST_REMOTE) || (AbsorbFwdPkt) ||
(((FirewallMode) || (PromiscuousMode)) && (DestType != DEST_INVALID)))
{
// It's either local or some sort of broadcast.
// The data probably belongs at this station. If there
// aren't any options, it definitely belongs here, and we'll
// dispatch it either to our reassembly code or to the
// deliver to user code. If there are options, we'll check
// them and then either handle the packet locally or pass it
// to our forwarding code.
NewDType = DestType;
if (DestType < DEST_REMOTE) {
if (HeaderLength != sizeof(IPHeader)) {
// We have options.
NewDType = CheckLocalOptions(NTE, IPH, &OptInfo, DestType,
Data, DataSize, TRUE);
if (NewDType != DEST_LOCAL) {
if (NewDType == DEST_REMOTE) {
if ((!FirewallMode) && (!PromiscuousMode) && (!AbsorbFwdPkt))
goto forward;
else
DestType = NewDType;
} else {
goto HeaderError;
}
}
if ((OptInfo.ioi_flags & IP_FLAG_SSRR) &&
DisableIPSourceRouting == 2) {
IPSInfo.ipsi_outdiscards++;
if (ForwardFilterEnabled) {
NotifyFilterOfDiscard(NTE, IPH, Data, DataSize);
}
return;
}
}
}
//
// Before we go further, if we have a filter installed
// call it to see if we should take this.
// if ForwardFirewall/Promiscuous, we can reach at this
// point
// if firewall/ipsec/promiscuous present, we will call
// filter hook in delivertouserex
// Except if we have a fragment, we also call filter hook
// now.
//
if (((ForwardFilterEnabled) && (!IPSecHandlerPtr) &&
(!FirewallMode) && (!PromiscuousMode) &&
(!AbsorbFwdPkt)) ||
((ForwardFilterEnabled) &&
(IPH->iph_offset & ~(IP_DF_FLAG | IP_RSVD_FLAG)))) {
Interface *IF = NTE->nte_if;
IPAddr LinkNextHop;
FORWARD_ACTION Action;
if ((IF->if_flags & IF_FLAGS_P2MP) && LinkCtxt) {
LinkNextHop = LinkCtxt->link_NextHop;
} else {
LinkNextHop = NULL_IP_ADDR;
}
CTEInterlockedIncrementLong(&ForwardFilterRefCount);
Action = (*ForwardFilterPtr) (IPH,
Data,
MIN(DataSize, IPDataLength),
IF->if_index,
INVALID_IF_INDEX,
LinkNextHop,
NULL_IP_ADDR);
DerefFilterPtr();
if (Action != FORWARD) {
IPSInfo.ipsi_indiscards++;
return;
}
}
// No options. See if it's a fragment. If it is, call our
// reassembly handler.
if ((IPH->iph_offset & ~(IP_DF_FLAG | IP_RSVD_FLAG)) == 0) {
// We don't have a fragment. If the data all fits,
// handle it here. Otherwise transfer data it.
// Make sure data is all in buffer, and directly
// accesible.
if ((IPDataLength > DataSize) || !(NTE->nte_flags & NTE_COPY))
{
// The data isn't all here. Transfer data it.
// Needed by firewall since we need to attach the IPheader
MoreData = 1;
RcvIF = NTE->nte_if;
CTEGetLockAtDPC(&RcvIF->if_lock, &Handle);
TDPacket = RcvIF->if_tdpacket;
if (TDPacket != (PNDIS_PACKET) NULL) {
TDC = (TDContext *) TDPacket->ProtocolReserved;
RcvIF->if_tdpacket = TDC->tdc_common.pc_link;
CTEFreeLockFromDPC(&RcvIF->if_lock, Handle);
TDC->tdc_nte = DestNTE;
TDC->tdc_dtype = DestType;
TDC->tdc_hlength = (uchar) HeaderLength;
RtlCopyMemory(TDC->tdc_header, IPH,
HeaderLength + 8);
Status = (*(RcvIF->if_transfer)) (
RcvIF->if_lcontext, LContext1,
LContext2, HeaderLength,
IPDataLength, TDPacket,
&IPDataLength);
// Check the status. If it's success, call the
// receive procedure. Otherwise, if it's pending
// wait for the callback.
