windows-nt/Source/XPSP1/NT/shell/cpls/appwzdui/shlwapi.c

838 lines
23 KiB
C
Raw Normal View History

2020-09-26 03:20:57 -05:00
#include "priv.h"
// Build this file only on Win9X or NT4
#ifdef DOWNLEVEL_PLATFORM
__inline LPWSTR StrCpyNXW(LPWSTR psz1, LPCWSTR psz2, int cchMax)
{
ASSERT(psz1);
ASSERT(psz2);
if (0 < cchMax)
{
// Leave room for the null terminator
while (0 < --cchMax)
{
if ( !(*psz1++ = *psz2++) ) {
--psz1;
break;
}
}
if (0 == cchMax)
*psz1 = L'\0';
ASSERT(*psz1 == 0);
}
return psz1;
}
LPWSTR StrCpyNW(LPWSTR psz1, LPCWSTR psz2, int cchMax)
{
StrCpyNXW(psz1, psz2, cchMax);
return psz1;
}
LPWSTR StrCpyW(LPWSTR psz1, LPCWSTR psz2)
{
LPWSTR psz = psz1;
ASSERT(psz1);
ASSERT(psz2);
while (*psz1++ = *psz2++)
;
return psz;
}
STDAPI_(DWORD)
RegData_AtoW(
IN LPCVOID pvData,
IN DWORD dwSize,
IN DWORD dwType,
/*INOUT*/ LPDWORD pcbData
)
{
DWORD dwRet = NO_ERROR;
if (REG_SZ == dwType || REG_EXPAND_SZ == dwType || REG_MULTI_SZ == dwType)
{
DWORD cbData = pcbData ? *pcbData : -1;
if (pvData)
{
// Allocate a temporary buffer to work with
int cch = MultiByteToWideChar(CP_ACP, 0, (LPSTR)pvData, cbData, NULL, 0);
LPWSTR pwszT = (LPWSTR)LocalAlloc(LPTR, CbFromCchW(cch));
if (!pwszT)
dwRet = ERROR_NOT_ENOUGH_MEMORY;
else
{
if (CbFromCchW(cch) > dwSize)
dwRet = ERROR_MORE_DATA;
else
{
// Convert it to the temporary buffer
MultiByteToWideChar(CP_ACP, 0, (LPSTR)pvData, cbData, pwszT, cch);
// Copy it back to the output buffer
StrCpyW((LPWSTR)pvData, pwszT);
}
LocalFree(pwszT);
}
// If string data, make room for unicode
if (pcbData)
{
(*pcbData) = cch * sizeof(WCHAR);
}
}
else if (pcbData)
{
// We don't have the data so guess (actual value may be less)
// PERF: Does this need to be exact? For now this seem sufficient. (Stevepro)
(*pcbData) *= sizeof(WCHAR);
}
}
return dwRet;
}
/*----------------------------------------------------------
Purpose: Recursively delete the key, including all child values
and keys. Mimics what RegDeleteKey does in Win95.
Returns:
Cond: --
*/
DWORD
DeleteKeyRecursively(
IN HKEY hkey,
IN LPCSTR pszSubKey)
{
DWORD dwRet;
HKEY hkSubKey;
// Open the subkey so we can enumerate any children
dwRet = RegOpenKeyExA(hkey, pszSubKey, 0, MAXIMUM_ALLOWED, &hkSubKey);
if (ERROR_SUCCESS == dwRet)
{
DWORD dwIndex;
CHAR szSubKeyName[MAX_PATH + 1];
DWORD cchSubKeyName = ARRAYSIZE(szSubKeyName);
CHAR szClass[MAX_PATH];
DWORD cbClass = ARRAYSIZE(szClass);
// I can't just call RegEnumKey with an ever-increasing index, because
// I'm deleting the subkeys as I go, which alters the indices of the
// remaining subkeys in an implementation-dependent way. In order to
// be safe, I have to count backwards while deleting the subkeys.
