windows-nt/Source/XPSP1/NT/net/tcpip/tpipv6/ttcp/ttcp.c

1671 lines
54 KiB
C
Raw Normal View History

2020-09-26 03:20:57 -05:00
/*
* TTCP
*
* Test TCP connection. Makes a connection on port 5001
* and transfers fabricated buffers or data copied from stdin.
*
* Usable on 4.2, 4.3, and 4.1a systems by defining one of
* BSD42 BSD43 (BSD41a)
* Machines using System V with BSD sockets should define SYSV.
*
* Modified for operation under 4.2BSD, 18 Dec 84
* T.C. Slattery, USNA
* Minor improvements, Mike Muuss and Terry Slattery, 16-Oct-85.
* Modified in 1989 at Silicon Graphics, Inc.
* catch SIGPIPE to be able to print stats when receiver has died
* for tcp, don't look for sentinel during reads to allow small transfers
* increased default buffer size to 8K, nbuf to 2K to transfer 16MB
* moved default port to 5001, beyond IPPORT_USERRESERVED
* make sinkmode default because it is more popular,
* -s now means don't sink/source
* count number of _read/_write system calls to see effects of
* blocking from full socket buffers
* for tcp, -D option turns off buffered writes (sets SO_NODELAY sockopt)
* buffer alignment options, -A and -O
* print stats in a format that's a bit easier to use with grep & awk
* for SYSV, mimic BSD routines to use most of the existing timing code
*
* Distribution Status -
* Public Domain. Distribution Unlimited.
*/
#define BSD43
/* #define BSD42 */
/* #define BSD41a */
#if defined(sgi) || defined(CRAY)
#define SYSV
#endif
#include <nt.h>
#include <ntrtl.h>
#include <nturtl.h>
#include <stdio.h>
#include <stdlib.h>
#include <io.h>
#include <signal.h>
#include <ctype.h>
#include <sys/types.h>
#include <winsock2.h>
#include <ws2tcpip.h>
#include <ws2ip6.h>
#include <wspiapi.h>
#include <mswsock.h>
//
// Localization library and MessageIds.
//
#include <nls.h>
#include "localmsg.h"
#if defined(SYSV)
#include <sys/times.h>
#include <sys/param.h>
struct rusage {
struct timeval ru_utime, ru_stime;
};
#define RUSAGE_SELF 0
#else
#endif
u_short prot; // 0 (don't care), PF_INET, PF_INET6
struct sockaddr_storage sinsrcStorage;
struct sockaddr *sinsrc = (struct sockaddr *)&sinsrcStorage;
struct sockaddr_storage sinmeStorage;
struct sockaddr *sinme = (struct sockaddr *)&sinmeStorage;
struct sockaddr_storage sinhimStorage;
struct sockaddr *sinhim = (struct sockaddr *)&sinhimStorage;
DWORD tmpbuf;
struct addrinfo *aihim;
SOCKET fd; /* fd of network socket */
SOCKET fd2; /* fd of accepted connection */
int buflen = 8 * 1024; /* length of buffer */
char *buf; /* ptr to dynamic buffer */
int nbuf = 2 * 1024; /* number of buffers to send in sinkmode */
int bufoffset = 0; /* align buffer to this */
int bufalign = 16*1024; /* modulo this */
int udp = 0; /* 0 = tcp, !0 = udp */
int udpcoverage = 0; /* UDP Lite checksum coverage */
int options = 0; /* socket options */
int one = 1; /* for 4.3 BSD style setsockopt() */
short port = 5001; /* TCP port number */
char *host; /* ptr to name of host */
int trans; /* 0=receive, !0=transmit mode */
int sinkmode = 1; /* 0=normal I/O, !0=sink/source mode */
int verbose = 0; /* 0=print basic info, 1=print cpu rate, proc
* resource usage. */
int nodelay = 0; /* set TCP_NODELAY socket option */
int b_flag = 0; /* use mread() */
int write_delay = 0; /* milliseconds of delay before each write */
int hops = -1; /* hop limit */
int udp_connect = 0; /* connect UDP sockets */
#define SOBUF_DEFAULT -1
int sobuf = SOBUF_DEFAULT; /* SO_RCVBUF/SO_SNDBUF setting; 0 == default */
int async = 0; /* async vs. synchronous io calls. value == */
/* number of simultaneous async calls. */
int connecttest = 0;
char *filename = NULL;
HANDLE filehandle;
WSADATA WsaData;
char stats[128];
unsigned long nbytes; /* bytes on net */
unsigned long numCalls; /* # of I/O system calls */
int Nread( SOCKET fd, PBYTE buf, INT count );
int mread( SOCKET fd, PBYTE bufp, INT n);
int Nwrite( SOCKET fd, PBYTE buf, INT count );
void err(unsigned int message);
void pattern(char *cp, int cnt );
void prep_timer();
double read_timer(char *s, int l);
//double cput, realt; /* user, real time (seconds) */
DWORD realt;
typedef struct _TTCP_ASYNC_INFO {
PVOID Buffer;
DWORD BytesWritten;
OVERLAPPED Overlapped;
} TTCP_ASYNC_INFO, *PTTCP_ASYNC_INFO;
void
sigpipe()
{
}
int parse_addr(char *s, struct sockaddr *sa);
char *format_addr(struct sockaddr *sa);
void set_port(struct sockaddr *sa, u_short port);
u_short get_port(struct sockaddr *sa);
u_int addr_len(struct sockaddr *sa);
void __cdecl
main(argc,argv)
int argc;
char **argv;
{
char *Term;
struct in_addr IPv4Group;
struct in6_addr IPv6Group;
int error;
int i;
BOOL ret;
error = WSAStartup(MAKEWORD(2, 0), &WsaData );
if ( error == SOCKET_ERROR ) {
NlsPutMsg(STDOUT, TTCP_MESSAGE_0, WSAGetLastError());
// printf("ttcp: WSAStartup failed %ld:", WSAGetLastError());
}
if (argc < 2) goto usage;
for (i = 1; i < argc; i++) {
if ((argv[i][0] != '-') &&
(argv[i][0] != '/'))
break;
switch (argv[i][1]) {
case 'B':
b_flag = 1;
break;
case 't':
trans = 1;
break;
case 'f':
trans = 1;
filename = &argv[i][2];
break;
case 'r':
trans = 0;
break;
case 'd':
options |= SO_DEBUG;
break;
case 'D':
nodelay = 1;
break;
case 'n':
nbuf = atoi(&argv[i][2]);
break;
case 'l':
buflen = atoi(&argv[i][2]);
break;
case 'h':
sobuf = atoi(&argv[i][2]);
break;
case 'H':
hops = atoi(&argv[i][2]);
break;
case 's':
sinkmode = 0; /* sink/source data */
break;
case 'p':
port = (short) atoi(&argv[i][2]);
break;
case 'u':
udp = 1;
connecttest = 0;
if (argv[i][2] == '\0')
udpcoverage = 0;
else
udpcoverage = atoi(&argv[i][2]);
break;
case 'v':
verbose = 1;
break;
case 'A':
bufalign = atoi(&argv[i][2]);
break;
case 'O':
bufoffset = atoi(&argv[i][2]);
break;
case 'c':
udp_connect = 1;
break;
case 'a':
if (argv[i][2] == '\0') {
async = 3;
} else {
async = atoi(&argv[i][2]);
}
break;
case 'C':
connecttest = 1;
udp = 0;
break;
case 'S':
if (!parse_addr(&argv[i][2], sinsrc))
err(TTCP_MESSAGE_31); // "bad source address"
break;
case 'w':
if (argv[i][2] == '\0')
goto usage;
write_delay = atoi(&argv[i][2]);
break;
case 'P':
if (argv[i][2] == '4')
prot = PF_INET;
else if (argv[i][2] == '6')
prot = PF_INET6;
else
goto usage;
break;
case 'j':
trans = 0;
udp = 1;
// Figure out if this is an IPv4 or IPv6 group.