Data = TDC->tdc_buffer;
if (Status != NDIS_STATUS_PENDING) {
if (Status != NDIS_STATUS_SUCCESS) {
IPSInfo.ipsi_indiscards++;
CTEGetLockAtDPC(&RcvIF->if_lock, &Handle);
TDC->tdc_common.pc_link =
RcvIF->if_tdpacket;
RcvIF->if_tdpacket = TDPacket;
CTEFreeLockFromDPC(&RcvIF->if_lock,
Handle);
return;
}
} else {
return; // Status is pending.
}
} else { // Couldn't get a packet.
IPSInfo.ipsi_indiscards++;
CTEFreeLockFromDPC(&RcvIF->if_lock, Handle);
return;
}
}
if (!FirewallMode) {
// fast path
RcvBuf.ipr_next = NULL;
RcvBuf.ipr_owner = IPR_OWNER_IP;
RcvBuf.ipr_buffer = (uchar *) Data;
RcvBuf.ipr_size = IPDataLength;
//
//encapsulate the mdl and context info in RcvBuf
//structure
//
RcvBuf.ipr_pMdl = pNdisBuffer;
RcvBuf.ipr_pClientCnt = pClientCnt;
RcvBuf.ipr_RcvContext = (char *)LContext1;
//ASSERT(LContext2 <= 8);
RcvBuf.ipr_RcvOffset = MacHeaderSize +
HeaderLength + LContext2;
DataLength = IPDataLength;
pRcvBuf = &RcvBuf;
} else { // ForwardFirewallPtr != NULL
//
// if Firewall hooks are present we will allocate
// RcvBuf. Also we will pass IPHeader to
// DelivertoUserEx
pRcvBuf = (IPRcvBuf *) CTEAllocMemN(sizeof(IPRcvBuf), 'jiCT');
if (!pRcvBuf) {
IPSInfo.ipsi_indiscards++;
return;
}
if (!MoreData) {
pRcvBuf->ipr_next = NULL;
pRcvBuf->ipr_owner = IPR_OWNER_IP;
pRcvBuf->ipr_buffer = (uchar *) PreservedData;
pRcvBuf->ipr_size = IPDataLength + HeaderLength;
pRcvBuf->ipr_flags = 0;
//
//encapsulate the mdl and context info in
//RcvBuf structure
//
pRcvBuf->ipr_pMdl = NULL;
pRcvBuf->ipr_pClientCnt = NULL;
//ASSERT(LContext2 <= 8);
pRcvBuf->ipr_RcvContext = (char *)LContext1;
pRcvBuf->ipr_RcvOffset = MacHeaderSize + HeaderLength + LContext2;
} else { // MoreData=1; we have gone thru TD
// path attach the header
pRcvBuf->ipr_owner = IPR_OWNER_FIREWALL;
HdrBuf = (uchar *) CTEAllocMemN(HeaderLength, 'kiCT');
if (!HdrBuf) {
CTEFreeMem(pRcvBuf);
IPSInfo.ipsi_indiscards++;
return;
}
RtlCopyMemory(HdrBuf, IPH, HeaderLength);
pRcvBuf->ipr_buffer = HdrBuf; // remember to
// free HdrBuf &
//pRcvBuf
pRcvBuf->ipr_size = HeaderLength;
pRcvBuf->ipr_next = (IPRcvBuf *) CTEAllocMemN(sizeof(IPRcvBuf), 'liCT');
if (!pRcvBuf->ipr_next) {
CTEFreeMem(pRcvBuf);
CTEFreeMem(HdrBuf);
IPSInfo.ipsi_indiscards++;
return;
}
pRcvBuf->ipr_next->ipr_next = NULL;
pRcvBuf->ipr_next->ipr_owner = IPR_OWNER_IP;
pRcvBuf->ipr_next->ipr_buffer = (uchar *) Data;
pRcvBuf->ipr_next->ipr_size = IPDataLength;
//
//encapsulate the mdl and context info in
//RcvBuf structure
//
pRcvBuf->ipr_next->ipr_pMdl = NULL;
pRcvBuf->ipr_next->ipr_pClientCnt = NULL;
pRcvBuf->ipr_next->ipr_RcvContext = (char *)LContext1;
pRcvBuf->ipr_next->ipr_flags = 0;
//ASSERT(LContext2 <= 8);
pRcvBuf->ipr_next->ipr_RcvOffset =
MacHeaderSize + HeaderLength + LContext2;
}
// In case of firewall, Data includes ipheader also
DataLength = IPDataLength + HeaderLength;
}
// 3 cases when we go to DeliverToUserEx
// IPSEC & Filter present; Firewallhooks present;
// promiscuous mode set on the interface
if (((IPSecHandlerPtr) && (ForwardFilterEnabled)) ||
(FirewallMode) || (PromiscuousMode)) {
if (pClientCnt) {
DeliverToUserEx(NTE, DestNTE, IPH, HeaderLength,
pRcvBuf, DataLength, &OptInfo,
LContext1, DestType, LinkCtxt);
} else {
DeliverToUserEx(NTE, DestNTE, IPH, HeaderLength,
pRcvBuf, DataLength, &OptInfo,
NULL, DestType, LinkCtxt);
}
} else {
//
// When we get here, we have the whole packet.
