windows-nt/Source/XPSP1/NT/sdktools/mtscript/inc/dynary.h

558 lines
20 KiB
C
Raw Normal View History

2020-09-26 03:20:57 -05:00
//+---------------------------------------------------------------------------
//
// Microsoft Forms
// Copyright (C) Microsoft Corporation, 1992 - 1996.
//
// File: formsary.hxx
//
// Contents: CImplAry* classes
//
// Stolen from Trident
//
//----------------------------------------------------------------------------
//+------------------------------------------------------------------------
//
// This is the implementation of the generic resizeable array classes. There
// are four array classes:
//
// CPtrAry<ELEM> --
//
// Dynamic array class which is optimized for sizeof(ELEM) equal
// to 4. The array is initially empty with no space or memory allocated
// for data.
//
// CDataAry<ELEM> --
//
// Same as CPtrAry but where sizeof(ELEM) is != 4 and less than 128.
//
// CStackPtrAry<ELEM, N> --
//
// Dynamic array class optimized for sizeof(ELEM) equal to 4.
// Space for N elements is allocated as member data of the class. If
// this class is created on the stack, then space for N elements will
// be created on the stack. The class can grow beyond N elements, at
// which point memory will be allocated for the array data.
//
// CStackDataAry<ELEM, N> --
//
// Same as CStackPtrAry, but where sizeof(ELEM) is != 4 and less than 128.
//
//
// All four classes have virtually the same methods, and are used the same.
// The only difference is that the DataAry classes have AppendIndirect and
// InsertIndirect, while the PtrAry classes use Append and Insert. The reason
// for the difference is that the Indirect methods take a pointer to the data,
// while the non-indirect methods take the actual data as an argument.
//
// The Stack arrays (CStackPtrAry and CStackDataAry) are used to pre-allocate
// space for elements in the array. This is useful if you create the array on
// the stack and you know that most of the time the array will be less than
// a certain number of elements. Creating one of these arrays on the stack
// allocates the array on the stack as well, preventing a separate memory
// allocation. Only if the array grows beyond the initial size will any
// additional memory be allocated.
//
// The fastest and most efficient way of looping through all elements in
// the array is as follows:
//
// ELEM * pElem;
// int i;
//
// for (i = aryElems.Size(), pElem = aryElems;
// i > 0;
// i--, pElem++)
// {
// (*pElem)->DoSomething();
// }
//
// This loop syntax has been shown to be the fastest and produce the smallest
// code. Here's an example using a real data type:
//
// CStackPtrAry<CSite*, 16> arySites;
// CSite **ppSite;
// int i;
//
// // Populate the array.
// ...
//
// // Now loop through every element in the array.
// for (i = arySites.Size(), ppSite = arySites;
// i > 0;
// i--, ppSite++)
// {
// (*ppSite)->DoSomething();
// }
//
// METHOD DESCRIPTIONS:
//
// Commonly used methods:
//
// Size() Returns the number of elements currently stored
// in the array.
//
// operator [] Returns the given element in the array.
//
// Item(int i) Returns the given element in the array.
//
// operator ELEM* Allows the array class to be cast to a pointer
// to ELEM. Returns a pointer to the first element
// in the array. (Same as a Base() method).
//
// Append(ELEM e) Adds a new pointer to the end of the array,
// growing the array if necessary. Only valid
// for arrays of pointers (CPtrAry, CStackPtrAry).
//
// AppendIndirect(ELEM *pe, ELEM** ppePlaced)
// As Append, for non-pointer arrays
// (CDataAry, CStackDataAry).
// pe [in] - Pointer to element to add to array. The
// data is copied into the array. Can be
// NULL, in which case the new element is
// initialized to all zeroes.
// ppePlaced [out] - Returns pointer to the new
// element. Can be NULL.
//
// Insert(int i, ELEM e)
// Inserts a new element (e) at the given index (i)
// in the array, growing the array if necessary. Any
// elements at or following the index are moved
// out of the way.
//
// InsertIndirect(int i, ELEM *pe)
// As Insert, for non-pointer arrays
// (CDataAry, CStackDataAry).
//
// Find(ELEM e) Returns the index at which a given element (e)
// is found (CPtrAry, CStackPtrAry).
//
// FindIndirect(ELEM *pe)
// As Find, for non-pointer arrays
// (CDataAry, CStackDataAry).