if (NT_SUCCESS(RtlIpv6StringToAddressA(&argv[i][2],
&Term,
&IPv6Group))) {
// We should use IPv6.
if (prot == 0)
prot = PF_INET6;
else if (prot != PF_INET6)
goto usage;
}
else if (NT_SUCCESS(RtlIpv4StringToAddressA(&argv[i][2],
TRUE,
&Term,
&IPv4Group))) {
// We should use IPv4.
if (prot == 0)
prot = PF_INET;
else if (prot != PF_INET)
goto usage;
}
else
goto usage;
// Sanity-check the interface index, if present.
if (*Term == '\0')
; // No interface index.
else if (*Term == '/') {
if (atoi(Term+1) == 0)
goto usage;
} else
goto usage;
break;
default:
goto usage;
}
}
if (filename != NULL) {
filehandle = CreateFile(
filename,
GENERIC_READ,
FILE_SHARE_READ,
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
NULL
);
if ( filehandle == INVALID_HANDLE_VALUE ) {
NlsPutMsg(STDOUT, TTCP_MESSAGE_1, filename, GetLastError());
// printf("failed to open file %s: %ld\n", filename, GetLastError( ) );
exit(1);
}
NlsPutMsg(STDOUT, TTCP_MESSAGE_2, filename );
// printf("ttcp-t: opened file %s\n", filename );
}
if ((async != 0) && trans && (sobuf == SOBUF_DEFAULT)) {
sobuf = 0;
NlsPutMsg(STDOUT, TTCP_MESSAGE_3);
// printf("ttcp-t: for async write, setting SO_SNDBUF to 0.\n");
}
if (udp && !trans && (sobuf == SOBUF_DEFAULT))
sobuf = 65536;
if (connecttest) {
INT zero = 0;
// ??? What is this?
// disable socket sharing in the process
setsockopt((SOCKET)NULL, SOL_SOCKET, 0x8002, (char *)&zero, 4);
}
if (trans) {
/* xmitr */
struct addrinfo hints;
if (i + 1 != argc) goto usage;
host = argv[i];
memset(&hints, 0, sizeof hints);
hints.ai_flags = AI_NUMERICHOST;
hints.ai_family = prot;
if (getaddrinfo(host, NULL, &hints, &aihim) != 0) {
struct addrinfo *aitmp;
hints.ai_flags = AI_CANONNAME;
if (getaddrinfo(host, NULL, &hints, &aihim) != 0)
err(TTCP_MESSAGE_32); // "getaddrinfo"
for (aitmp = aihim; aitmp != NULL; aitmp = aitmp->ai_next)
NlsPutMsg(STDOUT, TTCP_MESSAGE_4,
aihim->ai_canonname,
format_addr(aitmp->ai_addr));
// printf("ttcp-t: %s -> %s\n",
// aihim->ai_canonname,
// format_addr(aitmp->ai_addr));
}
retry:
if (aihim == NULL)
err(TTCP_MESSAGE_54); // "connect"
memcpy(sinhim, aihim->ai_addr, aihim->ai_addrlen);
aihim = aihim->ai_next;
memcpy(sinme, sinsrc, sizeof(struct sockaddr_storage));
if (sinme->sa_family == 0) {
// Use same family as destination.
sinme->sa_family = sinhim->sa_family;
} else {
// Source and destination family should be the same.
// Let connect() check for this.
}
set_port(sinhim, htons(port));
set_port(sinme, 0); // free choice
} else {
/* rcvr */
if (i != argc) goto usage;
memcpy(sinme, sinsrc, sizeof(struct sockaddr_storage));
if (sinme->sa_family == 0)
sinme->sa_family = prot;
set_port(sinme, htons(port));
}
//
// Create the socket and prepare it for the test.