// Deliver it.
//
if (pNdisBuffer) {
DeliverToUser(NTE, DestNTE, IPH, HeaderLength,
pRcvBuf, IPDataLength, &OptInfo,
(PNDIS_PACKET) (LContext1),
DestType);
} else if (OffLoadPkt) {
DeliverToUser(NTE, DestNTE, IPH, HeaderLength, pRcvBuf,
IPDataLength, &OptInfo, OffLoadPkt, DestType);
} else {
DeliverToUser(
NTE, DestNTE, IPH, HeaderLength, pRcvBuf,
IPDataLength, &OptInfo, NULL, DestType);
}
//
// When we're here, we're through with the packet
// locally. If it's a broadcast packet forward it
// on.
if (IS_BCAST_DEST(DestType)) {
IPForwardPkt(NTE, IPH, HeaderLength, Data,
IPDataLength, NULL, 0, DestType,
0, NULL, NULL, LinkCtxt);
}
}
if (TDC != NULL) {
CTEGetLockAtDPC(&RcvIF->if_lock, &Handle);
TDC->tdc_common.pc_link = RcvIF->if_tdpacket;
RcvIF->if_tdpacket = TDPacket;
CTEFreeLockFromDPC(&RcvIF->if_lock, Handle);
}
return;
} else {
// This is a fragment. Reassemble it.
IPReassemble(NTE, DestNTE, IPH, HeaderLength, Data,
DataSize, IPDataLength, DestType, LContext1,
LContext2, LinkCtxt);
return;
}
}
// Not for us, may need to be forwarded. It might be an outgoing
// broadcast that came in through a source route, so we need to
// check that.
forward:
if (DestType != DEST_INVALID) {
//
// If IPSec is active, make sure there are no inbound policies
// that apply to this packet.
// N.B - IPSecStatus will be true if there is at least one ipsec policy.
//
if (IPSecStatus &&
(*IPSecRcvFWPacketPtr)((PCHAR) IPH, Data, DataSize, DestType) != eFORWARD) {
IPSInfo.ipsi_indiscards++;
return;
}
// Super Fast Forward
// chk the parameters
IPForwardPkt(NTE, IPH, HeaderLength, Data, DataSize,
LContext1, LContext2, DestType, MacHeaderSize, pNdisBuffer,
pClientCnt, LinkCtxt);
} else {
IPSInfo.ipsi_inaddrerrors++;
}
return;
HeaderError:
IPSInfo.ipsi_inhdrerrors++;
}
//* IPRcv - Receive an incoming IP datagram.
//
// This is the routine called by the link layer module when an incoming IP
// datagram is to be processed. We validate the datagram (including doing
// the xsum), copy and process incoming options, and decide what to do with it.
//
// Entry: MyContext - The context valued we gave to the link layer.
// Data - Pointer to the data buffer.
// DataSize - Size in bytes of the data buffer.
// TotalSize - Total size in bytes available.
// LContext1 - 1st link context.
// LContext2 - 2nd link context.
// BCast - Indicates whether or not packet was received on bcast address.
//
// Returns: Nothing.
//
// For buffer ownership version, we just call RcvPacket, with additional
// two null arguments. Currently LANARP supports buffer owner ship.
// Rest of the folks (rasarp, wanarp and atmarp) come this way.
//
void
__stdcall
IPRcv(void *MyContext, void *Data, uint DataSize, uint TotalSize,
NDIS_HANDLE LContext1, uint LContext2, uint BCast, LinkEntry * LinkCtxt)
{
IPRcvPacket(MyContext,
Data,
DataSize,
TotalSize,
LContext1,
LContext2,
BCast,
(uint) 0,
NULL,
NULL,
LinkCtxt);
}
//* IPTDComplete - IP Transfer data complete handler.