// Find out how many subkeys there are
dwRet = RegQueryInfoKeyA(hkSubKey,
szClass,
&cbClass,
NULL,
&dwIndex, // The # of subkeys -- all we need
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL);
if (NO_ERROR == dwRet)
{
// dwIndex is now the count of subkeys, but it needs to be
// zero-based for RegEnumKey, so I'll pre-decrement, rather
// than post-decrement.
while (ERROR_SUCCESS == RegEnumKeyA(hkSubKey, --dwIndex, szSubKeyName, cchSubKeyName))
{
DeleteKeyRecursively(hkSubKey, szSubKeyName);
}
}
RegCloseKey(hkSubKey);
dwRet = RegDeleteKeyA(hkey, pszSubKey);
}
return dwRet;
}
/*----------------------------------------------------------
Purpose: Recursively delete the key, including all child values
and keys.
Returns:
Cond: --
*/
STDAPI_(DWORD)
SHDeleteKeyA(
IN HKEY hkey,
IN LPCSTR pszSubKey)
{
DWORD dwRet;
if (g_bRunOnNT)
{
dwRet = DeleteKeyRecursively(hkey, pszSubKey);
}
else
{
// On Win95, RegDeleteKey does what we want
dwRet = RegDeleteKeyA(hkey, pszSubKey);
}
return dwRet;
}
/*----------------------------------------------------------
Purpose: Recursively delete the key, including all child values
and keys.
Returns:
Cond: --
*/
STDAPI_(DWORD)
SHDeleteKeyW(
IN HKEY hkey,
IN LPCWSTR pwszSubKey)
{
DWORD dwRet;
CHAR sz[MAX_PATH];
WideCharToMultiByte(CP_ACP, 0, pwszSubKey, -1, sz, SIZECHARS(sz), NULL, NULL);
if (g_bRunOnNT)
{
dwRet = DeleteKeyRecursively(hkey, sz);
}
else
{
// On Win95, RegDeleteKey does what we want
dwRet = RegDeleteKeyA(hkey, sz);
}
return dwRet;
}
/*----------------------------------------------------------
Purpose: Behaves just like RegQueryValueEx, except if the
data type is REG_EXPAND_SZ, then this goes ahead
and expands out the string. *pdwType will always
be massaged to REG_SZ if this happens.
Returns:
Cond: --
*/
STDAPI_(DWORD)
SHQueryValueExA(
IN HKEY hkey,
IN LPCSTR pszValue,
IN LPDWORD lpReserved,
OUT LPDWORD pdwType,
OUT LPVOID pvData,
IN OUT LPDWORD pcbData)
{
DWORD dwRet;
DWORD cbSize;
DWORD dwType;
LPSTR lpsz;
// Trying to get back data
if (pcbData)
cbSize = *pcbData; // Size of output buffer
dwRet = RegQueryValueExA(hkey, pszValue, lpReserved, &dwType,
pvData, &cbSize);
// Normally, we'd be done with this. But do some extra work
// if this is an expandable string (something that has system
// variables in it), or if we need to pad the buffer.
if (NO_ERROR == dwRet)
{
// Note: on Win95, RegSetValueEx will always write the
// full string out, including the null terminator. On NT,
// it won't unless the write length was specified.
// Hence, we have the following check.
// Pad the buffer, in case the string didn't have a null
// terminator when it was stored?
if (REG_SZ == dwType)
{
// Yes
if (pvData && cbSize < *pcbData)
{
LPSTR lpszData = pvData;
lpszData[cbSize] = '\0';
}
}
// Expand the string?
else if (REG_EXPAND_SZ == dwType)
{
// Yes
// Use a temporary buffer to expand
if (pvData)
{
lpsz = (LPSTR)LocalAlloc(LPTR, *pcbData);
if ( !lpsz )
return ERROR_OUTOFMEMORY;
cbSize = ExpandEnvironmentStringsA(pvData, lpsz, *pcbData);
// NT screws up the cbSize returned...