//
if (trans) {
fd = socket(sinme->sa_family, udp?SOCK_DGRAM:SOCK_STREAM, 0);
if (fd == SOCKET_ERROR)
err(TTCP_MESSAGE_48); // "socket"
if (bind(fd, sinme, addr_len(sinme)) < 0)
err(TTCP_MESSAGE_33); // "bind"
if (options) {
#if defined(BSD42)
if (setsockopt(fd, SOL_SOCKET, options, 0, 0) < 0)
#else // BSD43
if (setsockopt(fd, SOL_SOCKET, options,
(char *)&one, sizeof(one)) < 0)
#endif
err(TTCP_MESSAGE_50); // "setsockopt"
}
if (!udp && nodelay) {
if (setsockopt(fd, IPPROTO_TCP, TCP_NODELAY,
(char *)&one, sizeof(one)) < 0)
err(TTCP_MESSAGE_34); // "setsockopt: nodelay"
}
if (udp && udpcoverage) {
if (setsockopt(fd, IPPROTO_UDP, UDP_CHECKSUM_COVERAGE,
(char *)&udpcoverage, sizeof(udpcoverage)) < 0)
err(TTCP_MESSAGE_35); // "setsockopt: udp checksum coverage"
}
if (sobuf != SOBUF_DEFAULT) {
if (setsockopt(fd, SOL_SOCKET, SO_SNDBUF,
(char *)&sobuf, sizeof(sobuf)) < 0)
err(TTCP_MESSAGE_36); // "setsockopt: SO_SNDBUF"
}
if (hops != -1) {
switch (sinme->sa_family) {
case AF_INET:
if (setsockopt(fd, IPPROTO_IP, IP_TTL,
(char *)&hops, sizeof(hops)) < 0)
err(TTCP_MESSAGE_37); // "setsockopt: IP_TTL"
if (udp) {
if (setsockopt(fd, IPPROTO_IP, IP_MULTICAST_TTL,
(char *)&hops, sizeof(hops)) < 0)
err(TTCP_MESSAGE_38); // "setsockopt: IP_MULTICAST_TTL"
}
break;
case AF_INET6:
if (setsockopt(fd, IPPROTO_IPV6, IPV6_UNICAST_HOPS,
(char *)&hops, sizeof(hops)) < 0)
err(TTCP_MESSAGE_39); // "setsockopt: IPV6_UNICAST_HOPS"
if (udp) {
if (setsockopt(fd, IPPROTO_IPV6, IPV6_MULTICAST_HOPS,
(char *)&hops, sizeof(hops)) < 0)
err(TTCP_MESSAGE_40); // "setsockopt: IPV6_MULTICAST_HOPS"
}
break;
}
}
if (!udp || udp_connect) {
if (connect(fd, sinhim, addr_len(sinhim)) < 0)
goto retry;
tmpbuf = sizeof(struct sockaddr_storage);
if (getpeername(fd, (struct sockaddr *)sinhim, &tmpbuf) < 0)
err(TTCP_MESSAGE_41); // "getpeername"
}
tmpbuf = sizeof(struct sockaddr_storage);
if (getsockname(fd, (struct sockaddr *)sinme, &tmpbuf) < 0)
err(TTCP_MESSAGE_42); // "getsockname"
} else { // if not (trans)
if (sinme->sa_family == 0) {
SOCKET fd4, fd6;
fd_set fdset;
int numsockets;
struct sockaddr_in sin;
struct sockaddr_in6 sin6;
//
// We do not know apriori whether to use IPv4 or IPv6.
// So we create two sockets and listen on both.
// socket() will fail if the protocol is not installed,
// and bind() will fail if the stack is stopped,
// so we allow for those errors.
//
FD_ZERO(&fdset);
numsockets = 0;
fd4 = socket(AF_INET, udp?SOCK_DGRAM:SOCK_STREAM, 0);
if (fd4 != INVALID_SOCKET) {
memset(&sin, 0, sizeof sin);
sin.sin_family = AF_INET;
sin.sin_port = get_port(sinme);
if (bind(fd4, (struct sockaddr *)&sin, sizeof sin) == 0) {
if (!udp) {
if (hops != -1) {
if (setsockopt(fd4, IPPROTO_IP, IP_TTL,
(char *)&hops, sizeof(hops)) < 0)
err(TTCP_MESSAGE_37); // "setsockopt: IP_TTL"
}
if (listen(fd4, 0) < 0)
err(TTCP_MESSAGE_44); // "listen"
}
numsockets++;
FD_SET(fd4, &fdset);
}
}
fd6 = socket(AF_INET6, udp?SOCK_DGRAM:SOCK_STREAM, 0);
if (fd6 != INVALID_SOCKET) {
memset(&sin6, 0, sizeof sin6);
sin6.sin6_family = AF_INET6;
sin6.sin6_port = get_port(sinme);
if (bind(fd6, (struct sockaddr *)&sin6, sizeof sin6) == 0) {
if (!udp) {
if (hops != -1) {
if (setsockopt(fd6, IPPROTO_IPV6, IPV6_UNICAST_HOPS,
(char *)&hops, sizeof(hops)) < 0)
err(TTCP_MESSAGE_39); // "setsockopt: IPV6_UNICAST_HOPS"
}
if (listen(fd6, 0) < 0)
err(TTCP_MESSAGE_44); // "listen"
}
numsockets++;
FD_SET(fd6, &fdset);
}
}
if (numsockets == 0)
err(TTCP_MESSAGE_48); // "socket"
if (select(numsockets, &fdset, NULL, NULL, NULL) != 1)
err(TTCP_MESSAGE_47); // "select"
if ((fd4 != INVALID_SOCKET) && FD_ISSET(fd4, &fdset)) {
fd = fd4;
memcpy(sinme, &sin, sizeof sin);
}
else if ((fd6 != INVALID_SOCKET) && FD_ISSET(fd6, &fdset)) {
fd = fd6;
memcpy(sinme, &sin6, sizeof sin6);
}
else {
NlsPutMsg(STDOUT, TTCP_MESSAGE_5);
// printf("select() bug\n");
exit(1);
}
} else { // if not (sinme->sa_family == 0)
fd = socket(sinme->sa_family, udp?SOCK_DGRAM:SOCK_STREAM, 0);
if (fd == SOCKET_ERROR)
err(TTCP_MESSAGE_48); // "socket"
if (bind(fd, sinme, addr_len(sinme)) < 0)
err(TTCP_MESSAGE_33); // "bind"
if (!udp) {
if (hops != -1) {
switch (sinme->sa_family) {
case AF_INET:
if (setsockopt(fd, IPPROTO_IP, IP_TTL,
(char *)&hops, sizeof(hops)) < 0)
err(TTCP_MESSAGE_43); // "setsockopt: IP_TTL"
break;
case AF_INET6:
if (setsockopt(fd, IPPROTO_IPV6, IPV6_UNICAST_HOPS,
(char *)&hops, sizeof(hops)) < 0)
err(TTCP_MESSAGE_39); // "setsockopt: IPV6_UNICAST_HOPS"
break;
}
}
if (listen(fd, 0) < 0) /* allow a queue of 0 */
err(TTCP_MESSAGE_44); // "listen"
}
} // end if (sinme->sa_family == 0)
if (options) {
#if defined(BSD42)
if (setsockopt(fd, SOL_SOCKET, options, 0, 0) < 0)
#else // BSD43
if (setsockopt(fd, SOL_SOCKET, options,
(char *)&one, sizeof(one)) < 0)
#endif
err(TTCP_MESSAGE_50); // "setsockopt"
}
if (sobuf != SOBUF_DEFAULT) {
if (setsockopt(fd, SOL_SOCKET, SO_RCVBUF,
(char *)&sobuf, sizeof(sobuf)) < 0)
err(TTCP_MESSAGE_51); // "setsockopt: SO_RCVBUF"
}
if (!udp) {
tmpbuf = sizeof(struct sockaddr_storage);
fd2 = accept(fd, (struct sockaddr *)sinhim, &tmpbuf);
if (fd2 == SOCKET_ERROR)
err(TTCP_MESSAGE_52); // "accept"
tmpbuf = sizeof(struct sockaddr_storage);
if (getsockname(fd2, (struct sockaddr *)sinme, &tmpbuf) < 0)
err(TTCP_MESSAGE_42); // "getsockname"
} else {
tmpbuf = sizeof(struct sockaddr_storage);
if (getsockname(fd, (struct sockaddr *)sinme, &tmpbuf) < 0)
err(TTCP_MESSAGE_42); // "getsockname"
// Join multicast groups.