//
// DeleteAll() Empties the array and de-allocates associated
// memory.
//
// Delete(int i) Deletes an element of the array, moving any
// elements that follow it to fill
//
// DeleteMultiple(int start, int end)
// Deletes a range of elements from the array,
// moving to fill. [start] and [end] are the indices
// of the start and end elements (inclusive).
//
// DeleteByValue(ELEM e)
// Delete the element matching the given value.
//
// DeleteByValueIndirect(ELEM *pe)
// As DeleteByValue, for non-pointer arrays.
// (CDataAry, CStackDataAry).
//
//
// Less commonly used methods:
//
// EnsureSize(long c) If you know how many elements you are going to put
// in the array before you actually do it, you can use
// EnsureSize to allocate the memory all at once instead
// of relying on Append(Indirect) to grow the array. This
// can be much more efficient (by causing only a single
// memory allocation instead of many) than just using
// Append(Indirect). You pass in the number of elements
// that memory should be allocated for. Note that this
// does not affect the "Size" of the array, which is
// the number of elements currently stored in it.
//
// SetSize(int c) Sets the "Size" of the array, which is the number
// of elements currently stored in it. SetSize will not
// allocate memory if you're growing the array.
// EnsureSize must be called first to reserve space if
// the array is growing. Setting the size smaller does
// not de-allocate memory, it just chops off the
// elements at the end of the array.
//
// Grow(int c) Equivalent to calling EnsureSize(c) followed by
// SetSize(c).
//
// ReleaseAll() (CPtrAry and CStackPtrAry only) Calls Release()
// on each element in the array and empties the array.
//
// ReleaseAndDelete(int idx)
// (CPtrAry and CStackPtrAry only) Calls Release() on
// the given element and removes it from the array.
//
// (See the class definitions below for signatures of the following
// methods and src\core\cdutil\formsary.cxx for argument
// descriptions)
//
// CopyAppend Appends data from another array (of the same type)
// to the end.
//
// Copy Copies data from another array (of the same type)
// into this array, replacing any existing data.
//
// CopyAppendIndirect Appends data from a C-style array of element data
// to the end of this array.
//
// CopyIndirect Copies elements from a C-style array into this array
// replacing any existing data.
//
// EnumElements Create an enumerator which supports the given
// interface ID for the contents of the array
//
// EnumVARIANT Create an IEnumVARIANT enumerator.
//
// operator void * Allow the CImplAry class to be cast
// to a (void *). Avoid using if possible - use
// the type-safe operator ELEM * instead.
//
// ClearAndReset Obsolete. Do not use.
//
//
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
//
// Class: CImplAry
//
// Purpose: Base implementation of all the dynamic array classes.
//
// Interface:
//
// Deref Returns a pointer to an element of the array;
// should only be used by derived classes. Use the
// type-safe methods operator[] or Item() instead.
//
// GetAlloced Get number of elements allocated
//
// Members: _c Current size of the array
// _pv Buffer storing the elements
//
// Note: The CImplAry class only supports arrays of elements
// whose size is less than 128.
//
//-------------------------------------------------------------------------
class CImplAry
{
friend class CImplPtrAry;
private:
DECLARE_MEMALLOC_NEW_DELETE();
public:
~CImplAry();
inline int Size() const { return _c; } // UNIX: long->int for min() macro
inline void SetSize(int c) { _c = c; }
inline operator void *() { return PData(); }
void DeleteAll();
// BUGBUG -- This method should be protected, but I don't want to convert
// existing code that uses it. (lylec)
void * Deref(size_t cb, int i);
#if DBG == 1
BOOL _fCheckLock ; // If set with TraceTag CImplAryLock then any change
// (addition or deletion to the DataAry will generate an assert.