if (cbSize > 0)
cbSize = lstrlenA(lpsz) + 1;
if (cbSize > 0 && cbSize <= *pcbData)
lstrcpynA(pvData, lpsz, *pcbData);
else
dwRet = GetLastError();
}
else
{
//
// Find out the length of the expanded string
// we have to call in and actually get the data to do this
//
CHAR szBuff[1];
lpsz = (LPSTR)LocalAlloc(LPTR, cbSize);
if (!lpsz)
return ERROR_OUTOFMEMORY;
dwRet = RegQueryValueExA(hkey, pszValue, lpReserved, NULL,
(LPBYTE)lpsz, &cbSize);
if (NO_ERROR == dwRet)
{
// dummy buffer required...
DWORD cbExpand = ExpandEnvironmentStringsA(lpsz, szBuff, ARRAYSIZE(szBuff));
cbSize = max(cbExpand, cbSize);
}
}
LocalFree(lpsz);
// Massage dwType so that callers always see REG_SZ
dwType = REG_SZ;
}
}
if (pdwType)
*pdwType = dwType;
if (pcbData)
*pcbData = cbSize;
return dwRet;
}
#ifdef UNICODE
/*----------------------------------------------------------
Purpose: Behaves just like RegQueryValueEx, except if the
data type is REG_EXPAND_SZ, then this goes ahead
and expands out the string. *pdwType will always
be massaged to REG_SZ if this happens.
Returns:
Cond: --
*/
STDAPI_(DWORD)
SHQueryValueExW(
IN HKEY hkey,
IN LPCWSTR pwszValue,
IN LPDWORD lpReserved,
OUT LPDWORD pdwType,
OUT LPVOID pvData,
IN OUT LPDWORD pcbData)
{
DWORD dwRet;
DWORD cbSize;
DWORD dwType;
LPWSTR lpsz;
if ( !g_bRunOnNT )
{
CHAR szValue[MAX_PATH];
LPSTR pszValue = NULL;
DWORD dwOriginalSize = 0;
if (pcbData)
dwOriginalSize = *pcbData;
if (pwszValue)
{
WideCharToMultiByte(CP_ACP, 0, pwszValue, -1, szValue, SIZECHARS(szValue), NULL, NULL);
pszValue = szValue;
}
if (!pdwType)
pdwType = &dwType;
dwRet = SHQueryValueExA(hkey, pszValue, lpReserved, pdwType, pvData, pcbData);
if (NO_ERROR == dwRet)
dwRet = RegData_AtoW(pvData, dwOriginalSize, *pdwType, pcbData); // Thunk data from ANSI->UNICODE if needed.
}
else
{
// Running on NT
// Trying to get back data
if (pcbData)
cbSize = *pcbData; // Size of output buffer
dwRet = RegQueryValueExW(hkey, pwszValue, lpReserved, &dwType,
pvData, &cbSize);
// Normally, we'd be done with this. But do some extra work
// if this is an expandable string (something that has system
// variables in it), or if we need to pad the buffer.
if (NO_ERROR == dwRet)
{
// Note: on Win95, RegSetValueEx will always write the
// full string out, including the null terminator. On NT,
// it won't unless the write length was specified.
// Hence, we have the following check.
// Pad the buffer, in case the string didn't have a null
// terminator when it was stored?
if (REG_SZ == dwType)
{
// Yes
if (pvData && cbSize + sizeof(WCHAR) <= *pcbData)
{
LPWSTR lpszData = pvData;
lpszData[cbSize / sizeof(WCHAR)] = '\0';
}
}
// Expand the string?