for (i = 1; i < argc; i++) {
if ((argv[i][0] != '-') &&
(argv[i][0] != '/'))
break;
if (argv[i][1] == 'j') {
if (sinme->sa_family == AF_INET) {
struct ip_mreq mreq;
(void) RtlIpv4StringToAddressA(&argv[i][2],
TRUE,
&Term,
&mreq.imr_multiaddr);
if ((*Term == ':') || (*Term == '/')) {
// In Whistler, this ioctl allows an
// interface index in addition to an address.
mreq.imr_interface.s_addr = htonl(atoi(Term+1));
} else {
mreq.imr_interface.s_addr = 0;
}
if (setsockopt(fd, IPPROTO_IP,
IP_ADD_MEMBERSHIP,
(char *)&mreq, sizeof mreq) < 0)
err(TTCP_MESSAGE_SSO_IP_ADD_MEMBERSHIP);
} else { // sinme->sa_family == AF_INET6
struct ipv6_mreq mreq;
(void) RtlIpv6StringToAddressA(&argv[i][2],
&Term,
&mreq.ipv6mr_multiaddr);
if ((*Term == ':') || (*Term == '/')) {
mreq.ipv6mr_interface = atoi(Term+1);
} else {
mreq.ipv6mr_interface = 0;
}
if (setsockopt(fd, IPPROTO_IPV6,
IPV6_ADD_MEMBERSHIP,
(char *)&mreq, sizeof mreq) < 0)
err(TTCP_MESSAGE_SSO_IPV6_ADD_MEMBERSHIP);
}
}
}
}
} // end if (trans)
if (trans) {
NlsPutMsg(STDOUT, TTCP_MESSAGE_6, format_addr(sinme));
// printf("ttcp-t: local %s", format_addr(sinme));
NlsPutMsg(STDOUT, TTCP_MESSAGE_7, format_addr(sinhim));
// printf(" -> remote %s\n", format_addr(sinhim));
} else {
NlsPutMsg(STDOUT, TTCP_MESSAGE_8, format_addr(sinme));
// printf("ttcp-r: local %s", format_addr(sinme));
if (udp)
NlsPutMsg(STDOUT, TTCP_MESSAGE_9);
// printf("\n");
else
NlsPutMsg(STDOUT, TTCP_MESSAGE_10, format_addr(sinhim));
// printf(" <- remote %s\n", format_addr(sinhim));
}
if (connecttest) {
//
// Instead of testing data transfer,
// test connection setup/teardown.
//
if (trans) {
//
// Close the socket that we have from above.
//
closesocket(fd);
prep_timer();
for (i = 1; i < nbuf; i++) {
fd = socket(sinme->sa_family, SOCK_STREAM, 0);
if (fd == INVALID_SOCKET)
err(TTCP_MESSAGE_48); // "socket"
if (bind(fd, sinme, addr_len(sinme)) < 0)
err(TTCP_MESSAGE_33); // "bind"
if (connect(fd, sinhim, addr_len(sinhim)) < 0)
err(TTCP_MESSAGE_54); // "connect"
if (recv(fd, (char *)&tmpbuf, sizeof(tmpbuf), 0) < 0)
err(TTCP_MESSAGE_55); // "recv"
closesocket(fd);
}
} else { // if not (trans)
//
// Close the socket that we have from above.
//
closesocket(fd2);
prep_timer();
for (i = 1; i < nbuf; i++) {
fd2 = accept(fd, NULL, NULL);
if (fd2 == INVALID_SOCKET)
err(TTCP_MESSAGE_52); // "accept"
closesocket(fd2);
}
} // end if (trans)
numCalls = i;
(void)read_timer(stats,sizeof(stats));
goto display;
} // end if (connecttest)
//
// Send/receive data using the socket.
