windows-nt/Source/XPSP1/NT/net/upnp/upnpui/inc/stlmap.h

521 lines
13 KiB
C
Raw Normal View History

2020-09-26 03:20:57 -05:00
#pragma once
#ifndef _STLMAP_H_
#define _STLMAP_H_
//#include <functional>
//#include <xtree>
#include <stlfunc.h>
#include <stlxtree.h>
#include <stlxutil.h>
#ifdef _MSC_VER
#pragma pack(push,8)
#endif /* _MSC_VER */
_STD_BEGIN
// TEMPLATE CLASS map
template<class _K, class _Ty, class _Pr = less<_K>, class _A = allocator<_Ty> >
class map
{
public:
typedef map<_K, _Ty, _Pr, _A> _Myt;
typedef pair<const _K, _Ty> value_type;
struct _Kfn : public unary_function<value_type, _K>
{
const _K& operator()(const value_type& _X) const
{
return (_X.first);
}
};
class value_compare
: public binary_function<value_type, value_type, bool>
{
friend class map<_K, _Ty, _Pr, _A>;
public:
bool operator()(const value_type& _X,
const value_type& _Y) const
{
return (comp(_X.first, _Y.first));
}
_PROTECTED:
value_compare(_Pr _Pred)
: comp(_Pred)
{
}
_Pr comp;
};
typedef _K key_type;
typedef _Ty referent_type;
typedef _Pr key_compare;
typedef _A allocator_type;
typedef _A::reference _Tref;
typedef _Tree<_K, value_type, _Kfn, _Pr, _A> _Imp;
typedef _Imp::size_type size_type;
typedef _Imp::difference_type difference_type;
typedef _Imp::reference reference;
typedef _Imp::const_reference const_reference;
typedef _Imp::iterator iterator;
typedef _Imp::const_iterator const_iterator;
typedef _Imp::reverse_iterator reverse_iterator;
typedef _Imp::const_reverse_iterator const_reverse_iterator;
typedef pair<iterator, bool> _Pairib;
typedef pair<iterator, iterator> _Pairii;
typedef pair<const_iterator, const_iterator> _Paircc;
explicit map(const _Pr& _Pred = _Pr(), const _A& _Al = _A())
: _Tr(_Pred, false, _Al)
{
}
typedef const value_type *_It;
map(_It _F, _It _L, const _Pr& _Pred = _Pr(),
const _A& _Al = _A())
: _Tr(_Pred, false, _Al)
{
for (; _F != _L; ++_F)
_Tr.insert(*_F);
}
iterator begin()
{
return (_Tr.begin());
}
const_iterator begin() const
{
return (_Tr.begin());
}
iterator end()
{
return (_Tr.end());
}
const_iterator end() const
{
return (_Tr.end());
}
reverse_iterator rbegin()
{
return (_Tr.rbegin());
}
const_reverse_iterator rbegin() const
{
return (_Tr.rbegin());
}
reverse_iterator rend()
{
return (_Tr.rend());
}
const_reverse_iterator rend() const
{
return (_Tr.rend());
}
size_type size() const
{
return (_Tr.size());
}
size_type max_size() const
{
return (_Tr.max_size());
}
bool empty() const
{
return (_Tr.empty());
}
_A get_allocator() const
{
return (_Tr.get_allocator());
}
_Tref operator[](const key_type& _Kv)
{
iterator _P = insert(value_type(_Kv, _Ty())).first;
return ((*_P).second);
}
_Pairib insert(const value_type& _X)
{
_Imp::_Pairib _Ans = _Tr.insert(_X);
return (_Pairib(_Ans.first, _Ans.second));
}
iterator insert(iterator _P, const value_type& _X)
{
return (_Tr.insert((_Imp::iterator&)_P, _X));
}
void insert(_It _F, _It _L)
{
for (; _F != _L; ++_F)
_Tr.insert(*_F);
}
iterator erase(iterator _P)
{
return (_Tr.erase((_Imp::iterator&)_P));
}
iterator erase(iterator _F, iterator _L)
{
return (_Tr.erase((_Imp::iterator&)_F,
(_Imp::iterator&)_L));
}
size_type erase(const _K& _Kv)
{
return (_Tr.erase(_Kv));
}
void clear()
{
_Tr.clear();
}
void swap(_Myt& _X)
{
std::swap(_Tr, _X._Tr);
}
friend void swap(_Myt& _X, _Myt& _Y)
{
_X.swap(_Y);
}
key_compare key_comp() const
{
return (_Tr.key_comp());
}
value_compare value_comp() const
{
return (value_compare(_Tr.key_comp()));
}
iterator find(const _K& _Kv)
{
return (_Tr.find(_Kv));
}
const_iterator find(const _K& _Kv) const
{
return (_Tr.find(_Kv));
}