else if (REG_EXPAND_SZ == dwType)
{
if (pvData)
{
// Yes
// Use a temporary buffer to expand
lpsz = (LPWSTR)LocalAlloc(LPTR, *pcbData);
if (!lpsz)
return ERROR_OUTOFMEMORY;
cbSize = CbFromCchW(ExpandEnvironmentStringsW(pvData, lpsz, *pcbData / sizeof(WCHAR)));
if (cbSize > 0 && cbSize <= *pcbData)
StrCpyNW(pvData, lpsz, *pcbData / sizeof(WCHAR));
else
dwRet = GetLastError();
}
else
{
//
// Find out the length of the expanded string
// we have to call in and actually get the data to do this
//
WCHAR szBuff[1];
// Find out the length of the expanded string
//
lpsz = (LPWSTR)LocalAlloc(LPTR, cbSize);
if (!lpsz)
return ERROR_OUTOFMEMORY;
dwRet = RegQueryValueExW(hkey, pwszValue, lpReserved, NULL,
(LPBYTE)lpsz, &cbSize);
if (NO_ERROR == dwRet)
{
DWORD cbExpand = CbFromCchW(ExpandEnvironmentStringsW(lpsz, szBuff,
ARRAYSIZE(szBuff)));
cbSize = max(cbExpand, cbSize);
}
}
LocalFree(lpsz);
// Massage dwType so that callers always see REG_SZ
dwType = REG_SZ;
}
}
if (pdwType)
*pdwType = dwType;
if (pcbData)
*pcbData = cbSize;
}
return dwRet;
}
#endif //UNICODE
/*
* @doc INTERNAL
*
* @func int | SHAnsiToUnicodeNativeCP |
*
* Convert an ANSI string to a UNICODE string via the
* specified Windows code page. If the source string is too large
* for the destination buffer, then as many characters as
* possible are copied.
*
* The resulting output string is always null-terminated.
*
* @parm UINT | uiCP |
*
* The code page in which to perform the conversion.
* This must be a Windows code page.
*
* @parm LPCSTR | pszSrc |
*
* Source buffer containing ANSI string to be converted.
*
* @parm int | cchSrc |
*
* Source buffer length, including terminating null.
*
* @parm LPWSTR | pwszDst |
*
* Destination buffer to receive converted UNICODE string.
*
* @parm int | cwchBuf |
*
* Size of the destination buffer in <t WCHAR>s.
*
* @returns
*
* On success, the number of characters copied to the output
* buffer is returned, including the terminating null.
*/
int
SHAnsiToUnicodeNativeCP(UINT uiCP,
LPCSTR pszSrc, int cchSrc,
LPWSTR pwszDst, int cwchBuf)
{
int cwchRc = 0; /* Assume failure */
/*
* Checks the caller should've made.
*/
ASSERT(IS_VALID_STRING_PTRA(pszSrc, -1));
ASSERT(cchSrc == lstrlenA(pszSrc) + 1);
ASSERT(IS_VALID_WRITE_BUFFER(pwszDst, WCHAR, cwchBuf));
ASSERT(pszSrc != NULL);
ASSERT(uiCP != 1200 && uiCP != 65000 && uiCP != 50000 && uiCP != 65001);
ASSERT(pwszDst);
ASSERT(cwchBuf);
cwchRc = MultiByteToWideChar(uiCP, 0, pszSrc, cchSrc, pwszDst, cwchBuf);
if (cwchRc) {
/*
* The output buffer was big enough; no double-buffering
* needed.
*/
} else if (GetLastError() == ERROR_INSUFFICIENT_BUFFER) {
/*
* The output buffer wasn't big enough. Need to double-buffer.
*/
int cwchNeeded = MultiByteToWideChar(uiCP, 0, pszSrc, cchSrc,
NULL, 0);
ASSERT(cwchRc == 0); /* In case we fail later */
if (cwchNeeded) {
LPWSTR pwsz = (LPWSTR)LocalAlloc(LMEM_FIXED,
cwchNeeded * SIZEOF(WCHAR));
if (pwsz) {
cwchRc = MultiByteToWideChar(uiCP, 0, pszSrc, cchSrc,
pwsz, cwchNeeded);
if (cwchRc) {
StrCpyNW(pwszDst, pwsz, cwchBuf);
cwchRc = cwchBuf;
}
LocalFree(pwsz);
}
}
} else {
/* Possibly unsupported code page */
ASSERT(!"Unexpected error in MultiByteToWideChar");
}
return cwchRc;
}
int
SHAnsiToUnicodeCP_ACP(LPCSTR pszSrc, LPWSTR pwszDst, int cwchBuf)
{
int cwchRc = 0; /* Assume failure */
ASSERT(IS_VALID_STRING_PTRA(pszSrc, -1));
ASSERT(IS_VALID_WRITE_BUFFER(pwszDst, WCHAR, cwchBuf));
/*
* Sanity check - NULL source string is treated as a null string.