//
if (!udp && !trans) {
fd = fd2;
}
if (udp && buflen < 5) {
buflen = 5; /* send more than the sentinel size */
}
if ( (buf = (char *)malloc(buflen+bufalign)) == (char *)NULL)
err(TTCP_MESSAGE_57); // "malloc"
if (bufalign != 0)
buf +=(bufalign - (PtrToUlong(buf) % bufalign) + bufoffset) % bufalign;
if (trans) {
if (udp) {
NlsPutMsg(STDOUT, TTCP_MESSAGE_11,
buflen, nbuf, bufalign, bufoffset, port, argv[i]);
} else {
NlsPutMsg(STDOUT, TTCP_MESSAGE_58,
buflen, nbuf, bufalign, bufoffset, port, argv[i]);
}
// printf("ttcp"
// "-t: buflen=%d, nbuf=%d, align=%d/+%d, port=%d %s -> %s\n",
// buflen, nbuf, bufalign, bufoffset, port,
// udp?"udp":"tcp",
// argv[i]);
} else {
if (udp) {
NlsPutMsg(STDOUT, TTCP_MESSAGE_12,
buflen, nbuf, bufalign, bufoffset, port);
} else {
NlsPutMsg(STDOUT, TTCP_MESSAGE_59,
buflen, nbuf, bufalign, bufoffset, port);
}
// printf("ttcp"
// "-r: buflen=%d, nbuf=%d, align=%d/+%d, port=%d %s\n",
// buflen, nbuf, bufalign, bufoffset, port,
// udp?"udp":"tcp");
}
prep_timer();
if (async != 0) {
TTCP_ASYNC_INFO *info;
HANDLE *events;
info = malloc( sizeof(*info) * async );
if ( info == NULL ) {
NlsPutMsg(STDOUT, TTCP_MESSAGE_13);
// printf("malloc failed.\n" );
exit(1);
}
events = malloc( sizeof(HANDLE) * async );
if ( events == NULL ) {
NlsPutMsg(STDOUT, TTCP_MESSAGE_13);
// printf("malloc failed.\n" );
exit(1);
}
for ( i = 0; i < async; i++ ) {
info[i].Buffer = malloc(buflen);
if ( info[i].Buffer == NULL ) {
NlsPutMsg(STDOUT, TTCP_MESSAGE_13);
// printf("malloc failed.\n" );
exit(1);
}
events[i] = CreateEvent( NULL, FALSE, FALSE, NULL );
if ( events[i] == NULL ) {
NlsPutMsg(STDOUT, TTCP_MESSAGE_14, GetLastError());
// printf("CreateEvent failed: %ld\n", GetLastError( ) );
exit(1);
}
info[i].Overlapped.Internal = 0;
info[i].Overlapped.InternalHigh = 0;
info[i].Overlapped.Offset = 0;
info[i].Overlapped.OffsetHigh = 0;
info[i].Overlapped.hEvent = events[i];
}
if (trans) {
for ( i = 0; i < async; i++ ) {
ret = WriteFile(
(HANDLE)fd,
info[i].Buffer,
buflen,
&info[i].BytesWritten,
&info[i].Overlapped
);
if ( !ret && GetLastError( ) != ERROR_IO_PENDING ) {
NlsPutMsg(STDOUT, TTCP_MESSAGE_15, GetLastError());
// printf("WriteFile failed: %ld\n", GetLastError( ) );
break;
}
nbuf--;
numCalls++;
}
while (nbuf > 0) {
ret = WaitForMultipleObjects( async, events, FALSE, INFINITE );
i = ret - WAIT_OBJECT_0;
ret = GetOverlappedResult(
(HANDLE)fd,
&info[i].Overlapped,
&info[i].BytesWritten,
FALSE
);
if ( !ret ) {
NlsPutMsg(STDOUT, TTCP_MESSAGE_16, GetLastError());
// printf("pended WriteFile failed: %ld\n", GetLastError( ) );
break;
}
nbytes += info[i].BytesWritten;
ret = WriteFile(
(HANDLE)fd,
info[i].Buffer,
buflen,
&info[i].BytesWritten,
&info[i].Overlapped
);
if ( !ret && GetLastError( ) != ERROR_IO_PENDING ) {
NlsPutMsg(STDOUT, TTCP_MESSAGE_15, GetLastError());
// printf("WriteFile failed: %ld\n", GetLastError( ) );
break;
}
nbuf--;
numCalls++;
}
for ( i = 0; i < async; i++ ) {
ret = GetOverlappedResult(
(HANDLE)fd,
&info[i].Overlapped,
&info[i].BytesWritten,
TRUE
);
if ( !ret ) {
NlsPutMsg(STDOUT, TTCP_MESSAGE_16, GetLastError());
// printf("pended WriteFile failed: %ld\n", GetLastError());
break;
}
nbytes += info[i].BytesWritten;
}
} else { // if not (trans)
for ( i = 0; i < async; i++ ) {
ret = ReadFile(
(HANDLE)fd,
info[i].Buffer,
buflen,
&info[i].BytesWritten,
&info[i].Overlapped
);
if ( !ret && GetLastError( ) != ERROR_IO_PENDING ) {
NlsPutMsg(STDOUT, TTCP_MESSAGE_17, GetLastError());
// printf("ReadFile failed: %ld\n", GetLastError( ) );
break;
}
nbuf--;
numCalls++;
}
while (TRUE) {
ret = WaitForMultipleObjects( async, events, FALSE, INFINITE );
i = ret - WAIT_OBJECT_0;
ret = GetOverlappedResult(
(HANDLE)fd,
&info[i].Overlapped,
&info[i].BytesWritten,
FALSE
);
if ( !ret ) {
NlsPutMsg(STDOUT, TTCP_MESSAGE_18, GetLastError());
// printf("pended ReadFile failed: %ld\n", GetLastError( ) );
break;
}
nbytes += info[i].BytesWritten;
if (info[i].BytesWritten == 0) {
break;
}
ret = ReadFile(
(HANDLE)fd,
info[i].Buffer,
buflen,
&info[i].BytesWritten,
&info[i].Overlapped
);
if ( !ret && GetLastError( ) != ERROR_IO_PENDING ) {
NlsPutMsg(STDOUT, TTCP_MESSAGE_17, GetLastError());
// printf("ReadFile failed: %ld\n", GetLastError( ) );
break;
}
nbuf--;
numCalls++;
}
for ( i = 0; i < async; i++ ) {
ret = GetOverlappedResult(
(HANDLE)fd,
&info[i].Overlapped,
&info[i].BytesWritten,
TRUE
);
if ( !ret ) {
NlsPutMsg(STDOUT, TTCP_MESSAGE_18, GetLastError( ) );
// printf("pended ReadFile failed: %ld\n", GetLastError( ) );
break;
}
nbytes += info[i].BytesWritten;
}
} // end if (trans)