//
// This is the routine called by the link layer when a transfer data completes.
//
// Entry: MyContext - Context value we gave to the link layer.
// Packet - Packet we originally gave to transfer data.
// Status - Final status of command.
// BytesCopied - Number of bytes copied.
//
// Exit: Nothing
//
void
__stdcall
IPTDComplete(void *MyContext, PNDIS_PACKET Packet, NDIS_STATUS Status,
uint BytesCopied)
{
TDContext *TDC = (TDContext *) Packet->ProtocolReserved;
FWContext *pFWC = (FWContext *) Packet->ProtocolReserved;
NetTableEntry *NTE = (NetTableEntry *) MyContext;
uint PromiscuousMode = 0;
uint FirewallMode = 0;
if (NTE->nte_flags & NTE_VALID) {
PromiscuousMode = NTE->nte_if->if_promiscuousmode;
FirewallMode = ProcessFirewallQ();
}
if (((IPSecHandlerPtr) && (ForwardFilterEnabled)) ||
(FirewallMode) || (PromiscuousMode)) {
if (!(TDC->tdc_common.pc_flags & PACKET_FLAG_RA))
TDUserRcv(MyContext, Packet, Status, BytesCopied);
else
RATDComplete(MyContext, Packet, Status, BytesCopied);
} else { // Normal Path
if (!(TDC->tdc_common.pc_flags & PACKET_FLAG_FW))
if (!(TDC->tdc_common.pc_flags & PACKET_FLAG_RA))
TDUserRcv(MyContext, Packet, Status, BytesCopied);
else
RATDComplete(MyContext, Packet, Status, BytesCopied);
else {
#if IPMCAST
if (pFWC->fc_dtype == DEST_REM_MCAST) {
IPMForwardAfterTD(MyContext, Packet, BytesCopied);
return;
}
#endif
SendFWPacket(Packet, Status, BytesCopied);
}
}
}
//* IPFreeBuff -
// Frees the chain and the buffers associated with the chain if allocated
// by firewall hook
//
//
void
IPFreeBuff(IPRcvBuf * pRcvBuf)
{
IPRcvBuf *Curr = pRcvBuf;
IPRcvBuf *Prev;
//
// Free all blocks carried by pRcvbuf
//
while (pRcvBuf != NULL) {
FreeIprBuff(pRcvBuf);
pRcvBuf = pRcvBuf->ipr_next;
}
while (Curr != NULL) {
Prev = Curr;
Curr = Curr->ipr_next;
//
// Free pRcvBuf itself
//
CTEFreeMem(Prev);
}
}
//* FreeIprBuff -
// Frees the buffer associated by IPRcvBuf if tag in rcvbuf is firewall
// The idea is that if the buffer is allocated by firewall, the tag is firewall
// and its freed when we call ipfreebuff or this routine. However, there is a
// slight catch here. In the reassembly path, the buffer is tagged as ip but
// it has to be freed by ip driver only since the reassembly buffers are
// allocated by ip only. But in this case, the flat buffer is part of the
// Rcvbuf structure and so when Rcvbuf structure is freed the flat buffer is
// also freed. In other cases, fast path in Rcv and xmit path, respective
// lower and upper layers free the flat buffer. This makes sure that ip is
// not freeing the buffers which some other layer allocates. This technique
// is now used by IPSEC also.
//
void
FreeIprBuff(IPRcvBuf * pRcvBuf)
{
ASSERT(pRcvBuf != NULL);
if ((pRcvBuf->ipr_buffer != NULL) && (pRcvBuf->ipr_owner == IPR_OWNER_FIREWALL)) {
CTEFreeMem(pRcvBuf->ipr_buffer);
}
}
//* IPAllocBuff -
// Allocates a buffer of given size and attaches it to IPRcvBuf
//
// Returns: TRUE if success else FALSE
//
int
IPAllocBuff(IPRcvBuf * pRcvBuf, uint size)
{
ASSERT(pRcvBuf != NULL);
// put a tag in iprcvbuf that firewall allocated it so that
// FreeIprBuff / IPFreeBuff can free it
pRcvBuf->ipr_owner = IPR_OWNER_FIREWALL;
if ((pRcvBuf->ipr_buffer = (uchar *) CTEAllocMemN(size, 'miCT')) == NULL) {
return FALSE;
}
return TRUE;
}