*/
if (pszSrc == NULL) {
pszSrc = "";
}
/*
* Sanity check - Output buffer must be non-NULL and must be of
* nonzero size.
*/
if (pwszDst && cwchBuf) {
int cchSrc;
pwszDst[0] = 0; /* In case of error */
cchSrc = lstrlenA(pszSrc) + 1;
cwchRc = SHAnsiToUnicodeNativeCP(CP_ACP, pszSrc, cchSrc, pwszDst, cwchBuf);
}
return cwchRc;
}
/*
* @doc EXTERNAL
*
* @func int | SHAnsiToUnicode |
*
* Convert an ANSI string to a UNICODE string via the
* <c CP_ACP> code page. If the source string is too large
* for the destination buffer, then as many characters as
* possible are copied.
*
* The resulting output string is always null-terminated.
*
* @parm LPCSTR | pszSrc |
*
* Source buffer containing ANSI string to be converted.
*
* @parm LPWSTR | pwszDst |
*
* Destination buffer to receive converted UNICODE string.
*
* @parm int | cwchBuf |
*
* Size of the destination buffer in <t WCHAR>s.
*
* @returns
*
* On success, the number of characters copied to the output
* buffer is returned, including the terminating null.
*
*/
int
SHAnsiToUnicode(LPCSTR pszSrc, LPWSTR pwszDst, int cwchBuf)
{
return SHAnsiToUnicodeCP_ACP(pszSrc, pwszDst, cwchBuf);
}
// dupe a string using the task allocator for returing from a COM interface
// These functions use SHAlloc, so they cannot go into shlwapi.
STDAPI SHStrDupA(LPCSTR psz, WCHAR **ppwsz)
{
DWORD cch = MultiByteToWideChar(CP_ACP, 0, psz, -1, NULL, 0);
*ppwsz = (WCHAR *)CoTaskMemAlloc((cch + 1) * SIZEOF(WCHAR));
if (*ppwsz)
{
MultiByteToWideChar(CP_ACP, 0, psz, -1, *ppwsz, cch);
return S_OK;
}
return E_OUTOFMEMORY;
}
// dupe a string using the task allocator for returing from a COM interface
STDAPI SHStrDupW(LPCWSTR psz, WCHAR **ppwsz)
{
*ppwsz = (WCHAR *)CoTaskMemAlloc((lstrlenW(psz) + 1) * SIZEOF(WCHAR));
if (*ppwsz)
{
StrCpyW(*ppwsz, psz);
return S_OK;
}
return E_OUTOFMEMORY;
}
// Modifies:
// szRoot
//
// Returns:
// TRUE if a drive root was found
// FALSE otherwise
//
STDAPI_(BOOL)
PathStripToRoot(
LPTSTR szRoot)
{
while(!PathIsRoot(szRoot))
{
if (!PathRemoveFileSpec(szRoot))
{
// If we didn't strip anything off,
// must be current drive
return(FALSE);
}
}
return(TRUE);
}
//
// SHStringFromGUIDA
//
// converts GUID into (...) form without leading identifier; returns
// amount of data copied to lpsz if successful; 0 if buffer too small.
//
// An endian-dependant map of what bytes go where in the GUID
// text representation.