} // end if (async != 0)
else if (filename != NULL ) {
ret = TransmitFile( fd, filehandle,
0, // nNumberOfBytesToWrite
0, // nNumberOfBytesPerSend
NULL, // lpOverlapped
NULL, // lpTransmitBuffers
0 ); // dwFlags
if ( !ret ) {
NlsPutMsg(STDOUT, TTCP_MESSAGE_19, GetLastError());
// printf("TransmitFile failed: %ld\n", GetLastError( ) );
exit(1);
}
} else if (sinkmode) {
register int cnt;
if (trans) {
pattern( buf, buflen );
if(udp) (void)Nwrite( fd, buf, 4 ); /* rcvr start */
while (nbuf-- && Nwrite(fd,buf,buflen) == buflen)
nbytes += buflen;
NlsPutMsg(STDOUT, TTCP_MESSAGE_20, nbuf);
// printf("ttcp-t: done sending, nbuf = %d\n", nbuf );
if(udp) {
Sleep( 10 );
(void)Nwrite( fd, buf, 4 ); /* rcvr end */
}
} else {
if (udp) {
while ((cnt=Nread(fd,buf,buflen)) > 0) {
static int going = 0;
if( cnt <= 4 ) {
if( going ) {
break; /* "EOF" */
}
going = 1;
prep_timer();
} else {
nbytes += cnt;
}
}
} else {
while ((cnt=Nread(fd,buf,buflen)) > 0) {
nbytes += cnt;
}
}
}
} else {
register int cnt;
if (trans) {
while((cnt=_read(0,buf,buflen)) > 0 &&
Nwrite(fd,buf,cnt) == cnt)
nbytes += cnt;
} else {
while((cnt=Nread(fd,buf,buflen)) > 0 &&
_write(1,buf,cnt) == cnt)
nbytes += cnt;
}
}
//if(errno) err(TTCP_MESSAGE_); // "IO"
(void)read_timer(stats,sizeof(stats));
if(udp&&trans) {
(void)Nwrite( fd, buf, 4 ); /* rcvr end */
(void)Nwrite( fd, buf, 4 ); /* rcvr end */
(void)Nwrite( fd, buf, 4 ); /* rcvr end */
(void)Nwrite( fd, buf, 4 ); /* rcvr end */
}
display:
closesocket(fd);
//if( cput <= 0.0 ) cput = 0.001;
if ( numCalls == 0 ) {
numCalls = 1;
}
if ( realt == 0 ) {
realt = 1;
}
if (trans) {
NlsPutMsg(STDOUT, TTCP_MESSAGE_21,
nbytes, realt,
(int)((1000.0*(nbytes/(double)realt))/1024.0));
} else {
NlsPutMsg(STDOUT, TTCP_MESSAGE_60,
nbytes, realt,
(int)((1000.0*(nbytes/(double)realt))/1024.0));
}
// printf("ttcp"
// "%s: %ld bytes in %ld real milliseconds = %ld KB/sec\n",
// trans?"-t":"-r",
// nbytes, realt, (int)((1000.0*(nbytes/(double)realt))/1024.0) );
#if 0
printf("ttcp"
"%s: %ld bytes in %.2f CPU seconds = %.2f KB/cpu sec\n",
trans?"-t":"-r",
nbytes, cput, ((double)nbytes)/cput/1024 );
#endif
if (trans) {
NlsPutMsg(STDOUT, TTCP_MESSAGE_22,
numCalls, realt/numCalls,
(1000*numCalls)/realt, nbytes/numCalls);
} else {
NlsPutMsg(STDOUT, TTCP_MESSAGE_61,
numCalls, realt/numCalls,
(1000*numCalls)/realt, nbytes/numCalls);
}
// printf("ttcp"
// "%s: %ld I/O calls, msec/call = %ld, calls/sec = %ld, "
// "bytes/call = %ld\n",
// trans?"-t":"-r",
// numCalls,
// realt/numCalls,
// (1000*numCalls)/realt,
// nbytes/numCalls);
#if 0
printf("ttcp%s: %s\n", trans?"-t":"-r", stats);
#endif
#if 0
printf("ttcp%s: system CPU %ld%%, User %ld%%, Kernel %ld%%, "
"User/Kernel ratio %ld%%\n",
trans?"-t":"-r",
((systemUserTime+systemKernelTime)*100+50)/realt,
(systemUserTime*100+50)/realt,
(systemKernelTime*100+50)/realt,
(systemUserTime+systemKernelTime == 0) ? 100 :
(systemUserTime*100+50)/(systemUserTime+systemKernelTime));
fprintf(stdout, "ttcp%s: process CPU %ld%%, User %ld%%, Kernel %ld%%, "
"User/Kernel ratio %ld%%\n",
trans?"-t":"-r",
((processUserTime+processKernelTime)*100+50)/realt,
(processUserTime*100+50)/realt,
(processKernelTime*100+50)/realt,
(processUserTime+processKernelTime == 0) ? 100 :
(processUserTime*100+50)/(processUserTime+processKernelTime));
#endif
if (verbose) {
if (trans) {
NlsPutMsg(STDOUT, TTCP_MESSAGE_23, buf);
} else {
NlsPutMsg(STDOUT, TTCP_MESSAGE_62, buf);
}
// printf("ttcp%s: buffer address %#p\n", trans?"-t":"-r", buf);
}
WSACleanup();
exit(0);
usage:
NlsPutMsg(STDERR, TTCP_MESSAGE_24);
// fprintf(stderr, "Usage: ttcp -t [-options] host [ < in ]\n");
// fprintf(stderr," ttcp -r [-options > out]\n");
// fprintf(stderr,"Common options:\n");
// fprintf(stderr," -l## length of bufs read from or written to network (default 8192)\n");
// fprintf(stderr," -u use UDP instead of TCP\n");
// fprintf(stderr," -p## port number to send to or listen at (default 5001)\n");
// fprintf(stderr," -P4 use IPv4\n");
// fprintf(stderr," -P6 use IPv6\n");
// fprintf(stderr," -s -t: don't source a pattern to network, get data from stdin\n");
// fprintf(stderr," -r: don't sink (discard), print data on stdout\n");
// fprintf(stderr," -A align the start of buffers to this modulus (default 16384)\n");
// fprintf(stderr," -O start buffers at this offset from the modulus (default 0)\n");
// fprintf(stderr," -v verbose: print more statistics\n");
// fprintf(stderr," -d set SO_DEBUG socket option\n");
// fprintf(stderr," -h set SO_SNDBUF or SO_RCVBUF\n");
// fprintf(stderr," -a use asynchronous I/O calls\n");