size_type count(const _K& _Kv) const
{
return (_Tr.count(_Kv));
}
iterator lower_bound(const _K& _Kv)
{
return (_Tr.lower_bound(_Kv));
}
const_iterator lower_bound(const _K& _Kv) const
{
return (_Tr.lower_bound(_Kv));
}
iterator upper_bound(const _K& _Kv)
{
return (_Tr.upper_bound(_Kv));
}
const_iterator upper_bound(const _K& _Kv) const
{
return (_Tr.upper_bound(_Kv));
}
_Pairii equal_range(const _K& _Kv)
{
return (_Tr.equal_range(_Kv));
}
_Paircc equal_range(const _K& _Kv) const
{
return (_Tr.equal_range(_Kv));
}
protected:
_Imp _Tr;
};
// map TEMPLATE OPERATORS
template<class _K, class _Ty, class _Pr, class _A> inline
bool operator==(const map<_K, _Ty, _Pr, _A>& _X,
const map<_K, _Ty, _Pr, _A>& _Y)
{
return (_X.size() == _Y.size()
&& equal(_X.begin(), _X.end(), _Y.begin()));
}
template<class _K, class _Ty, class _Pr, class _A> inline
bool operator!=(const map<_K, _Ty, _Pr, _A>& _X,
const map<_K, _Ty, _Pr, _A>& _Y)
{
return (!(_X == _Y));
}
template<class _K, class _Ty, class _Pr, class _A> inline
bool operator<(const map<_K, _Ty, _Pr, _A>& _X,
const map<_K, _Ty, _Pr, _A>& _Y)
{
return (lexicographical_compare(_X.begin(), _X.end(),
_Y.begin(), _Y.end()));
}
template<class _K, class _Ty, class _Pr, class _A> inline
bool operator>(const map<_K, _Ty, _Pr, _A>& _X,
const map<_K, _Ty, _Pr, _A>& _Y)
{
return (_Y < _X);
}
template<class _K, class _Ty, class _Pr, class _A> inline
bool operator<=(const map<_K, _Ty, _Pr, _A>& _X,
const map<_K, _Ty, _Pr, _A>& _Y)
{
return (!(_Y < _X));
}
template<class _K, class _Ty, class _Pr, class _A> inline
bool operator>=(const map<_K, _Ty, _Pr, _A>& _X,
const map<_K, _Ty, _Pr, _A>& _Y)
{
return (!(_X < _Y));
}
// TEMPLATE CLASS multimap
template<class _K, class _Ty, class _Pr = less<_K>,
class _A = allocator<_Ty> >
class multimap
{
public:
typedef multimap<_K, _Ty, _Pr, _A> _Myt;
typedef pair<const _K, _Ty> value_type;
struct _Kfn : public unary_function<value_type, _K>
{
const _K& operator()(const value_type& _X) const
{
return (_X.first);
}
};
class value_compare
: public binary_function<value_type, value_type, bool>
{
friend class map<_K, _Ty, _Pr, _A>;
public:
bool operator()(const value_type& _X,
const value_type& _Y) const
{
return (comp(_X.first, _Y.first));
}
_PROTECTED:
value_compare(_Pr _Pred)
: comp(_Pred)
{
}
_Pr comp;
};
typedef _K key_type;
typedef _Ty referent_type;
typedef _Pr key_compare;
typedef _A allocator_type;
typedef _Tree<_K, value_type, _Kfn, _Pr, _A> _Imp;
typedef _Imp::size_type size_type;
typedef _Imp::difference_type difference_type;
typedef _Imp::reference reference;
typedef _Imp::const_reference const_reference;
typedef _Imp::iterator iterator;
typedef _Imp::const_iterator const_iterator;
typedef _Imp::reverse_iterator reverse_iterator;
typedef _Imp::const_reverse_iterator const_reverse_iterator;
typedef pair<iterator, iterator> _Pairii;
typedef pair<const_iterator, const_iterator> _Paircc;
explicit multimap(const _Pr& _Pred = _Pr(),
const _A& _Al = _A())
: _Tr(_Pred, true, _Al)
{
}
typedef const value_type *_It;
multimap(_It _F, _It _L, const _Pr& _Pred = _Pr(),
const _A& _Al = _A())
: _Tr(_Pred, true, _Al)
{
for (; _F != _L; ++_F)
_Tr.insert(*_F);
}
iterator begin()
{
return (_Tr.begin());
}
const_iterator begin() const
{
return (_Tr.begin());
}
iterator end()
{
return (_Tr.end());
}
const_iterator end() const
{
return (_Tr.end());
}
reverse_iterator rbegin()
{
return (_Tr.rbegin());
}
const_reverse_iterator rbegin() const
{
return (_Tr.rbegin());
}
reverse_iterator rend()
{
return (_Tr.rend());
}
const_reverse_iterator rend() const
{
return (_Tr.rend());
}
size_type size() const