//
// Do NOT use the TEXT() macro in GuidMap... they're intended to be bytes
//
static const BYTE c_rgbGuidMap[] = { 3, 2, 1, 0, '-', 5, 4, '-', 7, 6, '-',
8, 9, '-', 10, 11, 12, 13, 14, 15 };
static const CHAR c_szDigitsA[] = "0123456789ABCDEF";
static const WCHAR c_szDigitsW[] = TEXTW("0123456789ABCDEF");
STDAPI_(int)
SHStringFromGUIDA(
UNALIGNED REFGUID rguid,
LPSTR psz,
int cchMax)
{
int i;
const BYTE * pBytes = (const BYTE *) rguid;
if (cchMax < GUIDSTR_MAX)
return 0;
#ifdef BIG_ENDIAN
// This is the slow, but portable version
wnsprintf(psz, cchMax,"{%08lX-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X}",
rguid->Data1, rguid->Data2, rguid->Data3,
rguid->Data4[0], rguid->Data4[1],
rguid->Data4[2], rguid->Data4[3],
rguid->Data4[4], rguid->Data4[5],
rguid->Data4[6], rguid->Data4[7]);
#else
// The following algorithm is faster than the wsprintf.
*psz++ = '{';
for (i = 0; i < SIZEOF(c_rgbGuidMap); i++)
{
if (c_rgbGuidMap[i] == '-') // don't TEXT() this line
{
*psz++ = '-';
}
else
{
// Convert a byte-value into a character representation
*psz++ = c_szDigitsA[ (pBytes[c_rgbGuidMap[i]] & 0xF0) >> 4 ];
*psz++ = c_szDigitsA[ (pBytes[c_rgbGuidMap[i]] & 0x0F) ];
}
}
*psz++ = '}';
*psz = '\0';
#endif /* !BIG_ENDIAN */
return GUIDSTR_MAX;
}
STDAPI_(int)
SHStringFromGUIDW(
UNALIGNED REFGUID rguid,
LPWSTR psz,
int cchMax)
{
int i;
const BYTE * pBytes = (const BYTE *) rguid;
if (cchMax < GUIDSTR_MAX)
return 0;
#ifdef BIG_ENDIAN
// This is the slow, but portable version
wnsprintfW(psz, cchMax, L"{%08lX-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X}",
rguid->Data1, rguid->Data2, rguid->Data3,
rguid->Data4[0], rguid->Data4[1],
rguid->Data4[2], rguid->Data4[3],
rguid->Data4[4], rguid->Data4[5],
rguid->Data4[6], rguid->Data4[7]);
#else
// The following algorithm is faster than the wsprintf.
*psz++ = TEXTW('{');
for (i = 0; i < SIZEOF(c_rgbGuidMap); i++)
{
if (c_rgbGuidMap[i] == '-') // don't TEXT() this line
{
*psz++ = TEXTW('-');
}
else
{
// Convert a byte-value into a character representation
*psz++ = c_szDigitsW[ (pBytes[c_rgbGuidMap[i]] & 0xF0) >> 4 ];
*psz++ = c_szDigitsW[ (pBytes[c_rgbGuidMap[i]] & 0x0F) ];
}
}
*psz++ = TEXTW('}');
*psz = TEXTW('\0');
#endif /* !BIG_ENDIAN */
return GUIDSTR_MAX;
}
//
// Why do we use the unsafe version?
//
// - Unsafe is much faster.
//
// - The safe version isn't safe after all and serves only to mask
// existing bugs. The situation the safe version "saves" is if
// two threads both try to atomicrelease the same object. This
// means that at the same moment, both threads think the object
// is alive. Change the timing slightly, and now one thread
// atomicreleases the object before the other one, so the other
// thread is now using an object after the first thread already
// atomicreleased it. Bug.
//
STDAPI_(void) IUnknown_AtomicRelease(void **ppunk)
{
#if 1 // Unsafe
if (ppunk && *ppunk) {
IUnknown* punk = *(IUnknown**)ppunk;
*ppunk = NULL;
punk->lpVtbl->Release(punk);
}
#else // Safe
if (ppunk) {
IUnknown* punk = (IUnknown *)InterlockedExchangePointer(ppunk, NULL);
if (punk) {
punk->Release();
}
}
#endif
}
#endif //DOWNLEVEL_PLATFORM