// fprintf(stderr," -S## specify source address\n");
// fprintf(stderr," -H## specify TTL or hop limit\n");
// fprintf(stderr,"Options specific to -t:\n");
// fprintf(stderr," -n## number of source bufs written to network (default 2048)\n");
// fprintf(stderr," -D don't buffer TCP writes (sets TCP_NODELAY socket option)\n");
// fprintf(stderr," -w## milliseconds of delay before each write\n");
// fprintf(stderr," -f## specify a file name for TransmitFile\n");
// fprintf(stderr,"Options specific to -r:\n");
// fprintf(stderr," -B for -s, only output full blocks as specified by -l (for TAR)\n");
// fprintf(stderr," -j##[/##] specify multicast group and optional ifindex (UDP-only)\n");
WSACleanup();
exit(1);
}
void err(message)
unsigned int message;
{
if (trans) {
NlsPutMsg(STDOUT, TTCP_MESSAGE_25);
} else {
NlsPutMsg(STDOUT, TTCP_MESSAGE_63);
}
// fprintf(stdout, "ttcp%s: ", trans?"-t":"-r");
NlsPerror(message, WSAGetLastError());
// perror(message);
NlsPutMsg(STDERR, TTCP_MESSAGE_26, WSAGetLastError());
// fprintf(stderr, "errno=%d\n",WSAGetLastError());
WSACleanup();
exit(1);
}
void pattern( cp, cnt )
register char *cp;
register int cnt;
{
register char c;
c = 0;
while( cnt-- > 0 ) {
while( !isprint((c&0x7F)) ) c++;
*cp++ = (c++&0x7F);
}
}
static void prusage();
static void tvadd();
static void tvsub();
static void psecs();
#if defined(SYSV)
/*ARGSUSED*/
static
getrusage(ignored, ru)
int ignored;
register struct rusage *ru;
{
struct tms buf;
times(&buf);
/* Assumption: HZ <= 2147 (LONG_MAX/1000000) */
ru->ru_stime.tv_sec = buf.tms_stime / HZ;
ru->ru_stime.tv_usec = ((buf.tms_stime % HZ) * 1000000) / HZ;
ru->ru_utime.tv_sec = buf.tms_utime / HZ;
ru->ru_utime.tv_usec = ((buf.tms_utime % HZ) * 1000000) / HZ;
}
#if !defined(sgi)
/*ARGSUSED*/
static
gettimeofday(tp, zp)
struct timeval *tp;
struct timezone *zp;
{
tp->tv_sec = time(0);
tp->tv_usec = 0;
}
#endif
#endif // SYSV
__int64 time0;
__int64 time1;
__int64 freq;
/*
* P R E P _ T I M E R
*/
void
prep_timer()
{
#if 0
gettimeofday(&time0, (struct timezone *)0);
getrusage(RUSAGE_SELF, &ru0);
#endif
(void) QueryPerformanceFrequency((LARGE_INTEGER *)&freq);
(void) QueryPerformanceCounter((LARGE_INTEGER *)&time0);
}
/*
* R E A D _ T I M E R
*
*/
double
read_timer(str,len)
char *str;
int len;
{
#if 0
char line[132];
getrusage(RUSAGE_SELF, &ru1);
gettimeofday(&timedol, (struct timezone *)0);
prusage(&ru0, &ru1, &timedol, &time0, line);
(void)strncpy( str, line, len );
/* Get real time */
tvsub( &td, &timedol, &time0 );
realt = td.tv_sec + ((double)td.tv_usec) / 1000000;
/* Get CPU time (user+sys) */
tvadd( &tend, &ru1.ru_utime, &ru1.ru_stime );
tvadd( &tstart, &ru0.ru_utime, &ru0.ru_stime );
tvsub( &td, &tend, &tstart );
cput = td.tv_sec + ((double)td.tv_usec) / 1000000;
if( cput < 0.00001 ) cput = 0.00001;
return( cput );
#endif
(void) QueryPerformanceCounter((LARGE_INTEGER *)&time1);
// realt is real elapsed time in milliseconds
realt = (DWORD) ((1000 * (time1 - time0)) / freq);
return 0;
}
#if 0
static void
prusage(r0, r1, e, b, outp)
register struct rusage *r0, *r1;
struct timeval *e, *b;
char *outp;
{
struct timeval tdiff;
register time_t t;
register char *cp;
register int i;
int ms;
t = (r1->ru_utime.tv_sec-r0->ru_utime.tv_sec)*100+
(r1->ru_utime.tv_usec-r0->ru_utime.tv_usec)/10000+
(r1->ru_stime.tv_sec-r0->ru_stime.tv_sec)*100+
(r1->ru_stime.tv_usec-r0->ru_stime.tv_usec)/10000;
ms = (e->tv_sec-b->tv_sec)*100 + (e->tv_usec-b->tv_usec)/10000;
#define END(x) {while(*x) x++;}
#if defined(SYSV)
cp = "%Uuser %Zsys %Ereal %P";
#else
cp = "%Uuser %Zsys %Ereal %P %Xi+%Dd %Mmaxrss %F+%Rpf %Xcsw";
#endif
for (; *cp; cp++) {
if (*cp != '%')
*outp++ = *cp;
else if (cp[1]) switch(*++cp) {
case 'U':
tvsub(&tdiff, &r1->ru_utime, &r0->ru_utime);
sprintf(outp,"%d.%01d", tdiff.tv_sec, tdiff.tv_usec/100000);
END(outp);
break;
case 'S':
tvsub(&tdiff, &r1->ru_stime, &r0->ru_stime);
sprintf(outp,"%d.%01d", tdiff.tv_sec, tdiff.tv_usec/100000);
END(outp);
break;
case 'E':
psecs(ms / 100, outp);
END(outp);
break;
case 'P':
sprintf(outp,"%d%%", (int) (t*100 / ((ms ? ms : 1))));
END(outp);
break;
#if !defined(SYSV)
case 'W':
i = r1->ru_nswap - r0->ru_nswap;
sprintf(outp,"%d", i);
END(outp);
break;
case 'X':
sprintf(outp,"%d", t == 0 ? 0 : (r1->ru_ixrss-r0->ru_ixrss)/t);
END(outp);
break;
case 'D':
sprintf(outp,"%d", t == 0 ? 0 :
(r1->ru_idrss+r1->ru_isrss-(r0->ru_idrss+r0->ru_isrss))/t);
END(outp);
break;
case 'K':
sprintf(outp,"%d", t == 0 ? 0 :
((r1->ru_ixrss+r1->ru_isrss+r1->ru_idrss) -
(r0->ru_ixrss+r0->ru_idrss+r0->ru_isrss))/t);
END(outp);
break;