void LockCheck(BOOL fState)
{ _fCheckLock = fState; }
#else
void LockCheck(BOOL)
{ }
#endif
NO_COPY(CImplAry);
protected:
// Methods which are wrapped by inline subclass methods
CImplAry();
HRESULT EnsureSize(size_t cb, long c);
HRESULT Grow(size_t cb, int c);
HRESULT AppendIndirect(size_t cb, void * pv, void ** ppvPlaced=NULL);
HRESULT InsertIndirect(size_t cb, int i, void * pv);
int FindIndirect(size_t cb, void *);
void Delete(size_t cb, int i);
BOOL DeleteByValueIndirect(size_t cb, void *pv);
void DeleteMultiple(size_t cb, int start, int end);
HRESULT CopyAppend(size_t cb, const CImplAry& ary, BOOL fAddRef);
HRESULT Copy(size_t cb, const CImplAry& ary, BOOL fAddRef);
HRESULT CopyIndirect(size_t cb, int c, void * pv, BOOL fAddRef);
ULONG GetAlloced(size_t cb);
HRESULT EnumElements(
size_t cb,
REFIID iid,
void ** ppv,
BOOL fAddRef,
BOOL fCopy = TRUE,
BOOL fDelete = TRUE);
HRESULT EnumVARIANT(
size_t cb,
VARTYPE vt,
IEnumVARIANT ** ppenum,
BOOL fCopy = TRUE,
BOOL fDelete = TRUE);
inline BOOL UsingStackArray()
{ return _fDontFree; }
UINT GetStackSize()
{ Assert(_fStack);
return *(UINT*)((BYTE*)this + sizeof(CImplAry)); }
void * GetStackPtr()
{ Assert(_fStack);
return (void*)((BYTE*)this + sizeof(CImplAry) + sizeof(int)); }
unsigned long _fStack :1 ; // Set if we're a stack-based array.
unsigned long _fDontFree :1 ; // Cleared if _pv points to alloced memory.
unsigned long _c :30 ; // Count of elements
void * _pv;
inline void * & PData() { return _pv; }
};
//+------------------------------------------------------------------------
//
// Member: CImplAry::CImplAry
//
//+------------------------------------------------------------------------
inline
CImplAry::CImplAry()
{
memset(this, 0, sizeof(CImplAry));
}
//+------------------------------------------------------------------------
//
// Member: CImplAry::Deref
//
// Synopsis: Returns a pointer to the i'th element of the array. This
// method is normally called by type-safe methods in derived
// classes.
//
// Arguments: i
//
// Returns: void *
//
//-------------------------------------------------------------------------
inline void *
CImplAry::Deref(size_t cb, int i)
{
Assert(i >= 0);
Assert(ULONG( i ) < GetAlloced(cb));
return ((BYTE *) PData()) + i * cb;
}
//+------------------------------------------------------------------------
//
// Class: CImplPtrAry (ary)
//
// Purpose: Subclass used for arrays of pointers. In this case, the
// element size is known to be sizeof(void *). Normally, the
// CPtrAry template is used to define a specific concrete
// implementation of this class, to hold a specific type of
// pointer.
//
// See documentation above for use.
//
//-------------------------------------------------------------------------
class CImplPtrAry : public CImplAry
{
protected:
DECLARE_MEMALLOC_NEW_DELETE();
CImplPtrAry() : CImplAry() {};
HRESULT Append(void * pv);
HRESULT Insert(int i, void * pv);
int Find(void * pv);
BOOL DeleteByValue(void *pv);
HRESULT CopyAppend(const CImplAry& ary, BOOL fAddRef);
HRESULT Copy(const CImplAry& ary, BOOL fAddRef);
HRESULT CopyIndirect(int c, void * pv, BOOL fAddRef);
public:
HRESULT ClearAndReset();
HRESULT EnsureSize(long c);
HRESULT Grow(int c);
void Delete(int i);
void DeleteMultiple(int start, int end);
void ReleaseAll();
void ReleaseAndDelete(int idx);
};
//+---------------------------------------------------------------------------
//
// Class: CDataAry
//
// Purpose: This template class declares a concrete derived class
// of CImplAry.
//
// See documentation above for use.