{
return (_Tr.size());
}
size_type max_size() const
{
return (_Tr.max_size());
}
bool empty() const
{
return (_Tr.empty());
}
_A get_allocator() const
{
return (_Tr.get_allocator());
}
iterator insert(const value_type& _X)
{
return (_Tr.insert(_X).first);
}
iterator insert(iterator _P, const value_type& _X)
{
return (_Tr.insert((_Imp::iterator&)_P, _X));
}
void insert(_It _F, _It _L)
{
for (; _F != _L; ++_F)
_Tr.insert(*_F);
}
iterator erase(iterator _P)
{
return (_Tr.erase((_Imp::iterator&)_P));
}
iterator erase(iterator _F, iterator _L)
{
return (_Tr.erase((_Imp::iterator&)_F,
(_Imp::iterator&)_L));
}
size_type erase(const _K& _Kv = _K())
{
return (_Tr.erase(_Kv));
}
void clear()
{
_Tr.clear();
}
void swap(_Myt& _X)
{
std::swap(_Tr, _X._Tr);
}
friend void swap(_Myt& _X, _Myt& _Y)
{
_X.swap(_Y);
}
key_compare key_comp() const
{
return (_Tr.key_comp());
}
value_compare value_comp() const
{
return (value_compare(_Tr.key_comp()));
}
iterator find(const _K& _Kv)
{
return (_Tr.find(_Kv));
}
const_iterator find(const _K& _Kv) const
{
return (_Tr.find(_Kv));
}
size_type count(const _K& _Kv) const
{
return (_Tr.count(_Kv));
}
iterator lower_bound(const _K& _Kv)
{
return (_Tr.lower_bound(_Kv));
}
const_iterator lower_bound(const _K& _Kv) const
{
return (_Tr.lower_bound(_Kv));
}
iterator upper_bound(const _K& _Kv)
{
return (_Tr.upper_bound(_Kv));
}
const_iterator upper_bound(const _K& _Kv) const
{
return (_Tr.upper_bound(_Kv));
}
_Pairii equal_range(const _K& _Kv)
{
return (_Tr.equal_range(_Kv));
}
_Paircc equal_range(const _K& _Kv) const
{
return (_Tr.equal_range(_Kv));
}
protected:
_Imp _Tr;
};
// multimap TEMPLATE OPERATORS
template<class _K, class _Ty, class _Pr, class _A> inline
bool operator==(const multimap<_K, _Ty, _Pr, _A>& _X,
const multimap<_K, _Ty, _Pr, _A>& _Y)
{
return (_X.size() == _Y.size()
&& equal(_X.begin(), _X.end(), _Y.begin()));
}
template<class _K, class _Ty, class _Pr, class _A> inline
bool operator!=(const multimap<_K, _Ty, _Pr, _A>& _X,
const multimap<_K, _Ty, _Pr, _A>& _Y)
{
return (!(_X == _Y));
}
template<class _K, class _Ty, class _Pr, class _A> inline
bool operator<(const multimap<_K, _Ty, _Pr, _A>& _X,
const multimap<_K, _Ty, _Pr, _A>& _Y)
{
return (lexicographical_compare(_X.begin(), _X.end(),
_Y.begin(), _Y.end()));
}
template<class _K, class _Ty, class _Pr, class _A> inline
bool operator>(const multimap<_K, _Ty, _Pr, _A>& _X,
const multimap<_K, _Ty, _Pr, _A>& _Y)
{
return (_Y < _X);
}
template<class _K, class _Ty, class _Pr, class _A> inline
bool operator<=(const multimap<_K, _Ty, _Pr, _A>& _X,
const multimap<_K, _Ty, _Pr, _A>& _Y)
{
return (!(_Y < _X));
}
template<class _K, class _Ty, class _Pr, class _A> inline
bool operator>=(const multimap<_K, _Ty, _Pr, _A>& _X,
const multimap<_K, _Ty, _Pr, _A>& _Y)
{
return (!(_X < _Y));
}
_STD_END
#ifdef _MSC_VER
#pragma pack(pop)
#endif /* _MSC_VER */
#endif /* _STLMAP_H_ */
/*
* Copyright (c) 1995 by P.J. Plauger. ALL RIGHTS RESERVED.
* Consult your license regarding permissions and restrictions.
*/
/*
* This file is derived from software bearing the following
* restrictions:
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this
* software and its documentation for any purpose is hereby
* granted without fee, provided that the above copyright notice
* appear in all copies and that both that copyright notice and
* this permission notice appear in supporting documentation.
* Hewlett-Packard Company makes no representations about the
* suitability of this software for any purpose. It is provided
* "as is" without express or implied warranty.
*/