case 'M':
sprintf(outp,"%d", r1->ru_maxrss/2);
END(outp);
break;
case 'F':
sprintf(outp,"%d", r1->ru_majflt-r0->ru_majflt);
END(outp);
break;
case 'R':
sprintf(outp,"%d", r1->ru_minflt-r0->ru_minflt);
END(outp);
break;
case 'I':
sprintf(outp,"%d", r1->ru_inblock-r0->ru_inblock);
END(outp);
break;
case 'O':
sprintf(outp,"%d", r1->ru_oublock-r0->ru_oublock);
END(outp);
break;
case 'C':
sprintf(outp,"%d+%d", r1->ru_nvcsw-r0->ru_nvcsw,
r1->ru_nivcsw-r0->ru_nivcsw );
END(outp);
break;
#endif !SYSV
}
}
*outp = '\0';
}
#endif
static void
tvadd(tsum, t0, t1)
struct timeval *tsum, *t0, *t1;
{
tsum->tv_sec = t0->tv_sec + t1->tv_sec;
tsum->tv_usec = t0->tv_usec + t1->tv_usec;
if (tsum->tv_usec > 1000000)
tsum->tv_sec++, tsum->tv_usec -= 1000000;
}
static void
tvsub(tdiff, t1, t0)
struct timeval *tdiff, *t1, *t0;
{
tdiff->tv_sec = t1->tv_sec - t0->tv_sec;
tdiff->tv_usec = t1->tv_usec - t0->tv_usec;
if (tdiff->tv_usec < 0)
tdiff->tv_sec--, tdiff->tv_usec += 1000000;
}
#if 0
static void
psecs(l,cp)
long l;
register char *cp;
{
register int i;
i = l / 3600;
if (i) {
sprintf(cp,"%d:", i);
END(cp);
i = l % 3600;
sprintf(cp,"%d%d", (i/60) / 10, (i/60) % 10);
END(cp);
} else {
i = l;
sprintf(cp,"%d", i / 60);
END(cp);
}
i %= 60;
*cp++ = ':';
sprintf(cp,"%d%d", i / 10, i % 10);
}
#endif
/*
* N R E A D
*/
int
Nread( SOCKET fd, PBYTE buf, INT count )
{
static int didit = 0;
int len = sizeof(sinhimStorage);
register int cnt;
if( udp ) {
if (udp_connect) {
cnt = recv( fd, buf, count, 0 );
numCalls++;
} else {
cnt = recvfrom( fd, buf, count, 0, sinhim, &len );
if ((recvfrom > 0) && !didit) {
didit = 1;
NlsPutMsg(STDOUT, TTCP_MESSAGE_28, format_addr(sinhim));
// fprintf(stdout, "ttcp-r: recvfrom %s\n", format_addr(sinhim));
}
numCalls++;
}
} else {
if( b_flag )
cnt = mread( fd, buf, count ); /* fill buf */
else {
cnt = recv( fd, buf, count, 0 );
numCalls++;
}
}
if (cnt<0) {
NlsPutMsg(STDOUT, TTCP_MESSAGE_29, WSAGetLastError());
// printf("recv(from) failed: %ld\n", WSAGetLastError( ) );
}
return(cnt);
}
/*
* N W R I T E
*/
int
Nwrite( SOCKET fd, PBYTE buf, INT count )
{
register int cnt = 0;
int bytesToSend = count;
if (write_delay)
Sleep(write_delay);
if( udp && !udp_connect) {
again:
cnt = sendto( fd, buf, count, 0, sinhim, addr_len(sinhim) );
numCalls++;
if( cnt<0 && WSAGetLastError( ) == WSAENOBUFS ) {
Sleep(18000);
goto again;
}
} else {
while( count > 0 )
{
cnt = send( fd, buf, count, 0 );
numCalls++;
//if (count != cnt) {
// printf("Tried %d, sent %d\n", count, cnt );
//} else {
// printf("send %d bytes as requested.\n", cnt );
//}
if( cnt == SOCKET_ERROR )
{
break;
}
count -= cnt;
buf += cnt;
}
}
if (cnt<0) {
NlsPutMsg(STDOUT, TTCP_MESSAGE_30, WSAGetLastError());
// printf("send(to) failed: %ld\n", WSAGetLastError( ) );
return -1;
}
return(bytesToSend);
}
/*
* M R E A D
*
* This function performs the function of a read(II) but will
* call read(II) multiple times in order to get the requested
* number of characters. This can be necessary because
* network connections don't deliver data with the same
* grouping as it is written with. Written by Robert S. Miles, BRL.
*/
int
mread( SOCKET fd, PBYTE bufp, INT n)
{
register unsigned count = 0;
register int nread;
do {
nread = recv(fd, bufp, n-count, 0);
numCalls++;
if(nread < 0) {
return(-1);
}
if(nread == 0)
return((int)count);
count += (unsigned)nread;
bufp += nread;
} while(count < (UINT)n);
return((int)count);
}
int
parse_addr(char *s, struct sockaddr *sa)
{
struct addrinfo hints;
struct addrinfo *result;
memset(&hints, 0, sizeof hints);
hints.ai_family = prot;
if (getaddrinfo(s, NULL, &hints, &result) != 0)
return FALSE; // Failed to parse/resolve the address.
memcpy(sa, result->ai_addr, result->ai_addrlen);
freeaddrinfo(result);
return TRUE;
}
u_int
addr_len(struct sockaddr *sa)
{
u_int salen;
switch (sa->sa_family) {
case AF_INET:
salen = sizeof(struct sockaddr_in);
break;
case AF_INET6:
salen = sizeof(struct sockaddr_in6);
break;
default:
salen = 0;
break;
}
return salen;
}
char *
format_addr(struct sockaddr *sa)
{
static char buffer[NI_MAXHOST];
if (getnameinfo(sa, addr_len(sa),
buffer, sizeof buffer,
NULL, 0, NI_NUMERICHOST) != 0)
strcpy(buffer, "<invalid>");
return buffer;
}
void
set_port(struct sockaddr *sa, u_short port)
{
//
// The port field is in the same location
// for both sockaddr_in and sockaddr_in6.
//
((struct sockaddr_in *)sa)->sin_port = port;
}
u_short
get_port(struct sockaddr *sa)
{
//
// The port field is in the same location
// for both sockaddr_in and sockaddr_in6.
//
return ((struct sockaddr_in *)sa)->sin_port;
}