//
//----------------------------------------------------------------------------
template <class ELEM>
class CDataAry : public CImplAry
{
public:
DECLARE_MEMALLOC_NEW_DELETE();
CDataAry() : CImplAry() { }
operator ELEM *() { return (ELEM *)PData(); }
CDataAry(const CDataAry &);
ELEM & Item(int i) { return *(ELEM*)Deref(sizeof(ELEM), i); }
HRESULT EnsureSize(long c)
{ return CImplAry::EnsureSize(sizeof(ELEM), c); }
HRESULT Grow(int c)
{ return CImplAry::Grow(sizeof(ELEM), c); }
HRESULT AppendIndirect(ELEM * pe, ELEM ** ppePlaced=NULL)
{ return CImplAry::AppendIndirect(sizeof(ELEM), (void*)pe, (void**)ppePlaced); }
ELEM * Append()
{ ELEM * pElem; return AppendIndirect( NULL, & pElem ) ? NULL : pElem; }
HRESULT InsertIndirect(int i, ELEM * pe)
{ return CImplAry::InsertIndirect(sizeof(ELEM), i, (void*)pe); }
int FindIndirect(ELEM * pe)
{ return CImplAry::FindIndirect(sizeof(ELEM), (void*)pe); }
void Delete(int i)
{ CImplAry::Delete(sizeof(ELEM), i); }
BOOL DeleteByValueIndirect(ELEM *pe)
{ return CImplAry::DeleteByValueIndirect(sizeof(ELEM), (void*)pe); }
void DeleteMultiple(int start, int end)
{ CImplAry::DeleteMultiple(sizeof(ELEM), start, end); }
HRESULT CopyAppend(const CDataAry<ELEM>& ary, BOOL fAddRef)
{ return CImplAry::Copy(sizeof(ELEM), ary, fAddRef); }
HRESULT Copy(const CDataAry<ELEM>& ary, BOOL fAddRef)
{ return CImplAry::Copy(sizeof(ELEM), ary, fAddRef); }
HRESULT CopyIndirect(int c, ELEM * pv, BOOL fAddRef)
{ return CImplAry::CopyIndirect(sizeof(ELEM), c, (void*)pv, fAddRef); }
};
//+---------------------------------------------------------------------------
//
// Class: CPtrAry
//
// Purpose: This template class declares a concrete derived class
// of CImplPtrAry.
//
// See documentation above for use.
//
//----------------------------------------------------------------------------
template <class ELEM>
class CPtrAry : public CImplPtrAry
{
public:
DECLARE_MEMALLOC_NEW_DELETE();
CPtrAry() : CImplPtrAry() { Assert(sizeof(ELEM) == sizeof(void*)); }
operator ELEM *() { return (ELEM *)PData(); }
CPtrAry(const CPtrAry &);
ELEM & Item(int i) { return *(ELEM*)Deref(sizeof(ELEM), i); }
HRESULT Append(ELEM e)
{ return CImplPtrAry::Append((void*)e); }
HRESULT Insert(int i, ELEM e)
{ return CImplPtrAry::Insert(i, (void*)e); }
BOOL DeleteByValue(ELEM e)
{ return CImplPtrAry::DeleteByValue((void*)e); }
int Find(ELEM e)
{ return CImplPtrAry::Find((void*)e); }
HRESULT CopyAppend(const CPtrAry<ELEM>& ary, BOOL fAddRef)
{ return CImplPtrAry::Copy(ary, fAddRef); }
HRESULT Copy(const CPtrAry<ELEM>& ary, BOOL fAddRef)
{ return CImplPtrAry::Copy(ary, fAddRef); }
HRESULT CopyIndirect(int c, ELEM *pe, BOOL fAddRef)
{ return CImplPtrAry::CopyIndirect(c, (void*)pe, fAddRef); }
};
//+---------------------------------------------------------------------------
//
// Class: CStackDataAry
//
// Purpose: Declares a CDataAry that has initial storage on the stack.
// N elements are declared on the stack, and the array will
// grow dynamically beyond that if necessary.
//
// See documentation above for use.
//
//----------------------------------------------------------------------------
template <class ELEM, int N>
class CStackDataAry : public CDataAry<ELEM>
{
public:
DECLARE_MEMALLOC_NEW_DELETE();
CStackDataAry() : CDataAry<ELEM>()
{
_cStack = N;
_fStack = TRUE;
_fDontFree = TRUE;
PData() = (void *) & _achTInit;
}
protected:
int _cStack; // Must be first data member.
char _achTInit[N*sizeof(ELEM)];
};
//+---------------------------------------------------------------------------
//
// Class: CStackPtrAry
//
// Purpose: Same as CStackDataAry except for pointer types.
//
// See documentation above for use.
//
//----------------------------------------------------------------------------
template <class ELEM, int N>
class CStackPtrAry : public CPtrAry<ELEM>
{
public:
DECLARE_MEMALLOC_NEW_DELETE();
CStackPtrAry() : CPtrAry<ELEM>()
{
_cStack = N;
_fStack = TRUE;
_fDontFree = TRUE;
PData() = (void *) & _achTInit;
}
protected:
int _cStack; // Must be first data member.
char _achTInit[N*sizeof(ELEM)];
};